
Click
Here

for

Full
Article

Joint inversion of receiver functions, surface wave dispersion, and
magnetotelluric data
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[1] We present joint inversion of magnetotelluric, receiver function, and Raleigh wave
dispersion data for a one‐dimensional Earth using a multiobjective genetic algorithm
(GA). The chosen GA produces not only a family of models that fit the data sets but also
the trade‐off between fitting the different data sets. The analysis of this trade‐off gives
insight into the compatibility between the seismic data sets and the magnetotelluric data
and also the appropriate noise level to assume for the seismic data. This additional
information helps to assess the validity of the joint model, and we demonstrate the use
of our approach with synthetic data under realistic conditions. We apply our method to
one site from the Slave Craton and one site from the Kaapvaal Craton. For the Slave
Craton we obtain similar results to our previously published models from joint inversion of
receiver functions and magnetotelluric data but with improved resolution and control on
absolute velocities. We find a conductive layer at the bottom of the crust, just above
the Moho; a low‐velocity, low‐resistivity zone in the lithospheric mantle, previously
termed the Central Slave Mantle Conductor; and indications of the lithosphere‐
asthenosphere boundary in terms of a decrease in seismic velocity and resistivity. For the
Kaapvaal Craton both the seismic and the MT data are of lesser quality, which prevents
as detailed and robust an interpretation; nevertheless, we find an indication of a low‐
velocity low‐resistivity zone in the mantle lithosphere. These two examples demonstrate
the potential of joint inversion, particularly in combination with nonlinear optimization
methods.

Citation: Moorkamp, M., A. G. Jones, and S. Fishwick (2010), Joint inversion of receiver functions, surface wave dispersion,
and magnetotelluric data, J. Geophys. Res., 115, B04318, doi:10.1029/2009JB006369.

1. Introduction

[2] With increasing computational power, methods to
jointly invert several data sets are gaining in popularity [e.g.,
Julia et al., 2000; Gallardo and Meju, 2003; Linde et al.,
2006]. The rationale for this approach is to reduce the influ-
ence of noise and to increase resolution. Furthermore, if
different types of data are inverted together the improved
constraints on various physical parameters can give a better
understanding of the underlying geology. However, com-
bining different data in a single inversion bears the risk of
forcing two or more inherently incompatible data sets into a
common model that is not suitable for either of them.
[3] The factors that govern the distribution of seismic

velocities and electrical conductivities within the Earth can
be very different. Seismic velocities, particularly P wave
velocities, are generally determined by bulk properties of the

rock. With wavelengths of several kilometers for teleseismic
data, the effective elastic moduli are an average over a large
volume of material. Long‐period magnetotelluric data also
average over large volumes, but in a fundamentally different
way. Here the question is often that of large‐scale connec-
tivity of conductive material; even small fractions of con-
ductive material can determine the bulk conductivity, as long
as it is connected [Bahr and Simpson, 2002]. These two
different characteristics might lead to the conclusion that we
should not expect any correlation between seismic velocities
and electrical conductivities. This is generally true for the
magnitude and its spatial derivatives; higher velocities are
not usually associated with higher resistivities or vice versa,
although for the mantle lithosphere of the Kaapvaal Craton
[Jones et al., 2009] recently showed a linear relationship
between shear wave velocity and the logarithm of resistivity.
In sedimentary environments porosity and fluids in the rock
matrix provide a link that causes a correlation of seismic
velocities and electrical conductivities [Carcione et al.,
2007]. In the mantle, temperature, iron content and compo-
sition all affect both the bulk and shear moduli and electrical
conductivity [e.g., Jones et al., 2009].
[4] More conservatively though, a geometrical and/or a

structural link between the two parameters is quite likely.
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Many discontinuities of seismic velocity or electrical prop-
erties are interpreted as boundaries between distinct geo-
logical units [e.g., Marquis et al., 1995; Lahti et al., 2005;
Tournerie and Chouteau, 2005], which in some cases
even originated in different regions and then accreted [e.g.,
Jones et al., 2002; Snyder and Bruneton, 2007]. Under these
circumstances changes in various petrophysical parameters
will occur simultaneously. Also, the two major dis-
continuities in the lithosphere, the crust‐mantle boundary
(Moho) and the lithosphere‐asthenosphere boundary (LAB)
are both likely correlated with changes in conductivity
[Jones, 1999; Jones and Ferguson, 1997; Gatzemeier and
Moorkamp, 2005]. Therefore we can expect at least some
structural correlation between these parameters. Still, we
have to account for the possibility of disparate interfaces that
do not allow a common parametrization. We will show to
what extent our genetic algorithm approach helps to identify
these situations.
[5] In this study we jointly invert magnetotelluric data,

receiver functions and fundamental mode Rayleigh wave
dispersion data. Previously [Moorkamp et al., 2007], we
showed how we can use the combination of magneto-
tellurics and receiver functions to construct joint electric and
seismic models for two sites on the Slave Craton. This
approach was motivated by the observation of similar
interface locations in separate models from that area
[Davis et al., 2003; Jones et al., 2003; Snyder et al., 2004]
and we obtained encouraging results. However, the limited
sensitivity of receiver functions to absolute S wave ve-
locities required us to prescribe crustal velocities taken
from a regional seismic model [Perry et al., 2002]. By
adding fundamental mode Rayleigh wave dispersion data
into the inversion process, we obtain a reference for abso-
lute S wave velocities that should remove the need for tight
constraints on the seismic parameters.

2. Data Sets

2.1. Magnetotelluric Data

[6] Magnetotellurics (MT) is the main geophysical
method to derive the conductivity distribution of the Earth’s
crust and mantle. From simultaneous measurements of the
horizontal components of the electric fields E and magnetic
fields H at the surface, we can estimate the complex
impedance tensor Z in the frequency domain, namely,

E ¼ ZH: ð1Þ

For a uniform source field, the impedance tensor solely
depends on the conductivity distribution in the subsurface.
The impedances at high frequencies correspond to nearby
structures, whereas the impedances at low frequencies cor-
respond to more distant (deeper for a 1‐D Earth) structures.
In the most general case all entries of the impedance tensor
are nonzero and we need 3‐D modeling and inversion
methods to fit all its components. Due to the difficulties
associated with a full 3‐D inversion and only recent avail-
ability of inversion codes [Siripunvaraporn et al., 2005], a
number of methods have been developed to identify data
that can be adequately modeled with a 2‐D, or even a 1‐D
model. We apply dimensionality analysis using the phase

tensor [Caldwell et al., 2004] to our data to identify suitable
stations for our 1‐D modeling approach.
[7] For distortion by local structures of only the electric

fields, the magnetotelluric phase tensor F represents the part
of the impedance tensor that corresponds to the regional
structure of the Earth and can be extracted without simpli-
fying assumptions about dimensionality and galvanic dis-
tortion [Bibby et al., 2005]. It is defined as

� ¼ X�1Y where X ¼ Re Zð Þ;Y ¼ Im Zð Þ: ð2Þ

[8] We can use the structure of this tensor to assess elec-
tromagnetic dimensionality. For one‐dimensional structures
the necessary conditions for the phase tensor are vanishing
off‐diagonal elements F21 and F21, equal diagonal elements,
and vanishing skew b [Bibby et al., 2005], namely,

� ¼ 1

2
tan�1 �12 � �21

�11 þ �22

� �
: ð3Þ

[9] This condition can be alternatively expressed in terms
of the ellipticity l, as

� ¼ �max � �min

�max þ �min
¼ 0 and � ¼ 0: ð4Þ

Here Fmax and Fmin are the maximum and minimum prin-
cipal values of F, respectively. For measured data that are
affected by noise, this condition means that both values
should not be different from zero in a statistical sense.
[10] For real data it is rare to find a site where the

dimensionality condition is met at all frequencies and even
when it is met the off‐diagonal elements of the impedance
tensor will be different from each other due to measurement
noise. We can reduce the influence of noise and violations
of the 1‐D assumptions by inverting the Berdichevskiy
invariant [Berdichevskiy and Dmitriev, 1976], the arithmetic
average of the off‐diagonal impedance values. As long as
we do not have strong lateral interfaces we can expect good
results with this approach [e.g., Park and Livelybrooks,
1989]. Another issue for the inversion of real data is the
effect of small‐scale inhomogeneities. The effect of these
inhomogeneities can be described as a static distortion of the
impedance tensor [Bahr, 1988; Groom and Bailey, 1989]
and is commonly encountered. Various methods have been
proposed to remove the effect of static distortion, the sim-
plest manifestation of which is static shifts of the apparent
resistivity curves [Jones, 1988], however these can only be
applied effectively with a dense site coverage. One alter-
native is to model phase data alone, as the phases are not
affected by static shifts, the most common form of static
distortion. As the apparent resistivities define the depth scale
in 1‐D inversion [e.g., Jones, 1988], this requires prescrib-
ing the resistivity of some part of the model. The data we
examine however do not appear to be affected significantly
by static shift.
[11] We calculate synthetic impedances for a 1‐D Earth of

stacked isotropic layers using an implementation of the Wait
algorithm [Wait, 1954]. This simple algorithm is a fast and
accurate way to calculate the impedance for a layered sub-
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surface. The inversion algorithm typically spends less than
5% of its time calculating synthetic MT responses.

2.2. Receiver Functions

[12] Receiver functions (RF) are commonly used as a tool
to identify discontinuities in seismic velocities, particularly
the Moho [e.g., Langston, 1979; Kind and Vinnik, 1988;
Langston and Hammer, 2001]. Traditionally, analysis of
P to S conversions, the so‐called P receiver functions,
have been used for this purpose, but recently also analysis
of S to P conversion, also known as S receiver functions
[Yuan et al., 2006; Vinnik et al., 2009], have gained
popularity, particularly for identifying the LAB. In this
study we focus solely on P receiver functions.
[13] There are various ways to calculate receiver functions

from teleseismic data, the spectral water level deconvolution
technique [Langston, 1979] probably being the most popu-
lar. In our experience the time domain iterative deconvolu-
tion technique [Ligorria and Ammon, 1999] gives superior
results in the presence of noise. Regardless of the estimation
technique, the result is a time series where time is a proxy
for depth and significant positive or negative amplitudes
correspond to an increase or decrease in seismic velocity,
respectively. The visual interpretation of receiver functions
is complicated though by multiple reverberations that occur
particularly at later times, and the dependence of the time‐
depth mapping on the unknown velocity distribution in the
subsurface.
[14] For this reason it is beneficial to model receiver

functions for velocity structure, optimally through an in-
version algorithm. In this case multiple reverberations are a
benefit and help to constrain the position of interfaces.
When RFs are used as an imaging tool rather than for
modeling a common solution is to stack moveout‐corrected
receiver functions from different events with a wide range of
ray parameters [e.g., Nair et al., 2006]. While this reduces
the influence of random noise and brings out primary P to
S conversions, it has another effect that is beneficial for
visual interpretation but detrimental for inversion. Multiple
reverberations have a different moveout characteristic to
primary conversions and therefore the amplitude of multi-
ples is reduced by stacking. For visual interpretation this is
beneficial as the multiples could otherwise be confused with
primary conversions. When we model receiver functions,
however, these multiples contain information about the
Earth’s structure. Furthermore if we remove them by using
a stacked receiver function, we have to exclude the time
windows of those multiples from the inversion as they will
still be present in the synthetic receiver functions.
[15] For these reasons we stack the receiver functions

sorted by ray parameters in bins with a width of 0.01 s/km.
With this variation in ray parameter, the moveout of primary
conversions and multiples from structures in the crust and
mantle is small. While this increases the computational load
compared to a single stack, it has the advantage that we
preserve the information contained in the multiple reverbera-
tions. In theory the moveout characteristics also carry infor-
mation about the structure of the Earth, however in practice
the sensitivity is only small [Ammon et al., 1990]. In any case
we reduce the influence of noise on the inversion.
[16] We use a two‐step approach to calculate synthetic

receiver functions for the inversion. First, we calculate

synthetic seismograms using the code of Randall [1989].
Then we use the same iterative deconvolution routine that
we use for real data to calculate receiver functions from
these synthetic seismograms. In order to ensure that all
reverberations are captured correctly, we calculate 200 s of
synthetic seismograms even though the primary conversions
and crustal multiples are all contained in the first 40 s of the
receiver function. Together with the fact that we have to
calculate separate seismograms for each ray parameter, this
makes it the most time consuming part of the inversion.
The inversion spends about 70% calculating the synthetic
receiver functions.

2.3. Rayleigh Wave Dispersion Data

[17] Surface waves are one of the ideal tools for studying
the structure of the crust and upper mantle, and for many
events the surface wave train is the largest feature of the
seismogram. A good vertical resolution of the variation in
shear wave speed can be obtained as the depth sensitivity of
surface waves are dependent on the period of the waveform
that is exploited. At periods shorter than approximately 40 s
there is strong sensitivity to crustal structure, whereas at
longer periods the waveform becomes increasingly sensitive
to variations in shear wave speed within the upper mantle.
The horizontal propagation of the surface waves means that
a wide distribution of events and recorders is required to
produce a reliable tomographic image, but with a good path
coverage it is possible to have reasonably good lateral res-
olution even in areas with very few seismic stations.
[18] Within the surface wave train it is possible to make

use of both Rayleigh and Love waves, and also both the
fundamental and higher modes. As the level of noise is
generally much higher on the horizontal than vertical com-
ponent, it is the Rayleigh wave that is most frequently an-
alyzed in surface wave studies. For this reason in this study
we work with Rayleigh wave dispersion data. A variety of
methods exist to extract information from the component of
the seismogram produced by the surface waves; for exam-
ple, group velocities can be estimated using frequency time
analysis [e.g., Ritzwoller and Levshin, 1998], two plane
wave solutions for the wave field can be found for events
measured within an array [e.g., Forsyth and Li, 2005], and
multimode waveform inversion techniques can be used to
estimate the path average velocity structure required to pro-
duce the observed surface wave dispersion [e.g., Debayle,
1999; Lebedev et al., 2005]. In the last method, if disper-
sion information is required the path average velocity model
can be used as an estimator of the average dispersion char-
acteristics between the source and receiver [Kennett and
Yoshizawa, 2002].
[19] Tomographic inversions are used to combine the data

from multiple events measured across the array, or for
multiple source‐receiver pairs, and thus provide regional
maps of the dispersion characteristics at a particular period.
The local dispersion characteristics at any point within the
region can then be obtained by extracting the information
from a series of tomographic maps across the period range
of interest.
[20] We use the surface wave dispersion code sdisp96 that

is part of the Computer Programs in Seismology (R. B.
Herrmann, 2002, available at http://www.eas.slu.edu/
People/RBHerrmann/ComputerPrograms.html) to calculate
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the synthetic dispersion curves. One difficulty with GA based
inversions is that in the early stages the models are purely
random and can contain strongly alternating low‐ and high‐
velocity layers. These types of structures can be numerically
unstable and present a problem to some codes. With sdisp96
we have not encountered such problems. Also the forward
calculation is relatively fast, only 20% of the time of the
inversion is spent calculating the dispersion curves.

3. Inversion Method

[21] We chose the multiobjective genetic algorithm (GA)
NSGA‐II [Deb et al., 2002] as the optimization method for
our joint inversion approach. There are two main reasons for
this choice: (1) genetic algorithms in general do not depend
on any linearized approximation and (2) NSGA‐II in par-
ticular yields a set of final models that demonstrate to what
extent fitting one data set trades off against fitting the other
data sets. When jointly inverting data that are sensitive to
different parameters, we cannot be sure that these data sense
the same structures and can be described by a joint model.
We use the trade‐off as an indicator of the compatibility of
the data sets. These advantages come at the cost of a much
higher computational load, as the lack of gradient infor-
mation and the stochastic nature of the algorithm require a
large number of forward calculations. In the following we
will describe the basic concept of genetic algorithm inver-
sion with particular focus on NSGA‐II and our joint inversion
problem.
[22] Genetic Algorithms (GA) are a class of stochastic

optimization methods similar to Monte Carlo and Simulated
Annealing approaches [e.g., Sambridge and Mosegaard,
2002]. The main difference of GAs to these two is that
usually the algorithm does not directly work with the model
parameters, but an encoded binary form that mimics RNA in
biological evolution [Goldberg, 1989]. We therefore have to
specify three parameters for each model parameter mi: The
minimum possible value mi

min, the discretization step Dmi,
and the number of bits used for the encoding Ni. Conse-
quently genetic algorithms that use this form of represen-
tation are inherently constrained optimization methods. For
geophysical applications this presents no problem, as rea-
sonable and physically realistic values for the model para-
meters are usually known. For example, we search an S
velocity range between 2.5 km/s and 5.6 km/s which covers
realistic values in the crust and upper mantle [Dziewonski
and Anderson, 1981]. For the MT data the apparent resis-
tivity curve gives an indication of the order of magnitude
of the expected resistivities and we search for resistivities
between 1 Wm and 106 Wm. More important is the impact of
the discretization step Dmi. In the inversion procedure we
have to assure that this step size is small enough to avoid
aliasing effects; again for geophysical applications there are
reasonable estimates of what minimum variation we can
consider useful and the misfit surface is not that highly
nonlinear that very small changes can have a major impact
on the data fit. We use a step size of 0.1 km/s for the seismic
model and 0.1 for logarithmic resistivity for the electric
model. Comparison with inversions with finer discretization
shows that we obtain essentially the same results but with
less forward evaluations.

[23] After we have chosen encoding parameters for each
model parameter, the genetic algorithm creates a random
population of fixed size P. Each member of this population
represents one possible model. For each population member
m we transform the encoded bit string back into physical
parameters and calculate the objective function value Oj(m)
for each objective function, e.g., the misfit of each data set
and possible regularization functionals. NSGA‐II preserves
the multiobjective nature of the problem by storing the
objective function values in a vector O(m) for each popu-
lation member. This is a major difference to linearized
schemes and some GAs that minimize a weighted sum of
the objective functions values [e.g., Julia et al., 2000;
Gallardo and Meju, 2003; Linde et al., 2006]: in our case
we do not need to specify the nature of the weighting of the
different data. This is a significant advantage and is dis-
cussed in greater detail below.
[24] The next step in the algorithm is the selection of

models for the next generation. Each population member is
assigned a rank based on the concept of Pareto optimality. A
population member mi is said to be partially less than the
member mj if all objective function values are less or equal
and at least one is less for mi,

mi �p mj , 8k : Ok mið Þ � Ok mj

� �
and

9k : Ok mið Þ < Ok mj

� �
:

ð5Þ

As we can see from equation (5), the algorithm only com-
pares objective function values for each data set or regu-
larization functional. If there is no member in the population
that is partially less then a given member m, m is called
locally Pareto optimal and assigned a rank of one. Con-
versely population members that are partially less than
another member of the population are called dominated by
that member. Note that there can be more than one locally
Pareto optimal member in the population, the set of Pareto
optimal members forms the so‐called Pareto front; we will
discuss the meaning and the implications of this below.
After all locally Pareto optimal members have been identi-
fied, they are removed from the ranking procedure. Mem-
bers of the population that are Pareto optimal after the
removal of the first front are assigned a rank of two and the
process is repeated with the remaining members with an
increased rank until the whole population is ranked. We
show a graphical representation of Pareto optimality and the
ranking process in Figure 1.
[25] After the population has been ranked, candidates for

the new population are selected by binary tournament
selection. Two random members are drawn from the pop-
ulation and the one with lower rank is selected. If both have
the same rank, the member with the larger crowding dis-
tance, i.e., the average distance to neighboring models in
objective function space [Deb et al., 2002], is used as a
secondary criterion. If both criteria are equal one member is
chosen randomly.
[26] So far the GA has not introduced any variations of the

models. This is done by using crossover between models
and mutation of individual models. With a probability pc
two models are selected for crossover and exchange their
binary representation after a randomly chosen location. This
process is very effective at distributing successful segments
of the model across the population [Goldberg, 1989]. Muta-
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tion on the other hand is a purely unstructured process; with a
probability pm one bit changes its value. This helps to explore
completely new regions of model space.
[27] Before we start the new iteration, we ensure that the

best models are always preserved by merging the new
population with the old one, ranking the joint population
and taking the P best models based on rank and crowding
distance. With this new generation we repeat the above steps
for a fixed number of iterations.
[28] The advantage of the concept of Pareto optimality

over a weighted sum approach for joint inversion might not
be intuitively clear. However, we consider it as one of the
key advantages of optimization with NSGA‐II and will
therefore illustrate its merits here. For this purpose we use a
simple regularized one‐dimensional inversion problem for
MT data. We can regard this as a joint inversion problem
where we want to minimize data misfit and model com-
plexity simultaneously and use it as a simple example to
explain some basic ideas before we discuss joint inversion
of several data sets. We generate synthetic MT data from a
one‐dimensional model, add random noise to the data and
invert the two objective functions MT data misfit and
resistivity variation using our joint inversion algorithm.
[29] The set of locally Pareto optimal models for selected

generations in the inversion is shown in Figure 2a. We can
readily identify the competitive nature of the two objective
functions, data misfit and model complexity, from this plot.
Within each front, models with a higher misfit have a lower
roughness and vice versa. With successive generations the
front on average moves closer to the origin, but at the same

time maintains a diversity of models with a large span of
misfit and roughness values. When the algorithm has com-
pleted, we have obtained an approximation to the L curve
[Hansen, 1992] and can use criteria like maximum curvature
or generalized cross validation [Farquharson andOldenburg,
2004] to identify an appropriate model. Figure 2b shows
three models from the final Pareto front, their position within
the front is marked in Figure 2a.
[30] The results are similar to the Occam approach

[Constable et al., 1987], with the difference that now we
obtain a range of models from which we can choose one that
we regard as optimal in some sense. When we invert several
data sets the algorithm will also yield a trade‐off curve, or
a multidimensional trade‐off surface for three or more
objective functions. In the ideal case where both data sets
uniquely sense compatible structures and the genetic algo-
rithm has fully converged, this curve will consist of only one
point. In practice this will not be the case even when the data
sets sense identical structures as each data set is affected
differently by noise. Also, we are solving the problem in a
discrete rather than a continuous manner. We will therefore
always obtain some sort of trade‐off curve. In the synthetic
examples below we will show how we can use this infor-
mation to test our assumptions about the level of noise in the
data.
[31] When the data sets are incompatible, i.e., sense dif-

ferent structures that cannot be accommodated simulta-
neously in the joint model, we obtain a trade‐off curve
similar to the trade‐off for the regularized inversion problem
shown before. We will not be able to find a single model

Figure 1. The concept of Pareto optimality. For two selected models from the Pareto optimal front,
labeled model A and model B, we show the region in objective function space that these models would be
dominated by and the members of the population these two model dominate. We also show the rank the
population members would be assigned in the genetic algorithm.
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that fits both data sets simultaneously. For more than two
data sets the situation becomes more difficult to analyze, as
we have to deal with a trade‐off surface that becomes dif-
ficult to visualize. We will present a simple but reliable
scheme to identify compatible and incompatible situations
below.
[32] For the joint inversion we use a similar setup as in the

previous study [Moorkamp et al., 2007]. We invert for
isotropic S velocity, isotropic resistivity and layer thickness
for a fixed number of inversion layers. P velocities and
densities for each layer are calculated by multiplying by
a factor of

ffiffiffi
3

p
and using the empirical relationship of

Berteussen [1977], respectively. We use a normalized RMS
misfit F for each data set,

� ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼1

dobs � dsynth
�dobs

� �2
vuut :

Dividing each datum by the estimated observation error
Ddobs makes the misfit dimensionless and it reaches a value
of unity when the model on average fits the data within the
observational error.
[33] We achieve the coupling between the electrical and

seismic structure by using a single set of thickness values
for the inversion layers. Therefore a layer boundary in the

seismic model is automatically a layer boundary in the elec-
trical model, although we do not require a change in resis-
tivity across that boundary. This type of setup is similar to
the cross‐gradient approach [Gallardo and Meju, 2003], and
presents the weakest possible coupling between the data sets.
Considering that the relationship between seismic velocities
and resistivities at the scale of the lithosphere is largely
unknown, this type of setup imposes the least assumptions on
the joint inversion problem. Stronger assumptions, such as
empirical relationships between conductivity and resistivity
suggested by Jones et al. [2009], would increase the coupling
between the data sets but also the possibility of totally mis-
leading and erroneous results.

4. Synthetic Tests

[34] We perform a number of tests with synthetic data to
demonstrate that we can identify situations where a joint
modeling approach is sensible and where it is not, and that
our approach yields meaningful results in cases where a
joint model is appropriate. We construct two data sets for
these tests. The receiver function and surface wave data
are identical for both data sets. From the model shown in
Figure 3c we calculate synthetic seismograms with ray
parameters of 0.05, 0.06 and 0.07 s/km. We add random
Gaussian noise with an amplitude of 2% of the direct

Figure 2. Evolution of the Pareto front for the regularized inversion example. (a) The evolution of the
Pareto front through selected iterations and the position of the models in Figure 2b within the final Pareto
optimal front. (b) Three models from the final iteration, the two extremal models and one with inter-
mediate roughness and misfit.
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P wave amplitude to the radial and vertical components
and calculate synthetic receiver functions using the iterative
deconvolution technique [Ligorria and Ammon, 1999]. From
the same model we calculate synthetic seismograms for sur-
face wave analysis, add 2% random Gaussian noise to each
seismogram and estimate phase velocities using the tools and
procedures described by R. B. Herrmann (Computer Pro-
grams in Seismology, 2002, available at http://www.eas.slu.
edu/People/RBHerrmann/ComputerPrograms.html).
[35] The first data set is calculated from the compatible

MT model in Figure 3a. The resistivities in this model are
simply a scaled version of the seismic velocities, and there-
fore all interfaces are at exactly the same depths. We add 5%
random Gaussian noise to the synthetic data calculated from
this model and we will call the combination of this data with
the seismic data the “compatible joint inversion data set.”
[36] The second MT data set is calculated from the

incompatible MT model in Figure 3a. Here we have added a
conductive layer in the lower crust, a common observation
in magnetotelluric data sets [Jones, 1992], and resistivity
does not change across the Moho. Furthermore the con-
ductive layer that simulates the lithosphere‐asthenosphere
boundary is shallower than the corresponding low‐velocity
layer in the seismic model. As above we add 5% random
Gaussian noise. We will call the combination of this
data with the synthetic seismic data the “incompatible joint
inversion data set.”
[37] Our first experiment demonstrates howwe can identify

the noise level in the seismic data set and distinguish the

compatible and incompatible data set in the presence of noise.
We run the inversion with 4 layers on both data sets and
additionally on the compatible data set without any noise.
This is the smallest number of layers that can reproduce the
compatible data set and therefore provides the strongest
coupling. Figure 4 shows the trade‐off plots for the three data
sets. As we are trying to fit MT data, receiver functions and
surface wave dispersion data simultaneously, the resulting
trade‐off is a three‐dimensional convex cloud of points. We
project the trade‐off onto the three planes spanned by the
coordinate axes and show the third dimension by the color of
the points.
[38] For the inversion run without added noise we observe

misfit values below an RMS of 1 for all data sets and all
models. We assumed the same noise level as for the data
sets with added noise for the misfit calculation so this result
is not surprising. The trade‐off between receiver functions
and surface waves shows a single model with significantly
smaller misfit values then all other models in the Pareto
front. We mark this model with a yellow triangle in Figures
4a–4c. Theoretically we expect only a single solution when
inverting noise free synthetic data with the same number of
layers as the model the input data were generated from. Two
factors contribute to the formation of an extended front.
First, to guarantee searching all model space we would have
to run the genetic algorithm for an infinite number of itera-
tions. In practice the GA approaches the vicinity of the
solution fast, but full convergence of the Pareto front to the
single optimal solution takes a large number of iterations.

Figure 3. The synthetic models and data used to test our inversion algorithm. (a) The two MT models
we combine with (c) the seismic model to construct the “compatible” and “incompatible” data sets.
(b) Apparent resistivity and (d) phase for the two MT models.
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Second, the exact solution might not be reachable for the GA
due to the chosen parameter discretization. In this case
parameter values above and below the true solution that can
be represented by the GA appear in the Pareto front. This
effect can be seen in Figure 4c where the front clusters in three
areas. As we chose a discretization step of 0.01 km/s and 0.01
for the logarithmic resistivity for this test the differences
between the three solutions are below the resolution of real
data and comparison with the true model shows that all three
are practically identical.
[39] Compared to the noise free case the trade‐off plots for

the compatible case with added noise (Figures 4d–4f) span a
larger range of misfits for all three data sets, as expected we
do not reach as low misfits as for the noise free case. There

is also an indication of an L curve for the trade‐off between
the two seismic data sets that have been generated from the
same model. The misfit for the surface wave dispersion data
varies by more than an order of magnitude, while the misfit
of the receiver functions varies by a factor of two. This is an
effect of the noise added to the synthetic data. The model
that fits the receiver function data best, also fits aspects of
the noise that are not compatible with the dispersion data.
We can therefore use the trade‐off to check the accuracy of
our noise estimate. Here we use the maximum curvature
criterion [Hansen, 1992] that suggests an RMS of 0.27 for
the receiver function data and 0.2 for the dispersion data,
we mark this model with an inverted yellow triangle in
Figures 4d–4f. In both cases the processing applied to the

Figure 4. Trade‐off plots for (a–c) the compatible problem without noise, (d–f) the compatible problem
with noise, and (g–i) the incompatible problem. Within each plot we show two objective function values
against each other and color each point by the third objective function value. The optimum model for the
compatible case without noise is marked by a yellow triangle. We mark the compatible problem with
noise with an inverted triangle.
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noise contaminated synthetic seismograms has reduced the
effective noise on the data used within the inversion. This
impression is confirmed by visual inspection of the com-
puted receiver functions, for example, and demonstrates
the robustness of the iterative deconvolution approach.
The genetic algorithm has therefore helped to identify the
appropriate level of noise to avoid overfitting the data.
[40] The trade‐off front between surface wave dispersion

data and MT (Figure 4e) for the compatible case is nearly a
straight line, a large number of models with varying dis-
persion misfit has nearly identical MT misfit. This is a result
of the coupling we use between the electrical and seismic
parameters. All these models have identical layer thick-
nesses and resistivities, but varying seismic velocities. As
we can see the model with the optimum trade‐off for the
seismic data is part of this front and also minimizes the MT
data. The trade‐off between the MT data and the receiver
function data shows a sharply bent L curve with the opti-
mum model in this case not at the point of maximum cur-
vature. Again this is a result of the noise added to the data.
The models in this area have a high dispersion misfit. The
model determined this way for the compatible case matches
the layer geometry of the synthetic model used to generate
the data exactly, the seismic velocities within each layer
differ by up to 0.02 km/s and 2% for the resistivities (see
Figure 5).

[41] For the incompatible test case the trade‐off plot for
the two seismic data sets looks similar to the trade‐off plot
for the compatible case. Although the seismic data sets are
identical in both cases we do not obtain identical trade‐off
curves for these data sets for two reasons. First, the genetic
algorithm is a stochastic method that despite some mechan-
isms to enhance the diversity of the population has a tendency
to find models that fit all data sets well, but is less efficient at
finding extreme models that fit only one data set [Goldberg,
1989]. These extreme models might not appear in every run
of the GA. Second, the interaction of the Pareto front with the
incompatible MT data precludes some models from the front,
its shape in all dimensions depends on the interaction of all
objective functions and these effects cannot simply be sepa-
rated. Still, the optimummisfit that we identify for the seismic
data for this case is identical to the compatible case, as we
expect for identical input data. This also demonstrates that the
GA yields robust results.
[42] At first glance the trade‐off plot between surface

wave data and MT data for the incompatible case (Figure 4h)
looks similar to the compatible case. In both cases we obtain
an L‐shaped cloud of points. It appears though that for the
incompatible case the models with low MT and surface wave
misfit all have high receiver function misfit; significantly
higher than the optimummisfit we determined from the trade‐
off of the seismic data. However from such a cloud of points

Figure 5. Comparison between inversion results and synthetic input data for the compatible case with
added noise.
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it is difficult to infer this reliably and we will quantify this
impression below when we apply our selection scheme.
[43] The trade‐off plot between receiver function and MT

data shows a pronounced difference between the compatible
(Figure 4c) and incompatible cases (Figure 4f). In the
incompatible case there is a significant gap in the distribu-
tion of models in the lower left corner, revealing that there
are no models that acceptably fit both data sets simulta-
neously. In addition, the models with MT misfit below 2 and
a RF misfit that approaches the optimum misfit have a high
surface wave dispersion misfit. From this plot it appears to
be impossible to find a model that fits all three data sets
simultaneously.
[44] Although these plots give a good first visual im-

pression of the compatibility, it is important to quantify this,

particularly when the Pareto front contains a significant
number of models. We apply the scheme we used to identify
the optimum model in the compatible case to the incom-
patible case as well. If we select the models with an opti-
mum receiver function and surface wave misfit, we only
find models with a MT misfit >2.5, significantly higher
than the best fitting MT models. If conversely we examine
the best fitting MT models, both receiver function misfit
and surface wave dispersion misfit are significantly higher
than the value determined from the optimum trade‐off of
the seismic data sets. This indicates that the data sets are
incompatible.
[45] Next we examine the effect of different numbers of

layers within the inversion. In the previous experiment we
used the same number of layers to generate the input data

Figure 6. Trade‐off plots for incompatible synthetic test problem when running the inversion with (a–c)
four layers, (d–f) six layers, and (g–i) eight layers. Within each plot we show two objective function
values against each other and color each point by the third objective function value.
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and within the inversion. In practice it is difficult to estimate
the optimal number of layers so we need to find out when
the coupling between the data sets becomes too weak. We
use the incompatible data set for this purpose as it also
demonstrates how the term incompatible depends on the
number of layers.
[46] Figure 6 shows the trade‐off plot for inversion of the

incompatible data set with 4 layers, 6 layers and 8 layers.
Generally the minimum misfit decreases with increasing
number of layers, particularly for receiver functions and MT
data. Also the shape of the trade‐off curve changes depending
on the number of layers. This can be most prominently
observed for the trade‐off between surface wave dispersion
and receiver functions and MT and receiver functions,
respectively. For the comparison between the compatible
and the incompatible cases we saw that the trade‐off between
MT and receiver functions allows to distinguish these two
cases visually. Compared to the inversion with 4 layers, the
inversion with 6 layers finds models that minimize both MT
and receiver function data, the region toward the lower left
corner of trade‐off plot (Figure 6f) that was empty when
inverting with 4 layers, now contains somemodels. However,
the surface wave dispersion misfit of these models is much
higher than indicated from the trade‐off between surface
wave dispersion and receiver functions. There is another
cluster of models however with acceptable misfit for both
seismic data sets, but MT misfit >2. The difference between
thesemodels is the location of the crustal conductor that in the
inversion results always coincides with the crustal velocity
change. In the models used to generate the input data these
two structures were at different depths and therefore we
identify the incompatibility as we did in the 4 layer case. This
is somewhat unexpected as 6 layers are enough to describe the
incompatible seismic and electric models with a single model.
The inversion, however, uses these additional layers to
introduce a gradational velocity change below the Moho that
does not exist in the original model. This is a result of adding
noise to the receiver function data. The added noise decreases
the correlation of theMoho conversion and therefore suggests
a smaller impedance contrast across the Moho. In order to
reconcile the smaller contrast with the surface wave disper-
sion data, the inversion has to introduce a sequence of small
velocity changes that have little impact on the receiver
functions, but raise the velocity in the mantle to a level that
matches the dispersion observations.
[47] When we use 8 layers in the inversion we obtain a

similar trade‐off plot as for the compatible case. Now we
have enough degrees of freedom to model the different
structures in the electric and seismic models as well as the
gradational layers introduced by the noise. Consequently
the model contains layer interfaces to accommodate both the
seismic and electric data. We obtain a good approximation
of the crustal structure and the electric LAB, however
the model does not reproduce the different position of
the seismic LAB, but places the low‐velocity zone with the
electric conductor. As it is not a prominent feature in the
receiver functions and the surface wave dispersion data does
not have sufficient resolution to locate the position of the
low‐velocity zone, this explains both data sets well within
the noise level.
[48] These synthetic tests demonstrate that under realistic

conditions we can identify whether the data sets can be

described by a joint model. One of the important factors for
this success is a sufficient coupling between the models
through a small number of layers. As our synthetic tests
demonstrate the exact number of layers is not critical, but if
we use a large number of layers the data sets effectively
decouple and we will be able to accommodate any kind of
structure. It it therefore important for the inversion of real
data to at least approximately identify the smallest number
of layers with which we can model each data set.

5. Application to Data From Northern Canada
and South Africa

[49] We apply our approach to data from two Archean
cratonic regions, the Slave Craton and the Kaapvaal Craton.
Both areas contain diamond‐bearing Kimberlites and con-
sequently have been the targets of various geophysical
experiments [e.g., Jones et al., 2003, 2009]. Furthermore
the similarities and differences between these two cratonic
platforms have been a long‐standing question [Jones et al.,
2003]. A detailed comparison of the structure of the two
cratons is beyond the scope of this paper; we will focus on
the analysis of one site from each region. While this does
not permit a detailed interpretation it provides a first hint at
possible similarities.

5.1. Slave Craton

[50] We use data from site EKTN of the POLARIS net-
work [Eaton et al., 2004] recorded between 2002 and 2005
to calculate P receiver functions. We use receiver functions
from 27 events that show a clear initial correlation peak,
Moho conversions and multiples and stack them in 4 bins
with a width of 0.01 s/km each between 0.04 s/km and
0.07 s/km. The parameters for the events used to calculate
the receiver functions are listed in Table A1. The MT data
were recorded at a nearby station that was part of the
Lithoprobe SNORCLE project [Jones et al., 2003] and are
the same data we inverted previously [Moorkamp et al.,
2007]. We add fundamental mode Rayleigh wave phase
velocity data derived byChen et al. [2007] directly in the joint
inversion.
[51] As before we invert for layer thickness t, logarithmic

layer resistivity logr and S wave velocity VS. We calculate
VP with a fixed factor of

ffiffiffi
3

p
and density r using the em-

pirical relationship of Berteussen [1977]. We run the genetic
algorithm with a population size of 1000 for 200 iterations
to ensure sufficient convergence to the true Pareto front
[Corne and Knowles, 2007]. Comparison of results from
different inversion runs confirms that the results are stable
with these parameters. Apart from the additional data,
another major difference to our previous setup is that we do
not prescribe any crustal velocity, but determine the seismic
velocity of all layers within the inversion.
[52] Figure 7 shows the trade‐off plots for the three data

sets produced by a single run of the inversion algorithm for
inversions with 7 layers, 9 layers and 11 layers. The trade‐
off between fitting the receiver function and the dispersion
data shows a more pronounced L shape than we observed
in the synthetic experiments and shows similar behavior
regardless of the number of layers used in the inversion. The
optimum trade‐off point in the Pareto front yields an RMS
of 0.3 for the surface wave dispersion data and 2 for the
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receiver function data and indicates that our noise estimate
of 2% for the surface data was too pessimistic and 2% for
the receiver function data was too optimistic. As we reach
this optimum trade‐off point for the seismic data sets for all
three inversion, this seems to indicate that 7 layers are
enough to model both seismic data sets adequately.
[53] However, the trade‐off between the two seismic data

sets and the MT data shows systematic variation with the
number of layers used in the inversion. As expected the
minimum RMS for the MT decreases with increasing
number of layers. More importantly, the difference between
the best fitting MT model and the model that corresponds to
the optimal seismic model also decreases with increasing
number of layers. As the synthetic tests demonstrate, increas-
ing the number of layers increases the ability of the inversion

to accommodate seismic and electric structure through
decoupling.
[54] For the inversion with 7 layers we can either find a

model with optimal misfit for the seismic data sets, but with
an MT misfit significantly higher than the best models
(marked by a triangle in Figure 7), or with optimal MT and
surface wave dispersion misfit, but significantly higher
receiver function misfit (marked by an inverted triangle in
Figure 7). This is also true for the inversion with 9 layers
and only when we use 11 layers do the differences between
the MT misfit of the optimal seismic model and the optimal
MT model become insignificant. We mark the optimum
model with 11 layers with a star in Figure 7. We can see
how the best model changes with the number of layers and
which structures are constrained by which data by com-

Figure 7. Trade‐off plots for the data from site EKTN. Analogous to Figure 4, in each plot we show two
objective function values against each other and color the points by the third objective function value.
Three selected models are marked by yellow symbols; their meaning is discussed in section 5.1.
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paring the two models for the 7 layer inversion with the best
model for the 11 layer inversion (Figure 8).
[55] All three models have a number of common features.

We can identify a clear seismic Moho at a depth of 39 km
in the models that fit the receiver function data well and at
36 km for the 7 layer model that fits the MT data better. In
our previous study [Moorkamp et al., 2007] we located the
Moho at a depth of 35 km. Without surface wave data we
had to prescribe a crustal velocity and we chose 3.4 km/s
based on results by Perry et al. [2002]. Our new results
require a significantly larger average crustal velocity of
3.8 km/s. Attempts to invert the data with a fixed crustal
velocity of 3.4 km/s as before resulted in much larger misfits
for at least one of the seismic data sets. With the updated
crustal velocity the depth of the Moho shifts to 39 km in
accordance with previous studies [Bank et al., 2000].
[56] Two low‐velocity and high‐conductivity zones be-

tween 120 km and 160 km and below 220 km, respectively,
appear in various expressions in all three models. These
are the Central Slave Mantle Conductor (CSMC) and the
lithosphere‐asthenosphere boundary (LAB) that we also
observed in our previous study. The 7 layer models show
either the top of the CSMC or the bottom and only one
shows the LAB in the seismic velocities. The 11 layer model
includes all these features. There are some variations in the
interface positions for the CSMC and LAB between the
7 layers models and the 11 layer models, but these are
within the limits of resolution we can expect for the inver-
sion. Compared to our previous results the negative velocity
anomaly of the CSMC is less pronounced. The change in
velocity is due to the influence of the dispersion wave data
that regularizes the inversion and does not permit very low

velocities, but also to the additional receiver function data
we are using here. Figure 9 shows the data we use in the
inversion. We can see that the receiver function stacks with
a ray parameter of 0.04 s/km and 0.07 s/km show only a
very weak negative conversion associated with the CSMC,
while the other two stacks show a much more pronounced
conversion that we do not explain with our inversion result.
Consequently our inversion result is a compromise between
the different aspects of the seismic data.
[57] Another difference between the models is the location

of the lowermost low‐velocity‐low‐resistivity zone that we
previously interpreted as the LAB. Given the generally
higher seismic velocities compared to our previous study it
is not surprising that the seismic interface is located deeper
in both models at 225 to 235 km. For the MT and the dis-
persion data this depth range corresponds to data at the
longest periods available and the impact on the predicted
data is low. We therefore can only infer that the LAB has to
be located between 220 and 235 km as we did previously.
Despite some differences between the different inversion
results in this study and the results of our previous study, the
general features, Moho, CSMC and LAB remain the same.
We prefer the 11 layer model, as it explains all data sets
simultaneously, but a comparison of the two 7 layer models
that we presented leads to the same conclusions, demon-
strating the robustness of our approach and the usefulness of
a general indicator of compatibility of the inversion results.
[58] The main source of incompatibility between the seis-

mic and the MT data in the 7 layer case is the CSMC that
cannot be described adequately by such a model. However,
there is also a difference in the location of the first conductive
layer that appears to be associated with the Moho in the

Figure 8. The electric and seismic parameters for the three models for site EKTN marked in Figure 7
plus the seismic surface wave model by Chen et al. [2007].
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7 layer model that fits the RF data better and in the 11 layer
model, but appears to start just above the Moho in the other
7 layer model. In our previous study we speculated whether
this layer is associated with the Moho that we then located at
35 km. We also note that there is a consistent discrepancy

between observed and predicted MT phases between 1 and
10 s (Figure 9).
[59] Genetic algorithms are very good at finding stable

overall solutions but can fail to reproduce secondary fea-
tures that are located at extreme ends of the trade‐off curve

Figure 10. Locations of the sites for the SAMTEX and SASE experiments. The red dots mark the loca-
tions of SAMTEX magnetotelluric measurements, while the black dots show the locations of SASE seis-
mic stations. We selected the MT site KAP25 and the seismic site SA17 for our analysis.
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Figure 11. The magnetotelluric data for site KAP25. We show (top) apparent resistivity and (middle)
phase for all four tensor components. (bottom) The phase tensor ellipticity l and the phase tensor skew
b with error bars calculated with a bootstrap approach.

Figure 12. The stacked receiver functions for site SA17 for two different ray parameters. The parameters
for the events in these stacks are listed in Table A2.
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as mentioned above. We therefore run a test inversion in
which we fix all structure below 50 km depth but introduce
an additional crustal layer and search with smaller dis-
cretization steps of 0.5 km for layer thickness, 0.05 for
logarithmic resistivity and 0.01 km/s for seismic velocities.
The resulting models (not shown) have a significantly lower
MT misfit, and even slightly lower misfit for the seismic
data sets. The decrease in misfit for the MT is due to a better
agreement in the critical period range for the phases and
these models show that the top of the conductor should be at
a depth between 25 km and 35 km. This conductive layer
is also associated with an increase in seismic velocity.
Although the influence on the predicted seismic data is
barely visible, the reduced misfit at least supports the pos-
sibility that the Moho is associated with a broader transition
in velocities [Hale and Thompson, 1982; Owens and Zandt,
1985] and not necessarily a sharp transition.

5.2. Kaapvaal Craton

[60] For the Kaapvaal Craton we analyze seismic data
from the SASE experiment [Silver et al., 2001] for the re-
ceiver functions and magnetotelluric data from the recent
SAMTEX experiment [Hamilton et al., 2006; Jones et al.,
2009]. The locations of the measurement sites are shown
in Figure 10. We use the Rayleigh wave dispersion data by
Li and Burke [2006]. They use a two‐plane wave inversion
technique [Forsyth and Li, 2005] to estimate phase veloci-
ties that are the input to our inversion.
[61] One problemwhen inverting various data sets together

is that the requirements for each data set and the necessity to
have closely located measurements strongly limit the number
of candidate sites. Although the SAMTEX experiment covers
the whole area of the previous SASE experiment, it was not
designed for a joint inversion approach and only fewMT sites
are located closer than 40 km to a seismic site. At this distance

Figure 13. Trade‐off plots for site KAP25 for 7 layers, 9 layers, and 11 layers. As for the Slave Craton
we mark three representative models that we discuss in section 5.2.
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features in the uppermantle should be sensed similarly at both
sites. Considering the data quality and the requirements on
electromagnetic dimension of the more than 550 SAMTEX
sites and 80 SASE sites only about 10 remain that can be
considered suitable. We present here the results from site
KAP25 that is located on the Kaapvaal Craton near
Kimberley. For this site the distance between the seismic and
magnetotelluric measurements is 35 km. We show the
apparent resistivities and phases for all impedance elements
and the phase tensor dimensionality indicators in Figure 11.
[62] From Figure 11 it is clear that the MT data can be

described by a regional 1‐D model with local 3‐D distortion
[Larsen, 1975]. Within error the phases of all four imped-
ance elements are equal while the apparent resistivities have
the same shape, but are offset against each other. For most
frequencies the phase tensor dimensionality indicators are
not significantly different from zero although the errors are
surprisingly large. The reason for this is that the phase tensor
elements are poorly defined as det(ReZ) is small at most
frequencies. The equal apparent resistivity values for off‐
diagonal elements suggests that the data are not affected by
static shift.
[63] For our receiver function analysis we calculate re-

ceiver functions for 58 events with Mw > 6 recorded be-
tween 1997 and 1999. Of those events 13 show a clear
initial correlation peak, Moho conversion and multiples (see
Table A2). We stack these receiver functions in two bins,
one with ray parameters between 0.048 s/km and 0.052 s/km
and one with ray parameters between 0.074 s/km and 0.08 s/
km. We plot the stacked receiver functions in Figure 12. In
general the data quality is lower than for the Slave Craton
receiver functions. We can identify a coherent conversion

at 4 s lag time corresponding to the Moho, and there are a
number of negative amplitude conversions that appear on
both stacked receiver functions. Still there is also a large
portion of incoherent amplitude variations that are likely due
to noise.
[64] We invert the three data sets with the same settings as

for site EKTN. Separate inversion of the MT data suggests
that a four‐layer model can capture the main features of the
electrical structure. However we cannot achieve a satisfac-
tory fit for the seismic data even with 5 layers. We therefore
vary the number of layers for the joint inversion between
7 and 11 again. Figure 13 shows the resulting trade‐offs
generated by our joint inversion code for 7, 9 and 11 layers.
The minimum misfit for the MT is approximately 1.2 and
essentially the same for all number of layers. Also there is a
large number of models with the same MT misfit in each
inversion. This is not surprising considering that we over-
parameterize the problem in terms of the electrical structure
without applying additional regularization. However, we
found that the regularization of the electrical parameters
interacts with the surface wave data and the models that fit
all data sets were essentially unregularized. We therefore
only show the results of the unregularized inversions for
which the trade‐off plots are also easier to analyze.
[65] The two seismic data sets show considerable trade‐

off, indicating the presence of noise. The minimum misfit
for the surface wave data decreases by a factor of two when
increasing the number of layers from 7 to 9. When we
increase the number of layers further to 11 the misfit for the
surface waves improves slightly and the point of optimal
trade‐off between surface waves and receiver functions
moves toward the left of the diagram, indicating an
improved receiver function fit. Considering that we only

Figure 14. The electric and seismic parameters for the three models for site KAP25 marked in Figure 13.
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have 18 phase velocity estimates but 21 degrees of freedom
in the 11 layer case, this can be expected.
[66] We mark the models with an optimal trade‐off

between the seismic data sets with a star for the inversion
with 7 layers, with an inverted triangle for 9 layers and a
triangle for 11 layers. All three models have approxi-
mately the same misfit for the MT data and for each
inversion there are some models with a lower MT misfit.
Comparison between the marked models and the best
models with respect to the MT data shows that in all three
cases the improvement in misfit is only marginal and is
mainly due to one or two data points. We therefore regard
this improvement as not significant and consider the data
sets compatible within the resolution.
[67] Figure 14 shows a comparison of the three models

marked in the trade‐off plots. All three model show the
Moho at a depth of 37 km, in agreement with previous
studies [Nguuri et al., 2001; Nair et al., 2006; Yang et al.,
2008]. Apart from this there is considerable variability
between the three models although some common char-
acteristics remain. The resistivity model shows a sharp
increase in resistivity that roughly coincides with the seismic
Moho. The resistivity gradually decreases from more than
100,000 Wm to 80 Wm between 60 km and 100 km depth.
In all three cases we observe a relatively conductive zone
below 80 km that coincides with a low‐velocity zone. With
increasing number of layers the models contain additional
variations below 120 km. As the misfit for the MT data and
for the receiver function data is similar for all three models
we regard the 7 layer model as the most conservative and
reliable representation. Here we observe a single low‐
velocity zone between 80 km and 220 km, while the other
models suggest that this zone might be split into two parts.
Using only surface wave data, a broad region of low shear
wave velocities at this depth have been reported [Li and
Burke, 2006; Yang et al., 2008; Priestley et al., 2008].
Recent studies using receiver functions have also tended to
place a discontinuity from faster to slower velocities at
around 150 km depth [e.g., Savage and Silver, 2008; Hansen
et al., 2009; Vinnik et al., 2009], similar to our models con-
strained by a greater number of layers. Our joint inversion
results suggest that this zone coincides with a region of low
resistivity. However, in contrast to the Slave Craton, the
discontinuities marking any boundaries of the low‐velocity
zone are not clearly defined due to the higher noise levels.
Also the site is located near the boundary of the craton, so it
is not clear in how far the results are representative for the
area. We therefore refrain from any detailed interpretations
of the Kaapvaal results in terms of geological structures or
processes.
[68] The problematic nature of the receiver function data

in particular can be recognized from the comparison
between the predicted data and the observed data in Figure 15.
While the MT data and dispersion curves are matched well,
we have problems to obtain a satisfactory fit for the receiver
functions. While the predicted data matches the initial cor-
relation peak and Moho conversion well for a ray parameter
of 0.07 s/km, the predicted amplitude for a ray parameter of
0.05 s/km is too low. Also, there are other features that are
matched for one stack but not for the other, for example the
second Moho multiple. Still, the low‐velocity zone appears

in all inversion runs and with different inversion settings,
so we regard it as a robust feature of our joint inversion.

6. Conclusions

[69] The results of the synthetic tests and the inversion of
the two data sets demonstrate that our joint inversion ap-
proach not only finds a suitable model where appropriate, but
also gives some clear indication of the compatibility of the
data sets and realistic noise levels. We particularly regard
the last two points as a clear advantage over linearized
approaches. In principle, a similar analysis can be performed
by varying the weights of the data sets in a linearized inver-
sion scheme, However, not all points of the Pareto front are
accessible for linearized schemes [Kozlovskaya et al., 2007]
and the range of weights and their sampling is unclear and
different for every problem. Both of these difficulties are
solved by our GA‐based approach. In addition, the compu-
tational cost of multiple linearized inversion runs with vary-
ing weights is on the order of the computational cost of our
GA based inversion, but requires additional user intervention.
[70] A critical component for any joint inversion algo-

rithm is the parametrization and the interaction of the dif-
ferent data sets within the inversion. We chose the least
restricting approach by only requiring coincident interfaces
for the electrical and seismic models. As long as we keep the
number of inversion layers sufficiently small, we achieve a
good coupling of the data sets. The Slave Craton inversion
example demonstrates the types of hypothesis we can test
with joint inversion. The Central Slave Mantle Conductor
can be modeled as a coincident low resistivity, low‐velocity
zone. This is a robust result from individual and joint inver-
sions and indicates a spatial correlation.
[71] For the Kaapvaal Craton the data quality precludes a

detailed interpretation of the models. We can fit both the MT
data and the dispersion data well and reproduce some of the
main features of the receiver functions with a joint model.
The comparison of different models from the Pareto front,
the structure of the trade‐off and the expression of model
features in the synthetic data provide a valuable aid to assess
the validity of the joint models and give a qualitative indi-
cation of model errors.
[72] The increased information comes at the cost of high

computational cost and simultaneous quality requirements
on all data sets. While the first point becomes less and less of
an issue with increasing computational abilities, the quality
requirements limit the number of sites this approach can be
applied to. With the tendency toward integrated studies and
combined seismic and electromagnetic experiments, more
data suitable for joint inversion will become available.

Appendix A: Event Parameters

[73] Here we show the parameters for the events we used
in the receiver function analysis. Table A1 shows the event
parameters for station EKTN, and Table A2 shows the event
parameters for station SA17.

Appendix B: Software

[74] The joint inversion program, associated tools and doc-
umentation can be downloaded from http://gplib.sourceforge.
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Table A2. Parameters of the Events Used for Receiver Function Inversion at Site SA17

Event Date Time (UT) Latitude Longitude Depth (km) Mw

1 27 Dec 1997 2011:01.34 −55.7830 −4.2180 10.00 6.20
2 3 Jan 1998 0610:08.38 −35.4740 −16.1910 10.00 6.30
3 12 Jan 1998 1014:07.630 −30.985 −71.41 34 6.6
4 30 Jan 1998 1216:08.69 −23.9130 −70.2070 42.00 7.10
5 20 Feb 1998 1218:06.23 36.4790 71.0860 235.60 6.40
6 1 Apr 1998 1756:23.36 −0.5440 99.2610 55.70 7.00
7 1 Apr 1998 2242:56.90 −40.3160 −74.8740 9.00 6.70
8 25 Apr 1998 0607:23.44 −35.2660 −17.3260 10.00 6.30
9 18 Jun 1998 0417:54.98 −11.5720 −13.8940 10.00 6.30
10 29 Jul 1998 0714:24.08 −32.3120 −71.2860 51.10 6.40
11 3 Sep 1998 1737:58.24 −29.4500 −71.7150 27.00 6.60
12 5 Mar 1999 0335:14.71 −34.6730 −69.6000 10.00 6.00
13 28 Mar 1999 1905:11.03 30.5120 79.4030 15.00 6.60

Table A1. Parameters of the Events Used for Receiver Function Inversion at Site EKTN

Event Date Time (UT) Latitude Longitude Depth (km) Mw

1 12 Oct 2002 2009:11.46 −8.2950 −71.7380 534.30 6.90
2 17 Nov 2002 0453:53.54 47.8240 146.2090 459.10 7.30
3 17 Mar 2003 1636:17.31 51.2720 177.9780 33.00 7.10
4 19 May 2003 1627:10.20 17.5460 −105.4730 10.00 6.10
5 21 May 2003 1844:20.10 36.9640 3.6340 12.00 6.80
6 26 May 2003 0924:33.40 38.8490 141.5680 68.00 7.00
7 23 Jun 2003 1212:34.47 51.4390 176.7830 20.00 6.90
8 27 Jul 2003 0625:31.95 47.1510 139.2480 470.30 6.80
9 25 Sep 2003 1950:06.36 41.8150 143.9100 27.00 8.30
10 17 Nov 2003 0643:06.80 51.1460 178.6500 33.00 7.80
11 5 Dec 2003 2126:09.48 55.5380 165.7800 10.00 6.70
12 14 Apr 2004 2307:39.94 71.0670 −7.7470 12.20 6.00
13 29 May 2004 2056:09.60 34.2510 141.4060 16.00 6.50
14 10 Jun 2004 1519:57.75 55.6820 160.0030 188.60 6.90
15 14 Jun 2004 2254:21.32 16.3370 −97.8450 10.00 5.90
16 6 Sep 2004 2329:35.09 33.2050 137.2270 10.00 6.60
17 9 Oct 2004 2126:53.69 11.4220 −86.6650 35.00 7.00
18 23 Oct 2004 0856:00.86 37.2260 138.7790 16.00 6.60
19 15 Nov 2004 0906:56.56 4.6950 −77.5080 15.00 7.20
20 28 Nov 2004 1832:14.13 43.0060 145.1190 39.00 7.00
21 13 Jun 2005 2244:33.90 −19.9870 −69.1970 115.60 7.80
22 26 Jul 2005 1217:14.27 52.8710 160.1050 27.60 5.80
23 16 Aug 2005 0246:28.40 38.2760 142.0390 36.00 7.20
24 21 Sep 2005 0225:08.11 43.8920 146.1450 103.00 6.10
25 26 Sep 2005 0155:37.67 −5.6780 −76.3980 115.00 7.50
26 8 Oct 2005 0350:40.80 34.5390 73.5880 26.00 7.60
27 12 Dec 2005 2147:46.07 36.3570 71.0930 224.60 6.50
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net. We used sac2000 [Goldstein et al., 2003] to process
seismograms for receiver function analysis and GMT [Wessel
and Smith, 1991] for Figures 4, 6, 7, 10, and 13.
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