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Abstract

The effect of phytoplankton cell size on the variation of nutrient uptake and exudation rates is examined: we first present

an overview of the relationship between the variation of the growth and loss parameters and cell size. We then investigate

the effect of cell-size-dependent parameters on the development of an entire phytoplankton community by means of a

numerical, vertically resolved nutrient–phytoplankton model. The model represents phytoplankton size distributions in

three different ways, namely one configuration with explicit representation of 14 size classes, one configuration with

constant-slope power-law spectral representation, and one configuration with variable-slope power-law spectral

representation. The size-dependent configurations are further compared to a size-independent configuration. Consistent

with theory, the explicit and variable-slope spectral model simulations predict increased importance of larger cells, or

‘‘flat’’ size distribution under conditions of low light and high nutrients, while smaller cells (‘‘steep’’ size distributions) may

dominate in oligotrophic, well-lit regimes. In some situations the variable-slope spectral model seems to be sufficient to

reflect the phytoplankton size distribution; however, especially in the deep phytoplankton maximum a unimodal rather

than power-law spectral description might be more appropriate to reproduce results of the explicit 14-size-class model. The

assumption of a fixed spectral slope, according to which larger size classes gain importance especially during bloom

periods, is not consistent with the underlying theory, and does not agree with the results of the size-discrete model. The

comparison of model predictions with variations of phytoplankton size distribution observed in the field is hampered by

the sparsity of data, especially for the winter season. A half-saturation constant that represents the nutrient uptake of the

entire phytoplankton community ðK�Þ compares well to published values.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Current marine ecosystem models that attempt to
describe life’s action on marine biogeochemical
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cycles typically partition the marine ecosystem into
a handful of compartments, such as phytoplankton,
zooplankton, or detritus. Using mass conservation
as an underlying concept, the individual compart-
ments simulate stocks of atoms of one or more key
element(s) under consideration. The modelled pro-
cesses, e.g., primary production, grazing, or exuda-
tion all describe the transfer of atoms among the
different compartments. To date, a solid theoretical
.
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framework for the description of such fluxes does
not exist nor does a complete and consistent
mapping of the real ecosystem onto a small number
of model compartments. In the absence of any
known ecological equivalent of the Navier–Stokes
equations, which give firm guidance to the con-
struction of physical ocean circulation models, the
particular choice of the ecosystem model structure is
generally based on subjective elements and often
influenced by operational measurement protocols,
historical paradigms, or taxonomic nomenclature
rather than some a priori knowledge of physical or
biochemical mechanisms.

Despite the considerable reliance on subjective
elements, current models have often shown remark-
able success in simulating many observed properties
and dynamics of marine ecosystems, at least in a
qualitative sense. Quantitatively, success or failure
of a particular model structure may be judged in
terms of model-data misfits. While defining an
‘‘objective’’ misfit function is not straightforward
and will always include some subjective elements, its
combination with data-assimilation methods can
yield a performance measure of a given model that
does not depend on subjective tuning (or the
absence thereof) of the often poorly known para-
meter values. This approach has, so far, been
applied predominantly to Nutrient–Phytoplank-
ton–Zooplankton–Detritus (NPZD) type models
which contain about 10–30 parameters. Models
have been fitted to data sets at individual time-series
and process-study sites (Matear, 1995; Fasham and
Evans, 1995; Prunet et al., 1996a, b; Hurtt and
Armstrong, 1996; Spitz et al., 1998, 2001; Fennel
et al., 2001; Schartau et al., 2001; Dadou et al.,
2004; Friedrichs et al., 2006) and also to data at
different locations simultaneously (Hurtt and Arm-
strong, 1999; Schartau and Oschlies, 2003a, b).

Common to all of the above assimilation studies
is that at most 10–15 ecological model parameters
(or linear combinations thereof) can be constrained
by the available observations. Even for the relatively
simple NPZD-type models there are always a few
parameters that cannot be constrained, suggesting
that models with fewer parameters should be able to
achieve a similarly good (or bad) fit to the
observations. At the same time, the degree to which
the models can quantitatively reproduce the ob-
servations is, in general, not satisfactory, i.e., model-
data misfits tend to be much larger than the prior
observational error estimates. While this may to
some extent be explained by errors in the descrip-
tion of the physical environment (Friedrichs et al.,
2006), it nevertheless suggests that the employed
NPZD-type models may have inadequate structures
and may lack important elements of yet unknown
ecological rules of marine ecosystems.

Similar conclusions may be drawn from the
results of a regional data-assimilation study by
Losa et al. (2004), which needed spatially varying
biological parameters in order to reproduce remo-
tely sensed pigment concentrations in a regional
model of the North Atlantic. Analogously, Harri-
son et al. (1996) observed spatially varying half-
saturation ‘‘constants’’ for nitrate uptake from 10�3

to 1:32mmolNm�3 in the North Atlantic, which
increased approximately exponentially with increas-
ing ambient nitrate concentration. For many
purposes like simulating different climate condi-
tions, prescribed model parameters that vary
spatially may not be appropriate. Attempts to
resolve this issue include strategies to make models
more complex, in particular by adding several
distinct phytoplankton groups with specific para-
meters that are constant for each group (e.g., Gregg
et al., 2003). The drawback of this approach is the
increase of the number of parameters which, for
present observational data sets, are difficult to
constrain. Although additional degrees of freedom
can help to improve a model’s fit to individual data
sets, data-assimilation studies could not yet demon-
strate that such models lead to significant improve-
ments in predictive power, i.e., when evaluated
against observations not already used for model
calibration (Friedrichs et al., 2006).

In the present study, we follow an alternative
strategy and ask to what extent we can use
theoretical considerations of some of the processes
that cause variations in the parameters assumed
constant in NPZD-type models. Focussing on the
phytoplankton compartment of ecosystem models
we will, in this paper, begin with a simple
nutrient–phytoplankton model under idealized for-
cing. Our emphasis in this paper is on variations in
nutrient uptake and loss processes of phytoplank-
ton, and our hypothesis is that these variations can
be related to differences in cell size. The model’s
performance with respect to reproducing observed
trends in the variation of half-saturation constant is
considered as a qualitative indicator about the
validity of the assumptions made. We believe that
more extensive use of mechanistic rules will
eventually help to better understand the underlying
ecological processes and to make more reliable
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predictions for different future scenarios. Such a
mechanistic understanding is particularly important
for more reliably predicting what will happen under,
for example, pCO2 and alkalinity levels exceeding
those experienced over the past few hundred
thousand years, i.e., conditions not reflected in our
data bases used to fit marine ecosystem models.

Subsequent studies will look at more complex
models and investigate how the inclusion of
zooplankton and dissolved-organic-matter pro-
cesses affect model performance. The present paper
is organized as follows: In Section 2 we describe
how cell size may theoretically affect transport
processes across cell membranes. In Section 3 we
describe various methods to account for size
distributions in a numerical model, and Section 4
presents results of one explicitly and two implicitly
size-structured nutrient–phytoplankton models in a
one-dimensional setting corresponding to an annual
cycle at a North Atlantic spring bloom site.

2. Theoretical considerations about size-dependent

processes

2.1. Growth: the formulation by Aksnes and Egge

(1991)

Aksnes and Egge (1991) related the nutrient
uptake by marine phytoplankton to the number of
uptake sites per unit cell surface area ða; ½m�2�Þ, the
size of a particular site ðAs; ½m2�Þ, and the handling
time at a particular site per unit ion (in our case,
NO�3 ; h ½dmmol�1�). Assuming that the number of
uptake sites n is linearly related to the cell surface
area and that rate processes are not limited by light
(this assumption will be relaxed below by introdu-
cing a separate light limitation term), the (cell)
biomass-normalized nitrate-uptake rate (VNðdÞ,
½d�1�) becomes

VNðdÞ ¼ pd2 a

bðdÞ h

NO3

d

2 h As D
þNO3

. (1)

Here, D is the molecular diffusivity of the nutrient
(here NO3) in the water surrounding the cell
½m2 d�1�, NO3 is the ambient nitrate concentration
½mmolNm�3�, d is the diameter of an idealized
spherical cell [m], and bðdÞ is the cell biomass
[mmolN]. In this approach it is assumed that the
cells are not able to distort the medium (i.e., that the
sinking velocity is much smaller than the diffusion
coefficient divided by the radius, see Aksnes and
Egge, 1991), so that the mass transfer toward the
cell is determined by molecular diffusivity alone.
Eq. (1) can be converted into the well-known
‘‘Monod-type’’ function

VN ¼
mNO3

K þNO3
(2)

with maximum light-saturated growth rate m½d�1�
and half-saturation constant K ½mmolNm�3�, by
making both m and K explicit functions of the cell
diameter d. The maximum light-saturated growth
rate therefore is

mðdÞ ¼ pd2 a

bðdÞh
, (3)

and the half-saturation ‘‘constant’’ becomes

KðdÞ ¼
d

2hAsD
. (4)

Little quantitative information is available on the
microscopic parameters a, As, and h, but we have
some empirical information about macroscopic
parameters such as the minimum half-saturation
‘‘constant’’ K and the maximum light-saturated
growth rate m. Moreover, we have defined As and h

as site-specific, i.e., we assume that they do not vary
with cell size. Assuming some minimum cell size
(e.g., d1 ¼ 0:2mm ¼ 2� 10�7 m), we can use esti-
mates of the corresponding half-saturation constant
K1 ¼ Kðd1 ¼ 0:2mmÞ (e.g., 0:005mmolNm�3) and
similarly for m1 ¼ mðd1 ¼ 0:2mmÞ ¼ 2 d�1. Then

KðdÞ ¼ K1
d

d1
, (5)

i.e., the half-saturation ‘‘constant’’ increases linearly
with increasing size, with the smallest cells (of
diameter d1) having the smallest half-saturation
constant K1. The expression for the maximum light-
saturated growth rate can be simplified by assuming
that biomass of a cell, b, depends on its diameter
according to a power law: bðdÞ ¼ Cdz (Mullin et al.,
1966):

mðdÞ ¼ m1
d

d1

� �2�z

, (6)

where m1, the maximum possible growth rate for the
smallest cells of diameter d1, may be as high as
� 2–3 d�1 (Banse, 1976; Chisholm, 1992; Tang,
1995; Montagnes and Franklin, 2001).

Via the exponent z, the maximum light-saturated
growth rate depends on the relationship between
cell carbon (or nitrogen) content and cell diameter.
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For marine planktonic algae z is found to lie
between � 2:1 (Strathmann, 1967, for diatoms) and
� 3 (Montagnes et al., 1994, mixed phytoplankton
assemblage), with carbon-to-volume relationships
of diatoms seeming to have lower exponents than
those of flagellates (Menden-Deuer and Lessard,
2000). Accordingly, the decrease of growth rate with
size might be expected to be less pronounced when
diatoms are considered than when the analysis is
based on flagellates.

While the present exploratory study does not
attempt to distinguish between different species and
will employ a single exponent z for all phytoplank-
ton, possible future refinements of the model may
include different carbon-to-volume relationships
(and possibly different values of m1 and K1) for
different phytoplankton species or functional
groups. By inserting the size-dependent expressions
(5) and (6) into (2) the size-dependent light-
saturated nitrate uptake by phytoplankton becomes

VNðdÞ ¼
mðdÞNO3

KðdÞ þNO3
¼

m1
d

d1

� �2�z

NO3

K1
d

d1
þNO3

. (7)

Note that for the special case of z ¼ 2 Eq. (7) is
equivalent to the formulation for light-saturated
nutrient uptake used by Hurtt and Armstrong
(1999) when their parameter b0k is set to 1.

To account for the effect of light on phytoplank-
ton growth, we now assume a multiplicative co-
limitation by light and nutrients of which the light
limitation V I is given by the Smith (1936) formula,
normalized by maximum light-saturated growth
rate, m:

VI ¼
aIffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ a2I2
p ¼

I

Ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

I

Ik

� �2
s where Ik ¼

m
a
.

(8)

a is the initial slope of the P–I curve and m is the
maximum growth rate under light- and nutrient-
replete conditions. As stated above, m ¼ mðdÞ
depends on cell size.

Measurements taken from various diatom cul-
tures under nutrient-replete conditions and varying
light intensities suggest that the initial slope a
depends also on cell size and, in fact, shows a
decrease of a with increasing cell size in a similar
way as the maximum growth rate (Taguchi, 1976).
We here assume that the initial slope a follows the
same functional relationship with cell size as the
maximum growth rate m:

aðdÞ ¼ a1
d

d1

� �2�z

. (9)

For the observed range of 2ozo3 this corresponds
to aðdÞ decreasing with increasing cell size. Theore-
tical models suggest such a decrease as a result of
the package effect, which is a consequence of
enhanced self-shading of chloroplasts within larger
cells (Geider et al., 1986; Fujiki and Taguchi, 2002).

As a consequence, Ik in Eq. (8) does not depend
on size and is given by Ik ¼ m1=a1. Light limitation
is then a function of light alone:

VI ¼

I
a1
m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
a1
m1

� �2

I2

s . (10)

Combining Eqs. (7) and (10) by a multiplicative
approach, the realized nutrient- and light-limited
growth becomes

V ðI ;NO3; dÞ ¼ V I VNðdÞ

¼

I
a1
m1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
a1
m1

� �2

I2

s m1
d

d1

� �2�z

NO3

K1
d

d1
þNO3

.

ð11Þ

The above expression describes how nutrient uptake
depends on light, ambient nutrient concentration,
and cell size. Note that for any given nitrate and
light condition (and for any z within the observed
range 2ozo3), nutrient uptake decreases with
increasing cell size d. One may wonder why large
cells exist at all. There are at least three strategic
advantages large cells may have. All of them are
related to losses a cell might experience:
�
 Increasing the size ( ¼ decreasing the surface:
volume ratio) decreases the losses via exudation
( ¼ diffusion of organic compounds out of the
cells) (Bjørnsen, 1988).

�
 Larger cells may have more efficient storage

mechanisms for photosynthetic products (Raven
and Kübler, 2002), which may help them to
persist even through (limited) periods of oligo-
trophy.
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�
 Increasing size helps phytoplankton to avoid
being grazed by microzooplankton. Larger
zooplankton (e.g., copepods) grow more slowly
and often have longer life cycles, which helps
phytoplankton to escape the grazing.

In the following we investigate exudation as one
size-sensitive process that may explain the observed
existence of large cells.

2.2. Exudation: the formulation by Bjørnsen (1988)

In contrast to other studies which assumed
exudation to be related to production, Bjørnsen
(1988) postulated that the loss of organic com-
pounds from phytoplankton cells should be related
to biomass. Assuming that the concentration of
low-molecular-weight organic matter in the sur-
rounding water is low compared to that in cells and
that exudation is a passive process, the biomass-
specific loss according to Bjørnsen (1988) is

lðdÞ ¼ P � LMW � 6 � d�1 ¼ l1
d

d1

� ��1
, (12)

where P is the permeability of the cell membrane,
LMW is the fraction of low-molecular-weight
compounds of total cell biomass, and d is the cell
diameter. Thus, loss of organic matter decreases
with increasing size. For example, for a cell with
d ¼ 2mm, a permeability P � 10�9 cm s�1 for amino
acids, and LMW content ¼ 10% (the values used by
Bjørnsen), losses are � 0:25 d�1. By contrast, for a
cell with d ¼ 0:2 mm the same calculation results in a
loss-rate of about 2:5 d�1, which seems far too high.
Given that the permeability depends strongly on the
molecule size and is about an order of magnitude
lower ð10�10 cm s�1Þ for glucose, we set l1 ¼ 0:2 d�1

as an approximation for cells with d ¼ 0:2mm.

2.3. Combined effects of both approaches

In the following, we investigate the results of a
combination of the above approaches that relate
nutrient uptake and loss-rates to cell size. Based on
these relations, we aim to identify environmental
conditions that will favor or discriminate against
certain phytoplankton size classes. For the smallest
size class represented ðd1 ¼ 0:2 mmÞ, we set the
maximum growth rate to m1 ¼ 2 d�1, the exudation
rate to l1 ¼ 0:2 d�1, the half-saturation constant
K1 ¼ 0:005mmolNO3 m

�3, and the initial slope of
the P–I curve to a1 ¼ 0:05 d�1 ðW=m2Þ
�1. For the

relationship between biomass and cell size we use the
empirically determined exponent z ¼ 2:28 (Mullin
et al., 1966) and, alternatively, z ¼ 2 for which the
maximum growth rate becomes independent of size.

Fig. 1 shows the combined effect of nutrient and
light limitation, and exudation on phytoplankton
net growth rates. Because z ¼ 2:28 implies decreas-
ing maximum growth rate with increasing cell size
(left panels of Fig. 1), net growth rate decreases
monotonously with increasing cell size at high light
levels. (Note that we assume the net growth rate to
be equivalent to net nutrient uptake rate.) At low
light intensities, however, large cell size is an
advantage because it allows losses via exudation to
be reduced to a rate that may still be balanced by
nutrient uptake under eutrophic conditions. For the
chosen parameter values this is the case for cell sizes
larger than about 0:4mm.

For size-independent maximum growth rates
(z ¼ 2) and medium to high nutrient concentrations,
net growth rates show a maximum at cell sizes
40:2mm even at high light intensities (upper right
panel of Fig. 1, dotted and dashed lines). As can
also be determined analytically, the optimum cell
size increases with decreasing light and increasing
nutrients. This is qualitatively similar to the trend
found for z ¼ 2:28.

The combination of size-dependent formulations
of nutrient uptake and exudation simulates different
responses of small and large cells to different
environmental conditions: small cells are favored
under high-light and low-nutrient conditions,
whereas large cells have a relative advantage under
low-light and high-nutrient conditions. According
to this hypothesis we should expect the dominance
(in terms of biomass) of larger cells in temperate
regions during spring time or in the nutricline, and
smaller cells to dominate under oligotrophic and
high-light conditions.

3. Population growth and loss in a size-spectral

representation

So far we have considered effects of growth and
exudation on single phytoplankton cells of a certain
diameter. In this section, we describe how the above
representations of size-dependent processes can be
combined with simple assumptions about particle
size distribution to prepare for the modelling of
entire phytoplankton communities. One option to
introduce size-dependent nutrient uptake, growth,
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Fig. 1. Net growth rates derived from the combined Aksnes–Bjørnsen model (Eq. (11) minus Eq. (12)), plotted against cell diameter for

three different nitrate concentrations (see legend). Left panels: z ¼ 2:28. Right panels: z ¼ 2:00. Upper panels: z � 1m. Lower panels:

z � 100m. Light intensity at depth z has been calculated according to IðzÞ ¼ I0 expð�0:04 z I0Þ with I0 ¼ 125Wm�2, i.e., without taking

into account self-shading by phytoplankton.

I. Kriest, A. Oschlies / Deep-Sea Research I 54 (2007) 1593–16181598
and exudation rates in ecosystem models is to
explicitly resolve a large number of different size
classes (Baird et al., 2004). Here, we contrast this
with a computationally cheaper and more pragmatic
approach by assuming that the phytoplankton size
distribution can be described by a power law (albeit
with temporally and regionally varying parameters).
For a given size spectrum, the size-dependent rates
can then be integrated over the entire spectrum,
yielding effective rates for the whole population.
3.1. Spectra of biomass and particle abundance

Empirical relationships between particle abun-
dance, N, and particle size are often described by a
power law

nðdÞ ¼
dN

dd
¼ Ad�� (13)

(e.g., McCave, 1984; Weilenmann et al., 1989),
where NðdÞ is the number of particles per size class
d. While the power-law description often seems
appropriate when cell size and abundance are
plotted on a log–log scale, there is no guarantee
that such a relationship precisely fits the size
distribution of marine planktonic ecosystems. Other
spectral distributions, e.g., a log-normal one as
described by Jonasz and Fournier (1996), may
turn out to be more appropriate. To keep our
model conceptionally simple we assume that the
phytoplankton size distribution can be described
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by a power law (Eq. (13)). We also assume that
the biomass of a particle with diameter d can
be described by bðdÞ ¼ C dz (z assumed to be
constant), so that the normalized mass distribution
is given by

mðdÞ ¼
dM

dd
¼ ACdz��, (14)

where M is the mass per size class d. Here, an
exponent � ¼ zþ 1 means that mass is distributed
evenly between logarithmically increasing size
classes. This type of mass distribution has also been
referred to as ‘‘flat’’ (e.g., Rodriguez and Mullin,
1986; Gin et al., 1999).
3.2. Population growth

Combining the size-dependent nutrient uptake
(Eq. (11)) with the phytoplankton biomass distribu-
tion (Eq. (14)), we can calculate the gain of mass of
the entire population, P, due to photosynthesis:

Pð�;NO3Þ

¼ VI AC
m1

d2�z
1

Z dL

d1

dz�� NO3 dd

dz�2 K1

d1
d þNO3

� �

¼ VI ANO3b1
m1
d2
1

Z dL

d1

dd

d��2
K1

d1
d þNO3

� �, ð15Þ

where d1 and b1 are the diameter and biomass of the
smallest cell, respectively. We here refer to the upper
boundary of the integral as dL which can, depending
on the convergence properties of the integral
considered, either be a finite or an infinite maximum
cell size. This integral can be solved analytically for
integer exponents n, i.e., for n ¼ �� 2X1:

Pðn;NO3Þ ¼ V I ANO3 b1
m1
d2
1

Z dL

d1

dd

dn K1

d1
d þNO3

� �

¼ � V I ANO3b1
m1
d2
1

Xn�1
i¼1

�
K1

d1

� �i�1

ðn� iÞdn�iNOi
3

2
6664

þ

�
K1

d1

� �n�1

NOn
3

ln

K1

d1
d þNO3

d

0
BB@

1
CCA
3
7775

dL

d1

ð16Þ
By expressing dL as a multiple of d1, such that
d1

dL
¼ f , the solution of the integral from d1 to dL

then becomes:

Pðn;NO3Þ ¼ V I Ab1
m1
d2
1

1

dn�1
1

�
Xn�1
i¼1

�K1

NO3

� �i�1

ðn� iÞ
�
Xn�1
i¼1

�K1

NO3

� �i�1

f n�i

ðn� iÞ

2
6664

�
�K1

NO3

� �n�1

ln
K1 þNO3 f

K1 þNO3

� �#
. ð17Þ
3.3. Population exudation

The exudation term of the phytoplankton bio-
mass equation can be computed in close analogy to
the production term. The total population loss, L, is
given by the integral over the product of Eqs. (12)
and (14).

Lð�Þ ¼ ACl1d1

Z dL

d1

dz���1 dd. (18)
3.4. Practical considerations

The effect of size-dependent nutrient uptake on
the entire phytoplankton population may be in-
vestigated under three different assumptions about
changes in a population’s size structure. The first
assumption follows Hurtt and Armstrong (1999)
and assumes a constant spectral exponent of z� � ¼
�1 and a constant coefficient A, but a varying upper
boundary dL, which is diagnosed at every time step
from phytoplankton biomass. The second assump-
tion is based on the approach used by Kriest and
Evans (1999) to describe marine snow aggregates. It
assumes varying size distribution parameters � and
A (‘‘variable spectral exponent’’), but a constant
upper boundary for maximum cell size, dL. The
approach solves for the two unknown parameters �
and A at each time from the solution of two
prognostic equations: a standard one for the total
biomass of the phytoplankton population, and a
second one for the total number of phytoplankton
cells per volume. The third approach accounts for
possible peaks of biomass in the size spectrum by
resolving explicitly a (limited) number of size
classes.



ARTICLE IN PRESS
I. Kriest, A. Oschlies / Deep-Sea Research I 54 (2007) 1593–16181600
3.4.1. Size-dependent growth and exudation with

constant spectral exponent

Growth. Hurtt and Armstrong (1999) assumed a
fixed exponent of z� � ¼ �1 (a ‘‘flat’’ mass
spectrum) and a constant factor A for the distribu-
tion of mass versus diameter (Eq. (14)), but
estimated the upper boundary for integration dL

from the total phytoplankton mass concentration.
In the context developed above, for z ¼ 2 and hence
� ¼ 3 and n ¼ 1, only the logarithmic evaluation of
Eq. (17) remains:

Pðn ¼ 1;NO3Þ ¼ V I Ab1
m1
d2
1

ln
K1 þNO3

K1 þNO3f

� �
(19)

with f ¼ d1=dL as defined above. The integral for
Eq. (14) over a finite range ½d1; dL� is
PHY ¼ AC lnðdL

d1
Þ, and Eq. (19) becomes

Pðn ¼ 1;NO3Þ ¼V I ACm1 ln
K1 þNO3

K1 þNO3 e�PHY=AC

� �
,

(20)

which is equivalent to the Hurtt and Armstrong
(1999) derivation of the phytoplankton growth rate
(their equation (11)) for b0k ¼ 1. Note that if we, for
whatever reason, disregard any size dependence of m
on d, then this even holds for za2 as long as
z� � ¼ �1.

Exudation. In the case of the Hurtt and Arm-
strong (1999) framework (for z� � ¼ �1), the
appropriate term for the size-dependent exudation
in the biomass equation simplifies to

Lð� ¼ 3Þ ¼ ACl1 d1

Z dL

d1

d�2 dd

¼ ACl1ð1� e�PHY=ACÞ, ð21Þ

where we have again used the fact that for z� � ¼
�1 the solution of equation (14) over a finite range
½d1; dL� is PHY ¼ A C lnðdL

d1
Þ.

3.4.2. Size-dependent growth with variable spectral

exponent

Growth. We now relax the constraint of a ‘‘flat’’
mass spectrum and allow for arbitrary spectral
exponents. To solve for the temporally and spatially
varying coefficient A and exponent � of the power
spectrum, we follow the approach of Kriest and
Evans (1999). In that study the size distribution of
phytoplankton aggregates was parameterized by a
power law and variations of A and � were diagnosed
from the variation of particle number and mass. Let
b1 ¼ Cdz

1 again denote the biomass of the smallest
cell (of diameter d1). Then the total phytoplankton
biomass per volume is given by

PHY ¼ AC

Z dL

d1

dz�� dd

¼ Ab1
d1��
1

�� 1� z
ð1� f ��z�1Þ, ð22Þ

where, as before, f ¼ d1=dL is the ratio of smallest
to largest cell diameter. Accordingly, the total
number of cells is

NOS ¼ A

Z dL

d1

d�� dd ¼ A
d1��
1

�� 1
ð1� f ��1Þ. (23)

Once the total biomass PHY and total cell number
NOS are known, the exponent � of the normalized
concentration spectrum (13) can be computed
numerically. While numerical evaluation of � can
be quite time consuming, � can be computed
analytically for the special case of infinite upper
boundaries of the phytoplankton size distribution
(dL !1; f ! 0, as in Kriest and Evans (1999)) as

� ¼
ðzþ 1ÞPHY� b1 NOS

PHY� b1NOS
. (24)

The above relation implies that for any initial
particle distribution that meets the �4zþ 1 condi-
tion (required for convergence of the biomass
integral for dL !1), the slope of the size spectrum
can only approach zþ 1, but can never become
smaller. To minimize computational costs we will
consider the phytoplankton size range to be infinite
and evaluate � according to Eq. (24).

The more general case of non-integer exponents
(�� 2 in Eq. (15)) can in principle be solved
numerically for a given size range d1 to dL. Again,
this can be computationally expensive. To achieve
analytical solutions that rely on integer exponents,
we assume that the size distribution as described by
Eqs. (13) and (14) can be replaced by a polynomial:

nðdÞ ¼ A1d
�ð�iþ1Þ þ A2d

��i ¼ Ad�� (25)

and

mðdÞ ¼ A1Cdz�ð�iþ1Þ þ A2Cdz��i ¼ ACdz��, (26)

where �i is the truncated integer part of �. Knowing
phytoplankton mass and cell numbers, we can solve
for parameters A1 and A2, and use Eq. (25) instead
of (13) for the evaluation of growth as in (15). For a
detailed description of the method see Appendix A.

If we do not want to constrain � to values larger
than zþ 2, the integral of Eq. (26) will generally not
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converge toward an infinite upper size class. Hence,
we compute phytoplankton growth up to a max-
imum cell size of dL. To account for growth of cells
4dL we will in the following assume that growth
parameters are constant beyond this size.

Growth of the entire community from d1 to 1
then is

PPHYð�;NO3Þ

¼ VI A�NO3b1
m1
d2
1

�

Z dL

d1

d2�� dd

K1

d1
d þNO3

þ

Z 1
dL

d2�z
L dz�� dd

K1

d1
dL þNO3

2
664

3
775, ð27Þ

where the first term inside the brackets is the size-
dependent term, and is solved as described above,
while the second term describes size-independent
growth, and is integrated by standard methods (i.e.,
without the requirement of integer exponents for d).
In the model configuration presented in the next
section, dL is set to a rather high value of 2000mm.
Given a minimum half-saturation constant of
0:005mmolNm�3 at a size of 0:2mm, a cell of
2000mm would have a half-saturation constant of
50mmolNm�3. The model thus explores the
approximate range of measured half-saturation
constants, from low (� 10�3 mmolNm�3, Harrison
et al., 1996) to high (4100mmolNm�3, Collos
et al., 2005) values. To investigate the sensitivity of
the model to dL in Appendix B we present a
simulation with an increased upper boundary for
size-dependent nutrient uptake ðdL ¼ 200 000mmÞ,
and another one that assumes no growth for cells
larger than dL. The experiments showed very little
sensitivity of the model to these changes.

In order to set up the growth term of the
phytoplankton cell numbers, we combine the size-
dependent nutrient uptake (11) with the assumption
that specific nutrient uptake is equivalent to cell
divisions. Thereby, we implicitly assume that cells do
not change size during their life cycle and that the cell
concentration is large enough that we do not have to
worry about fractions of a division. As for mass
growth, we assume that growth parameters beyond a
size dL do not depend on size. The increase of
phytoplankton cell numbers is then defined by

PNOSð�;NO3Þ

¼ VI A�NO3
m1

d2�z
1

�

Z dL

d1

d2���z dd

K1

d1
d þNO3

þ

Z 1
dL

d2�z
L d�� dd

K1

d1
dL þNO3

2
664

3
775. ð28Þ

Again, analytical solutions for the first integral exist
for integer exponents m ¼ �þ z� 2, i.e., with the
further restriction of z to integer values (in our case:
z ¼ 2) the first term of the number growth equation
can be solved in the same way as Eq. (15). Note that
the growth term of the cell numbers contains
essentially the same expressions as that of the biomass
equation and will therefore not require additional
parameterizations or parameters.

To see whether the polynomial approximation of
the power-law spectrum (Eq. (25)) has any influence
on the model results, we also have investigated a
numerical solution to the first terms of Eqs. (27) and
(28) which showed little sensitivity of the model to
the method of integration (see Appendix B).

Exudation. Below, we solve the integrals for size-
dependent phytoplankton mass and particle loss for
a variable spectral exponent as determined by
Eq. (24). For a variable spectral exponent evaluated
according to Eq. (24), we solve the integrals for
size-dependent mass and particle loss (Eqs. (29) and
(30), respectively). As for the growth term, we
assume the loss-rate lðdÞ to be constant for cells
bigger than dL, and add the corresponding terms.
Total mass and number losses due to exudation
then are

LPHYð�Þ ¼ ACl1d1

Z dL

d1

dz���1 dd þ

Z 1
dL

d�1L dz�� dd

� �

¼ l1 PHY
�� z� 1þ f ��z

�� z
ð29Þ

for mass and

LNOSð�Þ ¼ A l d1

Z dL

d1

d���1 þ

Z 1
dL

d�1L d��dd

� �

¼ l1 PHY
�� 1þ f �

�
ð30Þ

for cell numbers.

3.4.3. Size-dependent growth in discrete size classes

The most detailed, yet computationally most
expensive, way to represent the phytoplankton size
distribution is to resolve the size spectrum into a
number of individual size classes. In principle, we
could assign size-class widths of e.g., 1mm, i.e.,
represent the phytoplankton spectrum from 0.2 to
2000mm by 2000 different size classes, each with its



ARTICLE IN PRESS
I. Kriest, A. Oschlies / Deep-Sea Research I 54 (2007) 1593–16181602
own set of growth and loss parameters according to
their respective cell size. For methodological and
practical reasons, size classes are often chosen with
logarithmically increasing width, e.g., to the base of
2: 0.2, 0.4, 0.8, 1:6; . . . mm for size-class width and/or
lower boundary. Here, we follow the latter ap-
proach, which reduces the number of size classes
required to 14, and includes phytoplankton between
0.2 and 3276mm. In analogy to empirical methods
(see Blanco et al., 1994, for an overview), we assume
that mass is distributed evenly within each of these
size classes j, i.e., �j ¼ z ¼ const. With this ap-
proach, mass of each class can be evaluated
according to

PHYj ¼

Z 2dj

dj

AjC dd ¼ Aj C dj. (31)

Taking into account the change of growth para-
meters with size, with z ¼ 2 within each discrete size
interval, we then evaluate the growth term Pjðn ¼

0;NO3Þ for each class as

Pjðn ¼ 0;NO3Þ ¼V I PHYj mj

NO3

Kj

ln 1þ
1

1þ
NO3

Kj

0
BB@

1
CCA

(32)

with

mj ¼ m1
dj

d1

� �2�z

¼ m1 and Kj ¼ K1
dj

d1
.

Analogously we evaluate the loss by exudation as

Ljð� ¼ 2Þ ¼ PHYj lj lnð2Þ ¼ PHYj l1
d1

dj

lnð2Þ. (33)

4. Size-dependent growth and exudation in a

nutrient–phytoplankton model

We will now investigate the impact of size-
dependent processes on the performance of a one-
dimensional numerical nutrient–phytoplankton
model, which is first run under constant forcing
and then under climatological physical forcing that
corresponds to a North Atlantic spring bloom site.
The model is configured and analyzed according to
the following approaches: ‘‘constant spectral slope’’
approach after Hurtt and Armstrong (1999) ðNPþ
HAÞ and the ‘‘variable spectral slope’’ approach
after Kriest and Evans (1999) ðNPþKEÞ, 14
discrete phytoplankton size classes (N14P), and no
size dependence (NP). In the size-resolving ap-
proaches we attempt to account for the entire size
range of phytoplankton, i.e., from picophytoplank-
ton (40:2mm diameter) up to giant diatoms such as
Ethmodiscus sp. (41000mm diameter).

4.1. Model structure and setup

The integral representation of size-dependent
phytoplankton growth and exudation introduced
above is combined with a simple nutrient–phyto-
plankton (NP) reaction–diffusion equation. Light
limitation is calculated according to Eq. (10), with
integration over a day and box thickness as in Evans
and Garc-on (1997). Phytoplankton production is
the product of light- and nutrient-limited growth
(cf. Eqs. (20), (27), (32)), instead of the minimum
function used by Hurtt and Armstrong (1999) and
Kriest and Evans (1999).

qNO3

qt
¼
Xj¼m

j¼1

ðLj � Pj þ �G lG PHYjÞ

þ
q
qz

Kz

qNO3

qz
, ð34Þ

qPHYj

qt
¼ Pj � Lj � lG PHYj þ

q
qz

Kz

qPHYj

qz
, (35)

where m ¼ 1 for the model configurations NP,
NPþHA, and NPþKE, and m ¼ 14 for the size-
discrete configuration N14P. For the sake of
simplicity we parameterized phytoplankton losses
due to grazing in the simplest way, i.e., via a linear
loss term lG, which can be interpreted in two ways:
either a saturated zooplankton grazing response,
together with the assumption that zooplankton
concentration is equal to that of phytoplankton;
or zooplankton grazing increasing linearly with
phytoplankton concentration, but assuming con-
stant zooplankton concentration. In either case,
grazing pressure does not change with phytoplank-
ton size. A fraction �G of the grazed phytoplankton
biomass is recycled immediately to NO3; the rest is
exported out of the system.

For the size-independent model configuration
(NP) we evaluate nutrient uptake by phytoplankton
as above, except that growth and loss parameters
are kept constant (K̄ ¼ 0:025mmolNm�3, l̄ ¼
0:05 d�1). In this case, P ¼ VI m1 PHYNO3=ðK̄ þ
NO3Þ and L ¼ l̄PHY (see Tables 1 and 2). We then
present the two size-dependent model configura-
tions NPþHA and NPþKE with parameters



ARTICLE IN PRESS

Table 1

State variables, definitions and units of parameters, and parameter values used in the NP model and for the size-dependent approaches

Parameter/state variable Symbol Value Unit

State variables

Nitrate NO3 mmolNm�3

Phytoplanktona PHYj ; j ¼ 1; . . . ;m mmolNm�3

Number of cells NOS cells cm�3

Biogeochemical parameters

Max. phytoplankton growth rate m1 2 d�1

Phytoplankton half. sat. constant K1, K̄
b

mmolNm�3

Initial slope of P–I curve a1 0.05 ðWm�2 dÞ�1

Phytoplankton exudation rate l1, l̄
b

d�1

Phytoplankton mortality lG 0.25 d�1

Recycling efficiency �G 0.50

Attenuation of light (phytoplankton) kPHY 0.03 m�1 ðmmolNm�3Þ�1

Attenuation of light (water) kw 0.04 m�1

Size parameters

Minimum cell size d1 2� 10�7 m

Upper boundary for size dependency dL
b m

Minimum cell mass (at size of d1) b1 2� 10�13 mmolN

Exponent for cell mass vs. diameter z 2.00

Exponent of size distribution function � b

Factor of size distribution function A b
m��4

aSee Table 2 for the number of phytoplankton compartments, m, in the different approaches.
bSee Table 2 for variation of parameters between the different approaches.

Table 2

Parameters and parameter values used in the different model

configurations

Parameter NP NPþHA NPþKE N14P Unit

m 1 1 1 14

A, Aj – 0.0004a Var. Var. m��4

�, �j – zþ 1 Var. z
dL – Var. 0.002 0.003276 m

l̄, l1 0.05 0.20 0.20 0.20 d�1

K̄, K1 0.025 0.005 0.005 0.005 mmolNm�3

Units for parameters as in Table 1. m is the number of

phytoplankton compartments.
aThe value was calculated in the following way: Hurtt and

Armstrong (1999) calculated the variation in half-saturation, and

the resulting population nutrient uptake analogous to Eq. (20).

Combining their model and Eq. (20) with b0k ¼ 1, we get

bk ¼ b0k=c ¼ 1=AC. Hurtt and Armstrong (1999) estimated

bk � 5, resulting in AC ¼ 0:2mmolm��4�z. With b1 ¼ 2�

10�13, d1 ¼ 2� 10�7, z ¼ 2, from b1 ¼ C dz
1 we find C ¼

500mmolm�z. Solving for A then gives A ¼ 1=ð5� 500Þm��4 ¼

0:0004m��4.
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given in Tables 1 and 2. For the size representation
in NPþKE with variable spectral exponent �, we
also compute the number of phytoplankton cells
(which is needed to compute the exponent �):

qNOS

qt
¼ PNOS � LNOS � lG NOS

þ
q
qz

Kz

qNOS

qz
. ð36Þ

N14P simulates 14 phytoplankton classes of loga-
rithmically increasing size (base 2, i.e., the dia-
meters, dj, at the lower boundary of each size class
of 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8, 25.6, 51.2, 102.4
,204.8, 409.6, 819.2, 1638:4 mm). A further increase
in size resolution did not show any significant
advances. As for the spectral representations, in the
size-discrete approach the half-saturation constant
and loss-rate scale with the diameter, dj, according
to Eqs. (32) and (33). Because nitrate appears in the
denominator in Eq. (17), all models evaluate
nutrient uptake only down to a minimum concen-
tration of nitrate of 10�6 mmolNm�3.

All model configurations are simulated under two
different types of physical forcing: first we investi-
gate the effects of constant physical forcing. In this
case, the vertical model domain is divided into 40
boxes of 5m thickness, and the mixing coefficient is
set to a low value of Kz ¼ 0:3 cm2 s�1 throughout
the model domain. Daily integrated photosyntheti-
cally available radiation (PAR) at the sea surface is
constant ð120Wm�2Þ, and daylength is 0.5 d. In a
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second experiment we extended the vertical domain
of the model to 400m depth (40 boxes of 10m
thickness). Monthly mean mixed-layer depths are
extracted from Levitus and Boyer (1994) for a site at
48	N 20	W and interpolated by spline interpolation,
with a minimum depth given by the thickness of the
first box (10m). Mixing intensity is assumed to be
high ðKz ¼ 300 cm2 s�1Þ in the mixed layer, then
gradually decreases within 25m to a low value
ðKz ¼ 0:3 cm2 s�1Þ at the base of the mixed layer and
remains constant for the rest of the model domain
(see also Evans and Garc-on, 1997). Daily integrated
light and daylength for this site were calculated
according to Brock (1981).

Lower boundary conditions for nitrate and
phytoplankton are set to 10 and 10�3 mmolNm�3,
respectively. We assume ‘‘flat’’ ð� ¼ zþ 1 ¼ 3Þ and
nearly ‘‘flat’’ ð� ¼ 3:0001Þ particle size distributions
at the lower model boundary for the NPþHA and
NPþKE configuration, respectively. For N14P,
the total phytoplankton concentration at the lower
model boundary is distributed equally among the 14
phytoplankton groups, again resulting in a flat
distribution. Model configurations NP, NPþHA,
and N14P are started from 10mmolNm�3

nitrate and 10�3 mmolNm�3 phytoplankton. NPþ
KE is started with 10mmolNm�3 nitrate and
10�3 mmolNm�3 phytoplankton biomass in the
size range of size-dependent growth (i.e., from d1

to dL). With an initial distribution determined by
� ¼ 3:01 this results in 0:0114mmolNm�3 total
phytoplankton (from d1 to 1). The model is
integrated forward for 7 years, using a variable-
coefficient ordinary-differential-equation solver
(Brown et al., 1989).

4.2. Results: constant physical forcing

4.2.1. Phytoplankton concentration

The phytoplankton concentration shows a similar
response to constant physical forcing under all
model configurations: within 10–30 d a bloom
develops in the top 40m, with a maximum
concentration of 4–8mmolNm�3 (Fig. 2). The
bloom peak is very pronounced except for
NPþHA. The more moderate bloom development
in NPþHA may partly relate to the model’s
specific assumptions about the size distribution:
every increase in mass is accompanied by an
increase in the number of large cells, which have a
higher half-saturation constant and thus reduce the
overall growth rate. The bloom predicted by NPþ
KE starts later than in N14P, which is not restricted
to a certain size distribution and can also produce
biomass peaks at a size that is optimal for the given
environmental conditions (often in the nanoplank-
ton size range). NPþKE, on the other hand, is
bound to a spectral representation of phytoplank-
ton mass, and thus has to account for large or small
cells even under conditions that would promote
unimodal distributions. For instance, restricting
NPKE to the nano- and microphytoplankton size
range (2–2000mm), with a concomitant shift in K1

and l1, strongly increases the similarity between
NPKE and N14P (see Fig. 2). The higher effective
growth rates simulated by N14P also help to explain
the similarity of the bloom simulated by NP and
N14P. We note, however, that the parameters
(K and l) for NP were chosen more or less
arbitrarily, i.e., without any tuning. Choosing a
higher K would delay the occurrence of the bloom
peak, with NP becoming more similar to NPþKE.
All model configurations predict the formation of a
deep phytoplankton maximum at a depth of about
50–60m after cessation of the surface bloom, which
persists for the rest of the simulation.

4.2.2. Phytoplankton size fractions

Despite similar patterns in total phytoplankton
concentration, the size-dependent model configura-
tions differ in how they distribute phytoplankton
biomass between different size classes (Fig. 3). In
N14P and NPþKE starting from ‘‘flat’’ or almost
‘‘flat’’ phytoplankton size distributions the picophy-
toplankton (size range 0.2–2:0mm) initially forms
only a small proportion of biomass. During and
after the bloom, the contribution of this class
increases, until it constitutes almost 100% of total
phytoplankton biomass in the upper layers. Nano-
phytoplankton (2.0–20mm) plays a role mostly near
the surface in the transition toward the oligotrophic
system in all size-resolving approaches; in N14P it
also contributes considerably to total phytoplank-
ton in deeper layers and in NPþKE below the deep
phytoplankton maximum. Microphytoplankton
(all cells 420 mm) plays a dominant role in deep
water in NPþKE; in N14P it forms between 40%
and 60% of the biomass in deeper parts of the
model domain. Summarizing, N14P shows a transi-
tion from smaller to larger cells in deep parts of the
model domain ð� 160mÞ, while in NPþKE the
transition already appears between 60 and 120m,
with a distinct region of nanophytoplankton in the
transition zone.
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Fig. 2. Phytoplankton concentration ðmmolNm�3Þ under different model configurations, simulated with constant physical forcing. Left

and right panels: phytoplankton concentration in the four different model configurations. Upper middle panel: Phytoplankton

concentration in the top layer, first 80 days of simulation. Lower middle panel: phytoplankton concentration on day 730. Black line: NP;

red line: NPþHA; green line: NPþKE; blue line: N14P. The thin green line with circles denotes an experiment with NPKE, where the

size range has been set to 2–2000mm, with a corresponding shift in l1 and K1.
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Total simulated phytoplankton in these deep
parts of the model domain is rather low (cf. Fig. 2,
and the hatched area in Fig. 3), and from an
observing standpoint there would be no detectable
phytoplankton, least of all size fractions of phyto-
plankton. On the other hand, we can detect even
very low quantities of phytoplankton in the output
of a numerical model; furthermore, the simulated
result (greater importance of larger cells in a low-
light environment) agrees with the pattern derived
theoretically in the previous section. Thus, consis-
tent with the theory N14P and NPþKE suggest
that larger phytoplankton is of greater importance
in a low-light, eutrophic environment, whereas
small phytoplankton dominates mainly the oligo-
trophic surface layer(s).

NPþHA produces a quite different result:
picophytoplankton dominates throughout the ver-
tical model domain and during most of the
simulated time, except for the relatively short bloom
and transition periods, when nano- and microphy-
toplankton dominate.
4.2.3. Trends in simulated size spectra

In the following we compare the simulated cell
size distributions of NPþKE and N14P. NPþKE
provides a direct estimate of the exponent of the cell
number distribution (13), � (see Eq. (24)). N14P
predicts the biomass PHYj in the size classes, the
distribution within a class given by Eq. (31). We can
evaluate the cell number in each class, normalized
by its width dj via

Nj

dj

¼ PHYj

1

bj dj

1� 21�z

z� 1
¼ PHYj

1

bj dj

0:5, (37)

where bj is the biomass of a cell at the lower
boundary of the class. Assuming an underlying
distribution as in Eq. (13), a regression of logðNj=djÞ

versus logðdjÞ then gives the exponent of the overall
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Fig. 3. Fraction of total biomass of three different phytoplankton size classes (0.2–2, 2–20 and 420mm) for the size-dependent model

configurations under constant physical forcing, days 1–730. The hatched area indicates regions where total phytoplankton concentration is

below 10�6 mmolNm�3.
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distribution of N14P, �D, that can be compared
directly to � of NPþKE. In analogy to in-situ
sampling methods, in the regression only size classes
with concentrations above a certain threshold (here:
Nj410�5 cells cm�3) are considered.

Starting from essentially ‘‘flat’’ initial distribu-
tions, N14P and NPþKE initially mainly show a
‘‘rise’’ of the spectra, and only a small increase of
the exponent of the spectrum (Fig. 4 and Table 3),
the latter in particular in the first layer. The bloom
peak is characterized by a further rise of the
spectrum at the surface. When comparing the size
distribution of N14P with the exponent predicted by
NPþKE we find a slight deviation from linearity
(on a log–log scale of normalized cell abundance).
The post-bloom period is characterized by rather
steep spectra at the surface in both models; the
steepness increases strongly during the course of the
simulation (day 730). As the simulations approach
equilibrium, NPþKE predicts flattening of the size
distribution at 60m depth, while N14P predicts
increasing dominance of some picophytoplankton
size classes. For these size distribution(s) a linear
regression of the log-transformed values at least
over the entire size-range does not seem appro-
priate. At 170m depth, the model predicts ‘‘flat’’
size distributions ðNPþKEÞ or even increasing
biomass in logarithmically increasing size classes
(N14P) (Table 3).

Summarizing, a steepening of the size distribu-
tions at the surface during the course of the
simulation is common to both approaches and is
most pronounced for the post-bloom period.
Further, both model configurations exhibit a
flattening of the size distribution with depth. Both
model configurations agree quite well with each
other with respect to the estimated exponent
(Table 3), except for the deep phytoplankton
maximum from the end of year 2, where N14P
simulates unimodal size distributions. It is note-
worthy that the estimated spectral exponent of
N14P is quite sensitive to the minimum cell
concentration considered. Consider, for example,
the surface size distribution at day 730. If we
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Fig. 4. Number of cells in size class, divided by size-class width, in model configuration N14P and NPþKE simulated with constant

physical forcing. Dotted (green) horizontal bars: N14P, 1m depth. Straight (black) horizontal bars: N14P, 60m depth. Length of

horizontal bars is representative of size-class width. Dotted (green) line: NPþKE, 1m depth. Straight (black) line: NPþKE, 60m depth.

Results are shown relative to bloom peak (left three panels), after 2 years and after 7 years (two panels on the right). Bloom peak is on day

16.5 in N14P, and on day 20.5 in NPþKE. ‘‘Pre-bloom’’ is 10 d before bloom peak, ‘‘post-bloom’’ is 10 d after bloom peak of the

respective model. Normalized cell numbers in each class of N14P have been evaluated as explained in Eq. (37). Normalized cell numbers in

each class of NPþKE have been evaluated from the integration of Eq. (13) and divided by size-class width. See also Table 3 for values of

the spectral exponents.

Table 3

Exponents of power-law size spectrum for the size-discrete model configuration (�D) and for NPþKE (�) under constant forcing at

different times and depths

Depth (m) Bloom-10 Bloom Bloomþ 10 Day 730 Day 2555

�D � �D � �D � �D � �D �

2.5 3.31 3.26 3.87 3.52 4.23 4.12 7.80 6.48 6.34 6.81

57.5 3.12 3.07 3.11 3.11 3.06 3.07 5.71a 3.80 �2.61a 3.87

167.5 2.91 3.00 2.72 3.00 2.38 3.00 2.34 3.00 2.34 3.00

See Fig. 4 for plots of corresponding size spectra. For the size-discrete model, all regression coefficients r2 exceed 0.9, except where

indicated.
aLow regression coefficient (r2 ¼ 0:55 and r2 ¼ 0:62 for days 730 and 2555, respectively). Only size classes with more than 10 cellsm�3

have been included in the regression for slopes of the size-discrete model configuration.
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included only classes with at least 1000 cellsm�3

(1 cell per liter) the estimated slopes would be
smaller (the size distribution ‘‘flatter’’), because in
this case the larger size classes (with few cells) have
no influence on the estimated exponent. Further, the
increase of cell numbers with size at the lower end of
the spectrum (as, e.g., in the deep chlorophyll
maximum at the end of the simulation) then plays
a larger role. This would be of importance when
comparing simulated with observed exponents, and
will be discussed in more detail elsewhere.

4.2.4. Variation of community half-saturation

constant

The construction of size-dependent model con-
figurations presented in this work was motivated by
field observations of variable half-saturation con-
stants of nitrate uptake. To compare the variation
of half-saturation constants in the presented model
approaches with the observational estimates by
Harrison et al. (1996), we have computed a
‘‘community half-saturation constant’’ K� as fol-
lows. Assuming that total phytoplankton produc-
tion PP is given by

PP ¼ PHYV I m1
NO3

K� þNO3
(38)

and knowing PP, VI , PHY, NO3, and m1 we can
solve for K� as the half-saturation constant that
represents total community growth. K� is analogous
to KN in Harrison et al. (1996):

K� ¼ NO3
V I m1 PHY

PP
� 1

� �
. (39)
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Fig. 5 shows the trajectories of K� in the surface
layer as a function of ambient nitrate concentration,
from the start of the simulations ðNO3 ¼

10mmolNm�3Þ through the bloom and into the
stationary phase, when the model adjusts to the
deep NO3 boundary conditions and simulates very
low concentrations of NO3 near the surface. The
NPþHA simulation starts with a low phytoplank-
ton concentration ð10�3 mmolNm�3Þ, which in the
model context suggests mainly small cells, and so it
also starts with low K�. As phytoplankton concen-
tration increases, more large cells are added and K�

increases quickly. About five days before the peak
of the bloom, it has reached its maximum (about
10mmolNm�3) from which it declines within 10 d
by almost two orders of magnitude. At the end of
the simulation, phytoplankton concentration and
upper size limit for the flat spectrum again are so
low that K� is at its minimum ð0:005mmolNm�3Þ.
The NPþKE simulation starts with a flat spectrum
(i.e., large cells dominate the biomass) and an
associated large K� ð� 30mmolNm�3Þ. By the time
cells in the size range 0.2–2000 mm start to grow, K�

has already dropped by two orders of magnitude.
During the bloom development, nutrient concentra-
tions decrease quickly and so does the proportion of
large cells and, as a consequence, K�.

In principle, the trajectory of K� in the N14P
simulation is quite similar to that of NPþKE, but
the initial value (K� of day 1) of N14P is about an
order of magnitude smaller than that of NPþKE,
and the decline with decreasing nitrate concentra-
tions is weaker. The smaller initial value of K� of
N14P is caused by the parameterization of the size
range, which is finite in N14P, but infinite in
Fig. 5. Trajectory in time of community half-saturation constants K� fo

layer, constant physical forcing. Symbols indicate different times. Small

Asterisk: bloom peak. Large circle: 5 d after bloom peak. Small circle

saturation constant.
NPþKE. Given the flat initial distribution of
NPþKE, in this model much biomass is located
beyond dL, i.e., associated with a half-saturation
constant of 50mmolNm�3, which causes the high
initial K� in NPþKE.

In both models, K� decreases quickly during the
first days of simulation; however, 5–10d before the
bloom, K� of NPþKE still is 41mmolNm�3,
while K� of N14P is about an order of magnitude
lower. The reason for the lower community half-
saturation constant in N14P can be found in its
flexible representation of the size distribution, which
can select for an optimum size at given environmental
conditions, while NPþKE is bound to a spectral
representation of the size distribution, from d1 �1.

As a consequence, given the rather high K� and
an initial nitrate concentration of 10mmolNm�3,
phytoplankton of NPþKE appears to be nutrient-
limited before the bloom, while phytoplankton of
N14P can grow with a rate close to its maximum
growth rate. This feature may explain the rather late
onset of the bloom in NPþKE, and also the
similarity between N14P and NP (which has a
rather low, fixed value of K ¼ 0:025mmolNm�3).

4.3. Results: climatological physical forcing

4.3.1. Phytoplankton concentration

As for the constant physical forcing, the phyto-
plankton concentration develops in a similar way in
both the NP and N14P configurations under a
climatological forcing scenario. Following the shal-
lowing of the mixed layer, N14P and NP both
simulate a phytoplankton spring bloom around day
2350 (in May), and a deep phytoplankton maximum
r model configurations N14P, NPþKE, and NPþHA in the top

cross: 10 d before bloom peak. Large cross: 5 d before bloom peak.

: 10 d after bloom peak. Horizontal line denotes minimum half-
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during summer (Fig. 6). In contrast, the spring bloom
simulated by NPþHA and NPþKE that para-
meterize a size spectrum starts about 1 month later,
and a deep phytoplankton maximum does not
develop in summer. The difference in the develop-
ment of the phytoplankton concentration between
N14P and the spectral model configurations can
again be interpreted as a result of the more flexible
representation of the size distribution in N14P, which
allows cells of optimum size, usually in the nano-
plankton size range, to dominate the total phyto-
plankton community and physiology (see also Section
4.2 for a detailed discussion). As for the simulation
with constant forcing, restricting NPKE to the nano-
and microphytoplankton size range (2–2000mm)
causes a much earlier bloom, which is similar to the
bloom of N14P (see Fig. 6). Again, we note that NP
was simulated with more or less arbitrarily chosen
parameters, i.e., without any prior tuning; choosing a
Fig. 6. Phytoplankton concentration ðmmolNm�3Þ under different

climatological annual cycle in mixed-layer depth and solar radiation.

different model configurations. Upper middle panel: phytoplankton co

concentration on day 2425. Black line: NP; red line: NPþHA; green line

circles denotes an experiment with NPKE, where the size range has been

left and right panels denotes mixed-layer depth (above which Kz ¼ 300
higher K for NP would delay the bloom and increase
its similarity to NPþKE.

The rather late onset of the bloom in all model
configurations (the simulated North Atlantic station
is characterized by a forcing typical for the JGOFS
NABE site) is caused mainly by the constantly high
grazing pressure in the model during winter (see also
Evans and Parslow, 1985). Experiments with
different grazing parameterization show that a
lower grazing pressure during winter, as simulated
by a density-dependent (quadratic) grazing function
can indeed produce model results more consistent
with observed phytoplankton concentration. Like-
wise, a non-linear grazing function also produces
deep phytoplankton maxima in NPþKE and
NPþHA. However, because the focus of this
paper is to explore the different nutrient uptake
parameterizations, and because the size-resolving
model configurations are already non-linear in their
model configurations in year 7 of simulations forced with

Left and right panels: phytoplankton concentration in the four

ncentration in the top layer. Lower middle panel: phytoplankton

: NPþKE; blue line: discrete size classes. The thin green line with

set to 2–2000mm, with a corresponding shift in l1 and K1. Line in

cm2 s�1, see Section 4.1).



ARTICLE IN PRESS
I. Kriest, A. Oschlies / Deep-Sea Research I 54 (2007) 1593–16181610
nutrient uptake and loss terms, we have decided to
restrict all non-linearities to these processes and
keep everything else as simple as possible.

4.3.2. Phytoplankton size fractions

Similar to the results obtained with constant physical
forcing, NPþKE and N14P in general agree in their
prediction of the vertical and temporal distribution of
the different size classes (Fig. 7). Picophytoplankton
mainly dominates the biomass in the surface layers
during summer, while the larger phytoplankton plays a
greater role during winter and at moderate to larger
depths (note that this is to some extent caused by
adjustment to the deep boundary conditions). Nano-
phytoplankton is of greater importance in the N14P
simulation, where it comprises more than 80% of the
spring bloom, and more than 60% during spring and at
intermediate depths. Microphytoplankton plays a
much bigger role in the NPþKE than in the N14P
simulation, especially at greater depths.

Note that the relative contribution of each size
class to total phytoplankton biomass is governed by
Fig. 7. Fraction of total biomass of three different phytoplankton size

configurations, year 7 of the climatological forcing runs. Solid line d

hatched area indicates regions where total phytoplankton concentratio
the parameters K1 and l1. E.g., a five-fold increase
in l1, together with a five-fold decrease in K1 (see
Section 2 for possible ranges of these values) will
increase the optimum diameter for net growth, and
would cause an increase in the relative importance
of microphytoplankton in N14P (no figure). Sum-
marizing, consistent with the theory N14P and
NPþKE predict an increasing proportion of large
phytoplankton biomass with increasing depth, and
a dominance of picophytoplankton in the oligo-
trophic summer system state.

The NPþHA simulation again produces a
strikingly different result: owing to its parameter-
ization large cells play a role only during the bloom,
while picophytoplankton dominates during the rest
of the year, even at greater depths.

4.3.3. Trends in simulated size spectra

The importance of nanophytoplankton in N14P
is also reflected in the size distributions, which have
been plotted for bloom and non-bloom conditions in
Fig. 8. The low-light conditions during winter (day
classes (0.2–2, 2–20 and 420mm) for the size-dependent model

enotes mixed-layer depth (above which Kz ¼ 300 cm2 s�1). The

n is below 10�6 mmolNm�3.
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2190, i.e., first day of year 7), together with the deep
mixing, provide very unfavorable net growth condi-
tions for the smallest size class (0.2–0:4mm). This is
also reflected in the low regression coefficient of the
power-law spectral fit for this time (Table 4). As the
mixed layer shallows and light increases toward
spring, the contribution of small cells increases.
However, the bloom is characterized by a dominance
of the 0.8–1:6mm size class, with the four next larger
size classes being also quite abundant. These size
classes constitute the peak in nanophytoplankton
contribution. The post-bloom period is characterized
by rather steep size distributions, especially at the
surface. This dominance of the small cells during the
oligotrophic summer period affects the composition
of the fall bloom, which is initiated by mixed layer
deepening and nutrient entrainment. Because of their
high abundance during summer, and their low half-
saturation constant, small cells also form a major
part of this bloom.

Model NPþKE shows a similar development,
with rather flat distributions ð� � 3Þ during winter
and a steepening of the spectrum as the mixed layer
shallows in spring (up to � ¼ 3:57 on day 2355). The
spring bloom is then characterized by a slight
decrease in � to 3:45; the spectrum gets much steeper
during the oligotrophic summer period, until the
onset of high mixing in fall, which entrains larger cells
from below and additionally favors growth of larger
Fig. 8. Number of cells in size class, divided by size-class width, in mode

physical forcing. Dotted (green) horizontal bars: N14P, 1m depth.

horizontal bars is representative of size-class width. Dotted (green) line:

Results are shown for winter (day 2190, or first day of year 7), day 2300

peak (day 2345 and 2375 for N14P and NPþKE, respectively), during s

N14P and NPþKE, respectively). Normalized cell numbers in each

Normalized cell numbers in each class of NPþKE have been evaluated

See also Table 4 for values of the spectral exponents.
cells by lower light and higher nutrients. As for N14P,
the fall bloom is characterized by a steeper spectrum
ð� � 4:8Þ than the spring bloom.

4.3.4. Variation of community half-saturation

constant

Starting with K� � 0:05mmolNm�3 at the be-
ginning of year 7 (small cross in Fig. 9), K� exhibits
a rise in N14P, as mixing entrains larger cells ( ¼
‘‘flat’’ spectra) from the lower model boundary
condition, and the environmental conditions at this
time of the year additionally promote the growth of
large cells. When the mixed layer shallows, K�

decreases to values of about 0.1–0:2mmolNm�3 at
the height of the bloom, because of the predominant
growth of small cells. The summer system is
characterized by the dominance of small cells, and
consequently, a rather low K� ð� 0:02mmolNm�3Þ.
The trajectory of K� therefore resembles that
observed in the simulation with constant physical
forcing (cf. Fig. 5); however, the way ‘‘back’’ from
the oligotrophic summer system state toward the
eutrophic winter state with deep mixing shows only
a small increase in K�. The latter is a consequence of
the dominance of pico- and nanophytoplankton
during late fall and winter down to a depth of
about 250m.

The trajectory of K� in the NPþKE simulation
with climatological forcing also shows similarities to
l configuration N14P and NPþKE simulated with climatological

Straight (black) horizontal bars: N14P, 60m depth. Length of

NPþKE, 1m depth. Straight (black) line: NPþKE, 60m depth.

(when mixed-layer depth has started to decrease), at spring bloom

ummer (day 2425), and at fall bloom peak (day 2479 and 2470 for

class of N14P have been evaluated as explained in Eq. (37).

from the integration of Eq. (13) and divided by size-class width.
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Fig. 9. Trajectory in time of community half-saturation constant K� for model configurations N14P (size-discrete), NPþKE and

NPþHA in the top layer, year 7 of runs with climatological physical forcing. Symbols indicate different times. Small cross: day 2190.

Large cross: day 2300. Asterisk: spring bloom peak. Large circle: day 2425. Small circle: fall bloom peak. Horizontal line denotes

minimum half-saturation constant.

Table 4

Exponents of power-law size spectrum for the size-discrete model configuration (�D) and for NPþKE (�) under climatological forcing at

different times and depths of year 7

Depth (m) Day 2190 (1) Day 2300 (April) Spring bloom Day 2425 (Aug) Fall bloom

�D � �D � �D � �D � �D �

2.5 2.20a 3.04 2.93 3.00 3.18 3.45 4.71 5.64 5.29 4.84

57.5 2.20a 3.04 2.92 3.00 3.02 3.34 3.74 4.12 5.27 4.83

167.5 2.19a 3.03 2.88 3.00 0.99a 3.00 –b 3.02 –b 3.03

See Fig. 8 for plots of corresponding size spectra. For the size-discrete model, all regression coefficients r2 exceed 0.75, except where

indicated.
aLow regression coefficient.
bToo few cells per size class to evaluate the slope of the distribution. Only size classes with more than 10 cellsm�3 have been included in

the regression for slopes of the size-discrete model configuration.
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the simulation with constant forcing; however, the
transition from the fall bloom toward the winter
system state with high mixing is accompanied by a
strong increase in K�, as a direct consequence of the
dominance of large cells, or ‘‘flat’’ size distributions,
from about 100m downwards. The trajectory of K�

in the NPþHA simulation with climatological
forcing is also similar to the one with constant
forcing. As for N14P the progression from summer
to winter exhibits almost no changes in K�.

5. Discussion

5.1. How realistic is the assumption of a power

spectrum?

Both size-spectral model configurations (NPþ
HA and NPþKE) make very strict assumptions of
the particle distribution being representable by a
power law, and, in the case of NPþHA, about its
parameters. As shown for the size-dependent
nutrient uptake and loss-rates in Sections 2 and 3,
we cannot, in general, expect a power law to result
from these size-dependent processes. Various func-
tions have been used to represent particle size
distributions determined from particle abundance
(biomass, volume) observed in the field. A power
law is often used to describe particle size distribu-
tions in the ocean, but other functions have been
suggested as well (Zuur and Nyffeler, 1992; Jonasz
and Fournier, 1996). Some observations of phyto-
plankton size spectra indeed suggest deviations
from a power law, with biomass peaks, caused by
different taxonomic groups, imposed on a linear
log–log spectrum (e.g., Gilabert, 2001; Cavender-
Bares et al., 2001). Other observations suggest that a
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linear log–log spectrum may be appropriate and
attribute deviations from linearity to the methodol-
ogies applied (Quinones et al., 2003). Gin et al.
(1999) neglect the small-particle region of the
spectrum and consider only the steadily decreasing
large-particle region (above � 0:6–2mm) of the
spectrum when estimating power-law exponents.

In the present study, we have tested the validity of
the power law approach for mechanistic formula-
tions that represent size-dependent nutrient uptake
and loss processes. For fixed environmental condi-
tions and in the absence of grazing, these formula-
tions will generally favor a particular size class
(Fig. 1). Our model run N14P which explicitly
resolves 14 phytoplankton size classes reveals that a
linear log–log spectrum may be a valid approxima-
tion of the phytoplankton size spectra during much
of the annual cycle. Pronounced deviations are
found mainly during the spring bloom, during
winter, and in the deep phytoplankton maximum.
In these situations, a power law tends to over-
estimate the concentration of very small ðo2mmÞ
cells (Fig. 8). In these cases, an approach similar to
that by Gin et al. (1999) (i.e., a cutoff of the
spectrum at some lower boundary in the picoplank-
ton size range) may improve the fit of a power law
to the simulated size distribution. It thus turns out
that our power-law model with variable spectral
parameters NPþKE produces a good approxima-
tion to the size distribution simulated by the explicit
multi-size class model in the size range from
� 2–200mm.

5.2. How realistic are the variations of spectral

exponents?

In general, values for the exponent of a power law
derived from field observations (analogous to our �)
vary from � 2 (Marañón et al., 2004) to � 5
(Cavender-Bares et al., 2001), with an average
between 3 and 4. (Note that we have converted
the observed exponents, b, which are influenced by
the type of dependent and independent variable, to
an exponent that can be compared directly to our �.
For example, the exponents observed by Marañón
et al. (2004) and Cavender-Bares et al. (2001) are
converted via � ¼ 3 bþ 1.) Observations suggest
either an increase (Gin et al., 1999) or a decrease
(Rodriguez and Mullin, 1986; Cermeño et al., 2005)
of the exponent with depth. Some increase of the
exponent in summer systems has also been observed
(Gin et al., 1999; Gilabert, 2001). Unfortunately,
winter and deep particle concentrations are usually
too low to allow for comparison with models.
Further, methodological limitations and artifacts
(e.g., sample size and size-class width) may influence
the estimate of the spectral exponent from observed
particle concentrations (Blanco et al., 1994; Vidon-
do et al., 1997). Therefore, although N14P and
NPþKE simulations in some aspects agree with
observed distributions (e.g., Rodriguez and Mullin,
1986; Cermeño et al., 2005; Gilabert, 2001), the
comparison of model results with observed varia-
tions must be viewed with caution. A more detailed
comparison of model results with observed spectra
will consider the conversion of slopes of power law
spectra calculated from different bases (e.g., dia-
meter, volume), and possible artifacts due to sample
size and size-class width, and will be presented
elsewhere.

5.3. What are the possible effects of grazing and

sinking?

In NPþHA and NPþKE, we assume that
processes not yet explicitly accounted for in our
simple model (e.g., grazing, sinking) do not select
against certain size classes. For example, allometric
rules for growth and grazing, in combination with a
power-law size distribution, may yield normalized
size spectra with a slope of � 3:4–4 (Platt and
Denman, 1977), a pattern that has been found in the
oligotrophic North Atlantic (Quinones et al., 2003).
However, a more detailed representation of zoo-
plankton grazing and its size dependence in
numerical models may yield different results,
because the combined effects of size-dependent
grazing parameters may be strongly non-linear,
and further complications may arise if we have to
consider omnivory and/or several trophic levels.

All model configurations considered here evaluate
the nutrient uptake of phytoplankton cells that
move with the water, but not relative to it. However,
the latter process may influence the relationship
between the half-saturation constant and cell size, as
the transport coefficient of nutrients toward the cells
originally contains a term for molecular diffusion as
well as for motility of cells relative to water (Aksnes
and Egge, 1991, their Eq. (8)).

For spherical planktonic cells o1000mm, turbu-
lence is unlikely to play a role in the transport of
nutrients toward the cells. However, diatoms, in
particular, are not spheres, but exhibit a large
variety of forms, from cylinders (e.g., Coscinodiscus)
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to complicated forms with protuberances (e.g.,
Chaetoceros). The deviation of cell geometry from
a spherical shape may increase the nutrient flux into
the cell (by an increase of the surface-to-volume
ratio), and the flux of nutrients toward the cell, by
changes in the flow field in the vicinity of the cell
surface (Wolf-Gladrow and Riebesell, 1997). In our
model we parameterize a mixed phytoplankton
population, which may theoretically consist of a
variety of shapes and whose effective shape factor
does not change with size. Models that account for
different species or cell types should account for
different geometric shapes to adequately represent
the flux of nutrients toward and into the cell.

In the nano- to microplankton size range the
sinking rate increases approximately proportional
to the cell diameter, with a healthy cell of d ¼

100mm sinking about 5md�1 (Smayda, 1970).
However, some phytoplankton cells can regulate
their bouyancy, e.g., by changes in cell sap
composition (see Smayda, 1970, for an overview).
Furthermore, there is a big difference in sinking
speed between cells of different physiological status:
whereas resting spores and senescent cells may sink
very quickly, actively growing cells sink at about an
order of magnitude slower, or not at all (Waite et
al., 1997). Given its large variation and uncertainty
about the sinking speed, especially of large phyto-
plankton, we opted for neglecting the sinking of
cells and the associated changes in nutrient trans-
port toward the cell in this paper.

6. Conclusions

Observations and optimization studies indicate
that present NPZD-type models may lack impor-
tant elements of yet unknown ecological rules of
marine ecosystems. Attempts to resolve this issue
include strategies to make models more complex,
e.g., by resolving an increasing number of distinct
phytoplankton groups. This increase in complexity
is usually accompanied by an increase in the number
of biogeochemical parameters, which may be
difficult to constrain. In this study we follow an
alternative approach and hypothesize that phyto-
plankton size, and an associated variation in
nutrient uptake and loss parameters, can account
for some of the physiological variability of the
marine phytoplankton community.

This study explores the effect of size-dependent
processes in the framework of a simple nutrient–
phytoplankton model in an idealized one-dimen-
sional environment, qualitatively representing a
typical annual cycle in the North Atlantic spring
bloom region. Theoretical considerations and model
configurations with different representations of
phytoplankton size distributions allow for a me-
chanistic prediction of vertical and seasonal differ-
ences in the distribution of phytoplankton size
classes. Assuming constant zooplankton grazing
pressure, theory and the results of an explicit size-
discrete model and an implicit size-spectral model
predict that the biomass of larger cells—or flat
distributions—are more important under low-light
and nutrient-replete conditions, but that smaller
cells dominate near the surface in oligotrophic,
high-light conditions.

In many regimes, the computationally more
efficient size-spectral model NPþKE is sufficient
to reflect the phytoplankton size distribution of the
more detailed multi-size class model N14P. How-
ever, especially in the deep phytoplankton max-
imum a unimodal size distribution rather than the
power-law assumption used in NPþKE is more
realistic. Comparison with a size-spectral model
with fixed spectral slope ðNPþHAÞ shows that a
temporal and spatial variation of the spectral slope
is of advantage when attempting to simulate a
dynamic, size-dependent response of the phyto-
plankton community to environmental factors.

The comparison with phytoplankton size distri-
butions observed in the field is hampered by the
sparsity of data, especially for the winter season. A
more detailed and comprehensive analysis of avail-
able observations is necessary in order to judge the
performance of the models, at least with respect to
geographical, vertical, and spring-to-summer varia-
tions. The simulated variation of the community
half-saturation constant K�, which cannot be
accounted for by a standard NPZD-type model,
seems realistic as it roughly agrees with observations
made by Harrison et al. (1996).

The size-dependent models presented here are by
no means comprehensive—yet they account for
important size-dependent physiological processes,
and may exhibit a more flexible response to different
environmental factors than a simple NP model. The
spectral representation NPþKE offers a computa-
tionally efficient way to describe variations in size
without having to parameterize many distinct
phytoplankton groups. Incorporation of size-de-
pendent zooplankton grazing and metabolism is
likely to increase the realism of the model. This
work is currently underway.
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Appendix A. Evaluation of A1, A2, and growth in

NPþ KE

To integrate the functions (15) and (28) from
some lower boundary, d1, to an upper boundary,
dL, we first approximate the size distribution by a
polynomial as in Eq. (25) and then solve for the
coefficients A1 and A2 of the polynomial. For
phytoplankton up to a size dL that shows size-
dependent growth, the solution of the integrals (22)
and (23) from d1 to dL is

NOSdL
¼ A

Z dL

d1

d�� dd ¼ Aa ðA:1Þ

¼

Z dL

d1

A1d
�ð�iþ1Þ þ A2 d��i dd ðA:2Þ

¼ ½A1a1 þ A2a2�, ðA:3Þ

PHYdL
¼ AC

Z dL

d1

dz�� dd ¼ ACc ðA:4Þ

¼ C

Z dL

d1

A1dz�ð�iþ1Þ þ A2d
z��i dd ðA:5Þ

¼ C½A1 c1 þ A2 c2� ðA:6Þ

with

a ¼ d1��
1

1� f ��1

�� 1
for �a1 ðA:7Þ

a1 ¼ d��i1

1� f �i

�i

for �ia0 ðA:8Þ

a2 ¼ d1��i

1

1� f �i�1

�i � 1
for �ia1 ðA:9Þ

c ¼ d1þz��
1

1� f ��z�1

�� z� 1
for �azþ 1 ðA:10Þ

c1 ¼ dz��i

1

1� f �i�z

�i � z
for �iaz ðA:11Þ

c2 ¼ d1þz��i

1

1� f �i�z�1

�i � z� 1
for �iazþ 1 ðA:12Þ
and

f ¼
d1

dL

. (A.13)

If � does not satisfy one of the above conditions, the
solution for the corresponding term is � lnðf Þ.
Solving for A1 and A2, then gives

A1 ¼ NOSdL

c2 � a2
c

a
a1 c2 � a2 c1

, (A.14)

A2 ¼ NOSdL

a1
c

a
� c1

a1 c2 � a2 c1
. (A.15)

If we assume (as in our base scenario) that
phytoplankton size range is infinite, we can relate
NOSdL

to total numbers via

NOSdL
¼ NOS ð1� f ��1Þ. (A.16)

(Note that because � is always 4zþ 1, the
logarithmic solution may be required only for c2.)
We then integrate Eqs. (15) and (28), with the size
distribution expressed as the sum of integer power
terms. The general expression for the integration of
mass growth is

Pðni;NO3Þ

¼ VI Aib1
m1
d2
1

1

dni�1
1

Xni�1

i¼1

�K1

NO3

� �i�1
1

ðni � iÞ

"

�
Xni�1

i¼1

�K1

NO3

� �i�1
f ni�i

ðni � iÞ

�
�K1

NO3

� �ni�1

ln
K1 þNO3 f

K1 þNO3

� �#
. ðA:17Þ

The term can be solved separately for the two
integer exponents n1 ¼ �i � 1 and n2 ¼ �i � 2, with
the corresponding factors A1 and A2. Total mass
growth for any given � is then

Pð�;NO3Þ ¼ Pðn1;NO3Þ þ Pðn2;NO3Þ

¼ Pð�i � 1;NO3Þ þ Pð�i � 2;NO3Þ. ðA:18Þ

For cell number growth, analogously we evaluate

Pðni;NO3Þ

¼ VI Ai
m1

d2�z
1

1

dni�1
1

Xni�1

i¼1

�K1

NO3

� �i�1
1

ðni � iÞ

"
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�
Xni�1

i¼1

�K1

NO3

� �i�1
f ni�i

ðni � iÞ

�
�K1

NO3

� �ni�1

ln
K1 þNO3 f

K1 þNO3

� �#
ðA:19Þ

for n1 ¼ �i þ z� 1 and n2 ¼ �i þ z� 2.
Total cell number growth then is

Pð�;NO3Þ ¼ Pðn1;NO3Þ þPðn2;NO3Þ

¼ Pð�i þ z� 1;NO3Þ

þPð�i þ z� 2;NO3Þ. ðA:20Þ

Appendix B. Sensitivity of the model to size range

assumptions and nutrient uptake algorithms

The model with variable spectral exponent puts
many restrictions upon the representation of phy-
toplankton growth. In particular, questions to be
raised are
(1)
Fig.

cons

bou

and
How sensitive is the base model NPþKE to
variations of the upper boundary dL of Eq. (15)?
10. Experiments with NPKE: phytoplankton concentration in the top la

tant physical forcing. Thick black line: standard NPKE. Thin lines with

ndary for integration (dL � 100). Asterisks: NPþKE with numerical int

loss of cells bigger than dL. See Appendix B for further description of
To investigate this we increased the upper
boundary by a factor of 100 (from 2000 to
200 000mm). We find that the upper boundary
for integration of the growth term has almost no
effect on the surface concentration (circles in
Fig. 10) except for a delay by 2 days in the onset
of the spring bloom. We have also simulated a
scenario where there was neither growth nor loss
of cells 4dL ¼ 2000mm (crosses in Fig. 10).
Again, there was almost no effect on the
development of the model bloom, or on the
vertical distribution of phytoplankton after 2
years of simulation.
(2)
 How sensitive is the model with respect to the
representation of the size distribution by a
polynomial (Eq. (25))? To investigate this, we
evaluated Eq. (15) by numerical integration. To
assure accuracy and efficiency even over differ-
ent length scales we first divided the size
spectrum into a sequence of logarithmically
(base 2) increasing size classes. For each size
class we then applied trapezoidal integration, in
conjunction with Simpson’s rule (Press et al.,
yer ðmmolNm�3Þ, first 80 days of simulation, simulated with

symbols: experiments. Circles: NPþKE with increased upper

egration of production term P. Crosses: NPþKE, no growth

experiments.



ARTICLE IN PRESS
I. Kriest, A. Oschlies / Deep-Sea Research I 54 (2007) 1593–1618 1617
1992), up to the desired fractional accuracy of
10�3. However, the simulation with numerical
(with respect to size) evaluation of growth shows
little differences to the base scenario (Fig. 10).
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