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Abstract The distribution of early life stages of cepha-
lopods was studied during a cruise of the German R.V.
‘‘Poseidon’’ to the Sargasso Sea in March 1993, covering
an area south-east of Bermuda from 24�N to 31�N and
61�W to 65�W. Hydrographic measurements were car-
ried out by conductivity, temperature and depth casts
and/or expendable bathythermographs. The subtropical
convergence zone was detected at a latitude of approx-
imately 27�20¢N and divided the Sargasso Sea into a
northern and a southern area. Zooplankton sampling
with a 6 m2 Isaac–Kidd midwater trawl and Bongo nets
yielded a total catch of 909 specimens of early life stages
of cephalopods, representing at least 13 families and 20
mainly oceanic species. Multivariate statistical analyses
were performed in order to compare the species com-
position and abundance of cephalopods. Two different
assemblages were clearly identified, north and south of
the front. According to the position of the front an
analysis of similarity (ANOSIM) was applied, which
confirmed the observed differences in species composi-
tion at a highly significant level. The Cranchiidae,
mainly represented by the endemic species Leachia le-
mur, was the most abundant family, especially in the
northern part of the Sargasso Sea, and was mainly re-
sponsible for the distinction between the cephalopod
assemblages. In general, higher abundances of early life
stages and a higher diversity was observed north of the
subtropical convergence zone, which is assumed to form
a faunal boundary.

Introduction

Central oceanic regions such as the Sargasso Sea have
traditionally been thought to be low productive areas
and have been compared with terrestrial deserts (Ryther
1963). Recent studies have shown that this assumption is
partially wrong. In historical data sets the primary
production in the oligotrophic central gyres has been
underestimated by a factor of 2–4 (Goericke and
Welschmeyer 1998), though productivity and biomass
are still relatively low. A contrasting view is that the
Sargasso Sea is characterised by a dynamic phyto-
plankton community, with low biomass but high growth
rates that are balanced by high rates of grazing (Jackson
1980; Goldman 1993). Compared to slope and shelf
waters, however, the Sargasso Sea shows consistently
lower biomass concentrations in zooplankton (Deevey
1971; Deevey and Brooks 1977; Ortner et al. 1978; Wi-
ebe et al. 1985; Ashjian et al. 1994). The distribution is
less patchy and the average mean depth of the biomass
concentration is similar during both day and night
(Ashjian et al. 1994).
The Sargasso Sea, however, is not a homogeneous

oceanic region. It lies within the North Atlantic Sub-
tropical Convergence Zone (STCZ), a transition zone
between the prevailing westerlies and the easterly trades
(Voorhis 1969; Halliwell et al. 1994). The convergence
zone is characterised by enhanced meridional gradients
of near-surface temperature and a decreasing depth of
the upper (seasonal) thermocline from south to north
(Halliwell et al. 1994). During winter and spring an ex-
tensive large-scale thermal front develops, which mean-
ders in east–west direction (Voorhis and Hersey 1964;
Voorhis 1969). The thermal gradient is only marginally
detectable during summer (Halliwell et al. 1991b), but
there is also some evidence that the front may be present
throughout the year (Backus et al. 1969; Colton et al.
1975). It separates the central part of the Sargasso Sea
into a cooler, more-productive northern part and a
warmer, less-productive southern part. The enhanced
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primary production north of the front, which may be up
to ten-times higher than in the south, may be due to a
deeper winter mixing compared with a stronger stratifi-
cation of the water column south of it (Ryther and
Menzel 1960). In correspondence with the differences in
productivity, a general decline in abundance and dif-
ferences in species composition has been observed in
north–south direction, e.g. epipelagic copepods (Colton
et al. 1975) and mesopelagic fishes (Backus et al. 1969).
Cephalopods have been frequently investigated in the

western North Atlantic, but hardly any work has been
performed in the Sargasso Sea. Expeditions at the be-
ginning of the last century investigated the cephalopod
fauna around Bermuda (e.g. Pfeffer 1912; Berry 1920;
Peile 1926), but the number of hauls and the catchability
of their nets were limited. The first intensive study was
carried out by Voss (1960), who described the cephalo-
pod fauna around the Bermudian islands. Catches with
different net types yielded 21 cephalopod species, of
which at that time only three had previously been re-
ported from that area; however, detailed distribution
patterns were not analysed. Since then the cephalopod
fauna of the oceanic parts of the western North Atlantic
have not been further studied. Investigations have con-
centrated rather on the Florida Current (Cairns 1976;
Lea 1984) and the Gulf Stream system (Dawe and
Stephen 1988).
In the present paper the cephalopod fauna of the

Sargasso Sea is examined for the first time. In order to
reduce avoidance effects and to ensure a nearly quanti-
tative sampling (Piatkowski 1998), early life stages of
cephalopods have been considered. The sampling was
conducted with two different standard zooplankton nets
(IKMT6, Bongo), essentially in north–south directions,
and, thus, crossing the STCZ. Distribution patterns of
oceanic cephalopods are described, and species assem-
blages are identified. Observed spatial differences in
species composition are discussed with regard to hyd-
rographic features of the region.

Materials and methods

Sampling

Data were collected in the Sargasso Sea during the R.V. ‘‘Posei-
don’’ cruise 200/1 in March 1993, which had been initiated to de-
tect spawning grounds of the European eel Anguilla anguilla
(Schnack et al. 1994). Stations were located south-east of Bermuda,
covering an area from 24�N to 31�N and 61�W to 65�W (Fig. 1).
Early life stages of cephalopods were sampled using a Bongo net
(500 lm mesh size, 27 hauls), essentially on a north–south transect
at 62�W, and an Isaac–Kidd midwater trawl (IKMT6, 300 lm
mesh size, 11 hauls at 9 stations). The Bongo net was towed for
approximately 90 min at downward oblique hauls between 100 m
depth and the surface. The IKMT6 was applied in different depths
from 300 to 80 m; towing time was approximately 60 min. Ship
speed during sampling was kept at 3 knots. Filtered water volumes
were estimated using calibrated flowmeters, which were mounted in
the centre of the net openings. All samples were initially preserved
in 4% formalin, buffered with borax. Cephalopods were sorted and
identified to the lowest taxonomic level possible. Cephalopod

densities (N/1000 m3) were then estimated and used in the initial
species–station table for the spatial analysis of cephalopod com-
munity structure.

Hydrographic data were collected using expendable bathy-
thermographs (XBTs; 10 stations) and conductivity, temperature
and depth casts (CTD, model ME OTS 1500; 38 stations). XBTs
were only deployed on the northern part of the 65�W transect (not
illustrated in Fig. 1). The CTD was launched at all other stations,
always in advance of the zooplankton tows.

Data analysis

Multivariate statistical analyses were performed to examine dif-
ferences in species composition and abundances of early life stages
of cephalopods. IKMT6 hauls were not included in these analyses,
since only a few hauls in the southern Sargasso Sea were
performed. Prior to analysis, the densities of cephalopod species
(N/1000 m3) at each ‘‘Bongo station’’ were fourth-root trans-
formed. The transformation reduced the weighting of dominant
species and increased the importance of rare ones (Field et al.
1982). The similarity between stations was calculated by means of
the Bray–Curtis measure (Bray and Curtis 1957; Field et al. 1982).
Samples were classified by hierarchical agglomerative cluster
analysis using the group-average linking method and ordinated
using non-metric, multi-dimensional scaling techniques (MDS;
Kruskal 1964).

According to the prevailing hydrographic regimes, the Sargasso
Sea was separated into a northern and a southern region, divided
by the position of the thermal front (see ‘‘Results’’). The cephalo-
pod catches in these two regions were compared using different
subroutines of the Primer-E (5) computer program (Clarke and
Warwick 2001). Analysis of similarities (ANOSIM; Clarke and
Warwick 1994) was employed to test for differences in species
composition between the two areas. In cases when the ANOSIM
showed significant results, the similarity percentage routine
(SIMPER; Clarke and Warwick 1994) was applied to examine

Fig. 1. R.V. ‘‘Poseidon’’ cruise 200/1, March 1993. Sampling area
in the Sargasso Sea (bold points represent Bongo hauls; triangles
IKMT6 hauls). CTD data were gathered at all marked stations
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which cephalopod species were most responsible for contrasts in
the community analysis. In addition various univariate indices, the
Magalef ’s species richness index (D), the Shannon–Wiener diver-
sity index (H¢) and Pielou’s evenness index (J), were calculated for
the samples north and south of the thermal front.

Results

Oceanographic conditions

Oceanographic data were measured on two transects in
a north–south direction from 24�N to 31�N at a longi-
tude of 65�W and 62�W, respectively. On both sections a
sharp near-surface temperature gradient was detected,
which demonstrated the location of the thermal front.
South of the front the water was stratified, whereas
northward the surface layer was mixed. In Fig. 2 the
temperature profile at 62�W, the transect of intensive
sampling, is illustrated. The temperature gradient was
encountered at approximately 27�20¢N. South of this
front the 21�C isotherm was measured below 100 m
water depth. To the north this isotherm reached the
surface at approximately 29�30¢N. The northern area
was characterised by a mixed layer of approximately
50–100 m thickness. At 65�W the stratification in the
southern area was slightly intensified, and the most
pronounced temperature gradient was again found at
approximately 27�20¢N.

Cephalopod families and major species

A total of 909 specimens of early life stages of cepha-
lopods were caught in 11 IKMT6 and 27 Bongo hauls;
13 families and 20 species were identified (Table 1). Since
many specimens could only be assigned to higher taxa,
the number of families and species must be considered as
minimal. All specimens belonged to the Oegopsida and
the incirrate Octopoda. In the Bongo hauls the Cran-
chiidae were dominant (38.2%), mainly represented by
the endemic species Leachia lemur. The Enoploteuthidae
and the Onychoteuthidae were moderately abundant,

with 18.2% and 9.0%, respectively. In terms of density
the most abundant species were L. lemur (0.72 per
1000 m3), followed by Abraliopsis pfefferi (0.38 per
1000 m3), Onychoteuthis banksii (0.26 per 1000 m3),
Megalocranchia sp. (0.22 per 1000 m3) and Selenoteuthis
scintillans (0.21 per 1000 m3).
Specimens sampled with the IKMT6 were generally

larger compared to specimens from the Bongo catches.
With the exception of Thysanoteuthis rhombus, which
was only found in the IKMT6 samples, the same species
were identified in the collections of both net types;
however, the relative composition was different. Highest
abundances in the IKMT6 samples were observed for
the Enoploteuthidae and Onychoteuthidae, each com-
prising 21.6% of the total catch. Rhynchoteuthion
stages of Ommastrephidae accounted for 15.7%. Cran-
chiidae were less abundant (9.9%) and were dominated
byHelicocranchia sp., mainly identifiable asH. papillata.
Species densities were not calculated because of inaccu-
rate flowmeter readings.
Differences in the total abundance of early life stages

in day- or night-time samples were not detected.
Therefore, diel effects on the catchability of the two nets
were not taken into consideration.

Distribution of cephalopods in relation
to the thermal front

The investigation of early life stages of cephalopods in
the Bongo hauls revealed marked north–south differ-
ences in abundance. North of the thermal front, at
27�20¢N densities of cephalopods increased from an
average of 1.70 ind. per 1000 m3 in the southern part of
the Sargasso Sea to 4.03 ind. per 1000 m3 in the north
(Fig. 3). Highest abundances were encountered north of
29�N, with a maximum of 8.92 ind. per 1000 m3.
Classification of the cephalopod densities in the

Bongo hauls separated the 27 samples at an arbitrary
level of 65% dissimilarity into two large (I and II) and
one small cluster (III) (Fig. 4). The first (I) and the third
(III) cluster included all samples south of the subtropical
convergence and three further stations north of it. The
second cluster (II) comprised exclusively samples taken
in the northern area of the Sargasso Sea. Ordination
(MDS) of the same data confirmed this finding (Fig. 5):
all samples from the northern Sargasso Sea were
grouped to the right of a line drawn in a nearly vertical
direction, whereas samples from the southern area were
positioned to the left of this line. The sample from sta-
tion 221, which formed a single cluster (III) in the
classification, was slightly separated from the other
samples in the MDS plot (Fig. 5).
In order to test the a priori hypotheses that there are

differences in the species composition between the
northern and the southern part of the Sargasso Sea, an
ANOSIM was performed. It showed that the species
compositions of both areas, separated by the STCZ, did
significantly differ (global R=0.481; P<0.001) and,

Fig. 2. R.V. ‘‘Poseidon’’ cruise 200/1, March 1993. North–south
temperature section at 62�W from 250 m water depth to the surface
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thus, supported the results from the classification and
ordination. The following exploratory analysis (SIM-
PER) indicated which species contributed most to the
differences between the samples from the northern and
the southern stations (Table 2). The Cranchiidae domi-
nated in the north; the family was mainly represented by
Leachia lemur, Megalocranchia sp. and Helicocranchia
sp., mostly identifiable asHelicocranchia papillata. Other
characteristic species in the northern part of the
sampling area based on absolute abundances, were
Abraliopsis pfefferi, Pyroteuthis margaritifera and Ony-
cho- teuthis banksii. Samples south of the STCZ were
characterised by relatively high abundances of A. pfef-
feri, rhynchoteuthion stages of Ommastrephidae,
O. banksii and Selenoteuthis scintillans. The cephalopod
fauna of the southern Sargasso Sea differed from that of
the northern area by relatively higher abundances of
S. scintillans and ommastrephid species as well as by low
numbers of cranchiid species, especially L. lemur.

Taxa which exclusively occurred north of the sub-
tropical convergence, though mostly in low abundances,
were Ancistrocheirus lesueuri, Chtenopteryx sicula, Bra-
chioteuthis sp., Chiroteuthis sp., Helicocranchia papillata,
Taonius pavo and Argonauta argo.
The calculation of different dominance and diversity

indices for the pooled species densities north and south of
the front reflected the observed differences between the
two areas (Table 3). A total of 18 different species, com-
pared to 10 in the southern part of the Sargasso Sea, were
identified in the north (Ommastrephidae were not in-
cluded at the species level), and the density of early life
stages of cephalopods was more than three-times higher.
The Magalef index (D) and Shannon’s diversity index
(H¢) showed higher values for the northern part of the
Sargasso Sea, whereas Pielou’s evenness index (J) was
slightly smaller. This was due to the dominance of just one
species, L. lemur, in the northern area and the relatively
even distribution of species abundances in the south.

Table 1. Early life stages of cephalopods collected during the R.V. ‘‘Poseidon’’ cruise 200/1, March 1993. Numbers of higher taxa only
include specimens that could not be further identified (Nabs total catch in numbers; Rel. N percentage of total catch according to gear type;
N/1000 m3 mean species density, only Bongo net)

Order,
family

Species Bongo net IKMT 6

Nabs Rel. N (%) N/1000 m3 Nabs Rel. N (%)

Order Teuthida
Sub-O. Oegopsina Oegopsina indet. 50 9.36 0.29 52 13.87
Family
Ancistrocheiridae

Ancistrocheirus lesueurii 4 0.75 0.02 5 1.33

Family
Brachioteuthidae

Brachioteuthis sp. 8 1.50 0.05 2 0.53

Family
Chiroteuthidae

Chiroteuthis sp. 8 1.50 0.05 3 0.80

Family
Chtenopterygidae

Chtenopteryx sicula 3 0.56 0.02 5 1.33

Family Cranchiidae Cranchiidae indet. 3 0.56 0.02
Cranchiinae Leachia lemur 126 23.60 0.72 6 1.60
Taoninae Taoninae indet. 5 1.33

Helicocranchia papillata 24 4.49 0.06 15 4.00
Helicocranchia sp. 10 1.87 0.14 2 0.53
Taonius pavo 3 0.56 0.02 1 0.27
Megalocranchia sp. 38 7.12 0.22 8 2.13

Family
Enoploteuthidae

Enoploteuthidae indet. 27 5.06 0.15 51 13.60
Enoploteuthis leptura leptura 3 0.56 0.02
Abraliopsis pfefferi 67 12.55 0.38 30 8.00

Family
Lycoteuthidae

Selenoteuthis scintillans 36 6.74 0.21 19 5.07

Family
Ommastrephidae

Ommastrephidae indet. 13 2.43 0.07 25 6.67

Ommastrephinae Ommastrephes bartramii 7 1.31 0.04 16 4.27
Hyaloteuthis pelagica 6 1.12 0.03 18 4.80

Family
Onychoteuthidae

Onychoteuthis banksii 45 8.43 0.26 70 18.67
Onykia cariiboea 3 0.56 0.02 11 2.93

Family
Pyroteuthidae

Pyroteuthidae indet. 4 0.75 0.02 7 1.87
Pyroteuthis margaritifera 29 5.43 0.17 18 4.80
Pterygioteuthis giardi giardi 8 1.50 0.05 1 0.27

Family
Thysanoteuthidae

Thysanoteuthis rhombus 2 0.53

Order Octopoda
Family
Argonautidae

Argonauta argo 6 1.12 0.03

Family
Tremoctopodidae

Tremoctopus
violaceus violaceus

3 0.56 0.02 3 0.80

Sum 534 375
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Discussion

Sampling methods

The collection of early life stages of cephalopods with
zooplankton nets has advantages and limitations. Ad-
vantages are the considerably lower avoidance effects of
young and small planktonic cephalopods in comparison
to their rapidly swimming adults (Piatkowski et al. 1993;
Piatkowski 1998). The sampling devices used in this
study, Bongo net and IKMT6, are supposed to sample

small paralarvae, even of the muscular type, effectively
(Roper 1977; Rodhouse et al. 1992). Limitations are
caused by the seasonal occurrence of early life stages of
those species, which do not spawn year round, making
them susceptible to plankton sampling only shortly after
spawning events. Furthermore, spawning areas are not
always identical with the distributional range of the
adults. Hence, the distribution patterns of the early life
stages do not necessarily reflect those of the adults.

Cephalopod families and major species:
Bongo and IKMT6 catches

In this study cephalopod fauna was investigated for the
first time in an extensive area of the Sargasso Sea.
Mesopelagic cephalopods such as the Cranchiidae and
Enoploteuthidae dominated the catches, because most
of their hatchlings occur in near-surface waters before
they exhibit a marked ontogenetic descent to develop
into the juvenile and adult stages (Roper and Young
1975; Young 1978). In general, a typical oceanic ceph-
alopod community was present. The species composition
was similar to other collections of pelagic cephalopods
in the subtropical western North Atlantic (Voss 1960;
Gibbs and Roper 1970; Lu and Roper 1979; Lea 1984;
Dawe and Stephen 1988), but was depauperate of shelf-
associated species such as Myopsida and some Om-
mastrephidae (e.g. Illex illecebrosus) as well as early life
stages of benthic Octopoda. The same families, Cran-
chiidae and Enoploteuthidae, dominated in our study
and in earlier collections of a one-degree-square area
south-east of Bermuda (Gibbs and Roper 1970). A
comparison of the species composition between our
study and the former study, which mainly collected ju-
venile to adult specimens, indicated that most of the
cephalopod species seem to spawn in early spring or year
round, respectively. For most oceanic cephalopods only
scattered information about spawning periods exists.
For instance. the peak spawning time of Abraliopsis
pfefferi, investigated at Deepwater Dumpsite 106 (Lu

Fig. 3. R.V. ‘‘Poseidon’’ cruise 200/1, March 1993. Densities of
cephalopod early life stages at each Bongo station (N/1000 m3).
The horizontal line indicates the position of the thermal front

Fig. 4. Classification of the 27 Bongo stations according to
cephalopod assemblages. Hatching indicates samples north of the
thermal front

Fig. 5. Ordination of the 27 Bongo stations according to cepha-
lopod assemblages. The dotted line separates samples north of the
thermal front from samples south of it
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and Roper 1979), was estimated to take place primarily
in summer, though spawning females occurred already
in spring. In the present collection early life stages of
A. pfefferi represented the second most-abundant spe-
cies. Therefore, spawning was likely to have started
already in the early months of the year. From records of
Megalocranchia megalops collected during their study,
Lu and Roper (1979) concluded that this species spawns
from winter to early spring. This agrees with the
occurrence of recently hatched specimens in our study.

Distribution of cephalopods in relation
to the thermal front

In the eastern North Atlantic Lu and Clarke (1975)
observed an increase of cephalopod abundances and
species number from north to south, from temperate to
subtropical and tropical regions. This also seems to be
true for the western North Atlantic. Dawe and Stephen
(1988) considered the north wall of the Gulf Stream to
be a boundary that restricts the distribution of tropical–
subtropical cephalopod species to higher latitudes. Our
sampling in the relatively small area of the Sargasso Sea
south of the Gulf Stream core revealed reverse rela-
tionships: abundances and species diversity were signif-
icantly higher in the northern part of the investigated
area. This pattern has also been demonstrated for small
invertebrate zooplankton (Böttger 1982), epipelagic
copepods (Colton et al. 1975) and mesopelagic fishes

(Backus et al. 1969). These studies related the differences
to the position of the STCZ, characterised by a distinct
thermal front.
In March 1993 the front was located at a latitude of

approximately 27�20¢N. This lies within the region of
pronounced frontogenesis, which has been described in
the latitude range of 22–32�N (Voorhis and Hersey
1964) or, in more recent studies, between 26�N and 32�N
(Halliwell et al. 1991a,b, 1994). The front forms in the
upper 200 m, where the colder water of the northern
Sargasso Sea converges with the warmer mixed layer of
the southern Sargasso Sea (Wegner 1982; Halliwell et al.
1991b). It is usually detectable by a temperature gradient
of 1�C within a distance of 10 km (Voorhis and Hersey
1964). The most obvious feature during our cruise was
the strong stratification of the water mass south of the
STCZ, which limited the mixing of the surface layer. In
the same season as our investigation, Ryther and Menzel
(1960) measured distinct differences in primary produc-
tion near Bermuda. South of 30�N they detected a rapid
decline in productivity to approximately 10% of that
found at stations at the northern end of their transect
(35�N). This strong gradient of primary production,
coinciding with the position of the front, is likely to have
an influence on the distribution of zooplankton, as
proposed by Backus et al. (1969). Cold core rings, sep-
arated from the Gulf Stream and enclosing cold and
nutrient-rich slope water, possibly enhance this effect
(Ortner et al. 1978). Niermann (1986) observed a
decreasing abundance of species and individuals of
Sargassum natans epibionts in the southern part of the
Sargasso Sea. He attributed this decrease to lower pri-
mary production and, thus, a lack of suitable food in
this region. In the waters north of the thermal front,
Böttger (1982) measured a two- to three-times higher
microzooplankton biomass than in the stratified waters
south of it. This small size fraction of zooplankton is an
important food resource for fish larvae (Arthur 1977)
and likely sustains higher abundances of early life stages
of cephalopods, supporting the remarkable increase in
the cephalopod densities north of 29�N. Previous studies

Table 2. SIMPER analysis: discriminating species between the northern and the southern areas of the Sargasso Sea. Species are ordered
according to decreasing contribution (%) to the total dissimilarity, up to 90% cumulative contribution

Species Average abundance Contribution (%) Cumulative
contribution (%)

Southern Sargasso Sea Northern Sargasso Sea

Leachia lemur 0.04 1.14 17.86 17.86
Selenoteuthis scintillans 0.31 0.12 8.96 26.82
Helicocranchia sp. 0 0.36 8.24 35.05
Ommastrephidae 0.22 0.09 7.9 42.95
Onychoteuthis banksii 0.21 0.29 7.64 50.59
Pyroteuthis margaritifera 0.05 0.32 7.17 57.76
Megalocranchia sp. 0.08 0.29 7.03 64.79
Abraliopsis pfefferi 0.25 0.49 5.99 70.78
Brachioteuthis sp. 0 0.08 5.63 76.41
Pterygioteuthis giardi 0.03 0.06 4.03 80.43
Chiroteuthis sp. 0 0.07 3.08 83.51
Ancistrocheirus lesueuri 0 0.04 2.98 86.49
Argonauta argo 0 0.06 2.94 89.43

Table 3. Univariate indices of the northern and the southern
Sargasso Sea regions. Rhynchoteuthion stages of the family Om-
mastrephidae were not included on the species level

Southern
Sargasso Sea

Northern
Sargasso Sea

No. of species 10 18
Density (N/1000 m3) 14.832 53.614
Magalef’s species richness (D) 3.337 4.269
Pielou’s evenness (J) 0.832 0.781
Shannon’s diversity [H¢(log e)] 1.917 2.257
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have also noted north–south differences in the biota of
the Sargasso Sea (Backus et al. 1969; Colton et al. 1975;
Böttger 1982), with species diversity being higher in the
northern area. This was also observed for the early life
stages of cephalopods. Seven species/genera were ex-
clusively found in the north. Furthermore, different
species dominated the cephalopod assemblages. In the
north the cranchiid Leachia lemur was by far the pre-
vailing species. According to Voss et al. (1992) it is re-
stricted to the North Atlantic Subtropical Region west
of about 50�W and seems to be endemic to the northern
and southern Sargasso Sea. The high abundance and the
centre of distribution of L. lemur north of the STCZ is
probably attributable to the putative higher productivity
in that area. Although the genus Leachia is generally
confined to low-productive subtropical waters, increased
abundances of cranchiids always appear to be related to
areas of intensified productivity (Voss 1988).
In comparison, Selenoteuthis scintillans, which be-

sides L. lemur is mainly responsible for the north–south
differences in species composition (SIMPER), was rela-
tively scarce in the northern area. Its geographical dis-
tribution in the western North Atlantic extends from
approximately 8–41�N (Voss and Stephen 1992), com-
pletely covering the investigated part of the Sargasso
Sea. The conspicuous low abundances of S. scintillans
found north of the STCZ correspond to the densities
estimated by Lu and Roper (1979). Their results and our
study indicate that the northern Sargasso Sea represents
the northern boundary of distribution for this species.
Supported by the observation that the occurrence of
S. scintillans north of the Gulf Stream is restricted to
warm core eddies (Voss and Stephen 1992), temperature
seems to be the limiting factor.
In conclusion, the distribution patterns of early life

stages of cephalopods confirm that the thermal front
represents a distinct boundary, both in species compo-
sition and in abundance, with a considerable decrease
from north to south (Backus et al. 1969; Colton et al.
1975; Böttger 1982; Lea 1984). The latitudinal decrease
is not gradual, but pronounced at the front. Whether
this is also true for adult cephalopods is still in question.
As juvenile and adult squids are highly mobile and
mesopelagic species inhabit completely different parts of
the water column compared to their hatchlings, possible
north–south differences are more difficult to detect. In
order to understand the influence of the hydrography on
the distribution patterns of oceanic cephalopods, it is
necessary to achieve a better picture of the overall dis-
tribution of cephalopods in the western North Atlantic
and to improve the knowledge about their biology, i.e.
spawning periods, sites and feeding habits.
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gleich eine monographische Übersicht der Oegopsiden Cepha-
lopoden. In: Hensen VAC (ed) Ergebnisse der Plankton
Expedition der Humboldtstiftung 2F(a). Lipsius and Tischler,
Kiel, pp 1–815

Piatkowski U (1998) Modern target sampling techniques provide
new insights into the biology of early life stages of pelagic
cephalopods. Biol Mar Medit 5:260–272
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