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Abstract 

 

Perfect model ensemble experiments are performed with five coupled atmosphere-

ocean models to investigate the potential for initial-value climate forecasts on 

interannual to decadal time scales. Experiments are started from similar initial states 

and common diagnostics of predictability are used. We find that; variations in the 

ocean Meridional Overturning Circulation are potentially predictable on interannual 

to decadal time scales, a more consistent picture of the surface temperature impact of 

decadal variations in the MOC is now apparent, and variations of surface air 

temperatures in the N. Atlantic are also potentially predictable on interannual to 

decadal time scales, albeit with potential skill levels which are less than those seen for 

MOC variations. This inter-comparison represents a step forward in assessing the 

robustness of model estimates of potential skill and is a pre-requisite for the 

development of any operational forecasting system. 

 

Introduction 

 

Predictions of the future state of the climate system are of potential benefit to society. 

The ability to predict (here we consider the potential ability to predict) can also give 
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insight into the physical aspects of the climate system which are not simply the 

averaged or integrated effects of chaotic, unpredictable weather “noise”. Restricting 

attention to variations in climate which are purely internally generated, predictability 

in the system hints at processes which have long time scales or which possibly have 

periodic behaviour. Quantifying the predictability associated with such processes can 

lead to a greater understanding of the climate system. 

 

Operational predictions of climate on seasonal to interannual time scales associated 

with the El Nino Southern Oscillation (ENSO) are now commonplace (e.g. Goddard 

et al., 2001). Prediction systems for other seasonal-interannual “modes” of climate are 

also emerging (e.g. Rodwell and Folland, 2004). Here we consider the predictability 

of interannual to decadal variations in climate. On these time scales, both the initial 

conditions (principally the initial state of the ocean) and the boundary conditions 

(associated with both natural and anthropogenic forcing of the system) are important 

(Collins and Allen 2002; Collins 2002) but here we focus solely on the initial value 

problem of the predictability of internally generated interannual to decadal climate 

variability. 

 

The Atlantic Meridional Overturning Circulation (MOC) is the main northward heat 

carrying component of the ocean part of the climate system (e.g. Trenberth and Caron 

2001). Coupled atmosphere-ocean models (AOGCMs) exhibit internally generated 

variations the strength of the MOC and associated heat transport (e.g. Dong and 

Sutton 2001) and the surface climate impact of those variations have also been seen in 

historical (Latif et al. 2004) and palaeo-climate records (Delworth and Mann 2000). 

Shorter records of ocean observations (Dickson et al., 1996; Curry et al., 2003; Marsh, 

2000), also exhibit variations which have been linked with the MOC. Variations in the 

MOC thus represent an ideal candidate for the study of interannual to decadal climate 

predictability. 

 

Predictability studies with AOGCMs in which ensembles of simulations with small 

perturbations to the initial conditions are performed have revealed the potential 

predictability in these MOC variations and in related surface and atmosphere 

variables (Griffies and Bryan 1997; Grotzner et al., 1999; Boer, 2000; Collins and 

Sinha 2003; Pohlmann et al., 2004). While all studies show some level of potential 



predictability, it is difficult to form robust conclusions because of the range of 

complexity (and hence realism) of the different models used, because of the range of 

different initial states considered and because of subtle differences in the measures of 

predictability employed. For example, it is well known in weather forecasting that 

predictive skill can vary considerably with different initial conditions. Clearly it is 

important to quantify the potential skill-level of interannual-decadal climate forecasts 

prior to the expensive development of operational prediction schemes and the 

deployment of operational observing systems. 

 

Here we present a step-forward in making a robust estimate of the potential predictive 

skill of interannual to decadal climate predictions associated with internally generated 

variations in the MOC. A coordinated set of potential predictability experiments have 

been performed with five recently developed complex AOGCMs. An attempt is made 

to initiate the experiments from similar ocean states and a common set of measures of 

potential skill are used. This “multi-model” approach has proved useful in other areas 

of weather and climate prediction. Here the emphasis is on a comparison of the levels 

of potential predictability seen in the different models. Other publications discuss the 

individual model results (e.g. Collins and Sinha, 2003; Pohlmann et al., 2004; 

Pohlmann et al. 2004) in more detail. 

 

The Ensemble Experiments 

 

Five coupled atmosphere-ocean models are used (see table 1): 

 

The ARPEGE3-ORCALIM has an atmosphere component (Déqué et al., 1994) with a 

horizontal resolution of T63 with 31 levels in the vertical (20 in the troposphere). The 

ocean component, ORCA2, is the global configuration of the OPA8 Ocean model 

(Madec et al., 1998) with a horizontal resolution of 2° in longitude and 0.5° to 2° in 

latitude. It includes a dynamic-thermodynamic sea-ice model (Fichefet and Morales 

Maqueda 1997). The components are coupled through OASIS 2.5 (Valcke et al., 

2000), which ensures the time synchronization and performs spatial interpolation 

from one grid to another.  

 



The Bergen Climate Model (BCM) (Furevik et al., 2003, Bentsen et al., 2004) uses 

the Miami Isopycnic Coordinate Ocean Model (Bleck et al.1992) coupled to a 

dynamic-thermodynamic sea ice module. The ocean mesh is formulated on a 

Mercator projection with a nominal resolution of 2.4 degrees, and 24 vertical layers. 

The atmospheric component is version three of the ARPEGE model with a horizontal 

resolution of T63 and 31 layers in the vertical – essentially the same atmosphere that 

is used in ARPEGE3-ORCALIM. Fresh water and heat flux adjustments are applied. 

 

ECHAM5/MPI-OM (Latif et al. 2004) uses version 5 of the European Centre-

Hamburg atmosphere model (ECHAM5, Roeckner et al. 2004) at T42 resolution with 

19 vertical layers. The oceanic component, the Max Planck Institute Ocean Model 

(MPI-OM, Marsland et al. 2003) is run on a curvilinear grid with equatorial 

refinement and 23 vertical levels. A dynamic-thermodynamic sea ice model and a 

river runoff scheme are included. 

 

Version 3 of the Hadley Centre Climate Model (HadCM3 – Gordon et al., 2000; 

Collins et al., 2001) uses an ocean component with a horizontal resolution of 1.25º 

longitude by 1.25º latitude and 20 levels in the vertical. The atmospheric component 

uses a grid-point formulation with a horizontal resolution of 3.75ºx2.5º in longitude 

and latitude with 19 unequally spaced vertical levels (Pope et al., 2000). A simple 

thermodynamic sea-ice scheme is used. 

 

The INGV model uses the ECHAM4 model (Roeckner, 1996) at T42 resolution with 

19 vertical levels. The ocean component is essentially the same as that used in the 

ARPEGE3-ORCALIM model. More details can be found in Gualdi (2003).  

 

Ensemble experiments are performed from initial states of anomalously high and 

anomalously low MOC taken from a control (i.e. unforced) run of each model (figure 

1). In addition, some models were used to perform experiments with initial states near 

the time-mean value of overturning. Perturbations to the initial conditions were made 

using the common method of taking different atmospheric start conditions with the 

same ocean start condition (the “perfect model” approach e.g. Collins and Sinha 

2003). While this perturbation methodology is in no way optimal in terms of, for 



example, sampling the likely range of atmosphere-ocean analysis error, it is sufficient 

to generate ensemble spread on the time scales of interest. 

 

The availability of computer resources limited the number of ensemble members and 

experiments that could be performed: nevertheless all experiments were integrated out 

to at least 20 years. The experiments correspond to a total 1340 simulated years for 

the predictability experiments combined with a total of 3100 simulated years for the 

control experiments used to assess background variability. Annual mean diagnostics 

are examined because of the focus on interannual to decadal time scales. 

 

Potential Predictability of MOC variations 

 

The first point to note is the wide range of time scales and magnitudes of MOC 

variability in the different models (figure 2). The ECHAM5/MPI-OM model shows 

the largest variations in MOC strength with clear interdecadal variability present. 

HadCM3 and BCM also show interdecadal variations but at a reduced level in 

comparison. The ARPEGE3-ORCALIM model has the lowest level of variability but 

decadal-interdecadal time scales are still clearly present in the time series. The large 

trend seen in the INGV model is almost certainly due to a drift seen in this particular 

control experiment - the model has yet to reach equilibrium and we do not attempt to 

extract quantitative measures of predictability. Although not calculated, diagnostic 

measures of predictability/variability (e.g. Boer, 2000) would clearly show a range of 

different levels of MOC potential predictability in these models. However, the only 

reliable way to assess predictability is to perform ensemble experiments. 

 

The perfect model ensemble experiments are also shown in figure 2. Potential 

predictability is evident when the ensemble spread is small in comparison with the 

total level of variability in the control time series, or even if the ensemble spread is 

relatively large but the centre of gravity of the ensemble is displaced significantly 

with respect mean of the control (e.g. Collins, 2001). We may imagine a background 

or climatological distribution which, in the absence of a forecast, would be all the 

information we would have to form an assessment of the future strength of the MOC. 

A forecasts may allow us to reduce the potential range (low ensemble spread) or shift 

the mean of the distribution (displaced ensemble), or both. Both types of (potential) 



predictability are seen on interannual to decadal time scales in the experiments shown 

in figure 2. For example, the first HadCM3 ensemble (anomalously strong MOC 

initial conditions) has relatively small ensemble spread in the first decade of the 

experiment and the ensemble is significantly shifted to stronger values with respect to 

the mean with no ensemble members indicating weaker than average overturning (see 

Collins and Sinha (2001) for more details). Other examples are clear. 

 

There are a wide range of measures which may be used for forecast verification (here 

we measure the potential skill of a perfect model forecast – an upper limit). We 

examine two of the most-simple measures of forecast skill to quantify levels of 

potential predictability; the anomaly correlation (ACC) and normalised root mean 

squared error (RMSE). Formulas are given in Collins (2001) for the perfect model 

case. 

 

Figure 3 shows both measures for the MOC in the ensemble experiments discussed 

above. For the strong MOC initial states, the ACC is “high” for approximately the 

first decade in all the model experiments, with “high” being above 0.6 – a commonly 

used cut-off value in weather forecasting. The RMSE is correspondingly low. After 

the first decade, the ARPEGE3 model predictability drops off rapidly whereas for the 

other models the ACC drops off slowly to low values by the end of the 20 year 

experiments.  The RMSE similarly saturates in 20 years. For the weak MOC initial 

states, error growth and loss of predictability seems to happen sooner in the ensemble 

experiments, although there is some noise in these measures because of small 

ensemble sizes. ACC and RMSE are not shown for the normal initial states because of 

the small sample size. 

 

While the number of ensemble experiments is small, we may attempt to draw some 

conclusions about the multi-model estimate of potential predictability of MOC 

variability in these experiments (figure 3 – thick solid line). The multi-model 

ensemble indicates potential predictability of interannual-decadal MOC variations for 

1-2 decades into the future. It also indicates that initial states which have anomalously 

strong overturning are more predictable than those with anomalously weak 

overturning. This latter result is intriguing, but is subject to some uncertainty because 

of the relative small number of models and ensemble experiments included in the 



multi-model analysis. Nevertheless, some consensus is emerging in contrast to the 

previous situation in which a large range of predictability is seen in the literature. It 

would be safe to conclude that there is a robust signal of potential predictability of 

variations in the MOC on interannual to decadal time scales. 

 

Potential Predictability of Surface Climate Variations 

 

Predictions of MOC variability may be of interest to scientists, but they would be of 

little relevance to society unless they are accompanied by predictions of surface 

climate variables. A simple measure of the impact of MOC variations can be obtained 

be performing a regression between decadal-averaged MOC strength and decadal-

averaged surface air temperature (SAT) in the different models (figure 4). The general 

impression in all the models is of a warmer Northern Hemisphere when the MOC is 

stronger and is transporting more heat polewards. Differing levels of statistical 

significance seen in figure 4 may be interpreted as resulting from different levels of 

signal to noise in the sense that in models with larger variations in MOC, the surface 

signal has a better chance of overwhelming the noise of unrelated random climate 

variations. What is interesting is that the magnitude of the surface response (in K/Sv) 

is similar across all models. 

 

The North Atlantic ocean is a region in all the models in which there is a significant 

relationship between decadal variations in SAT (and underlying SST) and the MOC. 

Time series of annual mean SAT from the control and ensemble experiments 

averaged over a region of the North Atlantic (used in Collins and Sinha (2001) and 

Pohlmann et al. (2004)) are shown in figure 5. Strong similarities between these time 

series and those shown in figure 2 for the MOC are evident, although there is clearly 

more noise in this variable as a result of unrelated random variability. 

 

ACC and RMSE measures of ensemble spread (figure 6) for N. Atlantic SAT are 

similar to those computed for MOC variations (figure 3) but the levels of potential 

predictability are clearly less and the differences between ensemble members greater. 

It may be possible to find greater levels of potential predictability for each individual 

model by adjusting the boundaries of the region chosen but here we compare the 

models on an equal footing. Also, the effects of interannual noise which are more 



prominent in this variable may be reduced by taking averages over a greater number 

of years. Nevertheless, the picture of potentially predictable surface climate variations 

associated with variations in the MOC appears consistent. 

 

Discussion 

 

Whereas previously it has been difficult to assess the potential for making interannual 

to decadal forecasts of climate due to different studies indicating different levels of 

predictability, a more complete picture of the predictability is emerging. This 

intercomparison study shows that; 

 

1. variations in the ocean Meridional Overturning Circulation are potentially 

predictable on interannual to decadal time scales, 

2. a more consistent picture of the surface temperature impact of decadal 

variations in the MOC is now apparent, and 

3. variations of surface air temperatures in the N. Atlantic are also potentially 

predictable on interannual to decadal time scales, albeit with potential skill 

levels which are less than those seen for MOC variations. 

 

Perhaps the biggest difference between the models is in the wide range of strengths of 

decadal variability evident in figure 2. In general, models with greater decadal MOC 

variability have greater levels of potential predictability – despite the fact that the 

ACC and RMSE are signal-to-noise measures and thus allow for a differences in 

background natural variability. Investigation into the mechanisms responsible for the 

different levels of variability would seem a priority. 

 

The far more pertinent question is, of course, that of the (potential) prediction of 

surface climate variations over land. The simple measures used in this study do not 

reveal robustly predictable land signals. Collins and Sinha (2001) and Pohlmann et al. 

(2004) investigate probabilistic techniques more commonly used in medium-range 

and seasonal forecasting in the context of the interannual-decadal problem with some 

limited success. However, the application and verification of such measures (here the 

assessment of potential skill) requires much larger ensemble sizes and many more 

ensemble simulations than used here. Hopefully such ensembles will be performed in 



future. In addition, the number of modelling, initialisation and observational issues 

that need to be addressed before we routinely produce interannual-decadal climate 

forecasts are numerous. 
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Figures and Tables 

 

Model Number of 

ensemble 

experiments 

Number of 

ensemble 

members in 

each 

experiment 

Length of 

ensemble 

experiments 

(years) 

Length of 

control run 

(years) 

ARPEGE3-ORCALIM 2 6(+1) 25 200 

BCM 2 3(+1) 20 300 

ECHAM5/MPI-OM 3 6(+1) 20 500 

HadCM3 3 8(+1) 20 2000 

INGV 2 2(+1) 20 100 

Table 1: A summary of the AOGCMs used in the perfect model potential 

predictability experiments. The numbers in column 3 of the form 6(+1) indicate that 6 

ensemble members were performed from a state taken from the control run but that 

the section of the control run  may also be viewed as an additional ensemble member. 



 

 
Figure 1: A schematic figure of the experimental design used in this study. The thick 

black line represents decadal-time scale internally generated variations in the strength 

of the Meridional Overturning Circulation (MOC) from a control run of a coupled 

atmosphere-ocean model. The grey lines represent “perfect model” ensemble 

experiments in which small perturbations to the initial conditions are made. For each 

of the models used in the study, we endeavoured to initiate the ensemble experiments 

from a state of relatively strong and relatively weak overturning. In addition, some 

models we use to initiate experiments from a state of relatively normal overturning. 



 
Figure 2: Time series of the strength of the MOC taken from the unforced control runs 

of five coupled atmosphere-ocean models (black lines - names indicate on the figure) 

and from the perfect model ensemble experiments (grey lines). MOC variations arise 

purely because of the internal dynamics of the coupled system and model years are 

arbitrary. The drift seen in the INGV model is a spin-up effect and the experiments 

are excluded from any quantitative analysis. 



 
Figure 3: Measures of the potential predictability of variations in the strength of the 

MOC from four of the five coupled models (see legend). The left panels show the 

anomaly correlation coefficient (ACC - unity for perfect potential predictability, zero 

for no potential predictability) for strong MOC initial conditions (top panel), weak 

MOC initial conditions (middle panel) and normal MOC initial conditions (bottom 

panel). The right panels show the normalised root mean squared error (RMSE - zero 

for perfect potential predictability, unity for no potential predictability) in the same 

order. Also shown in the figures are the multi-model average ACC and RMSE (thick 

black line). 



 
 

Figure 4: The coefficient of regression (degrees K per Sverdrup) of decadal mean 

surface air temperature against decadal mean MOC strength from four of the five 

coupled atmosphere-ocean models. Regions are shaded only where the coefficient is 

significantly different from zero at the 5% confidence level (based on an F-test). 



 
Figure 5: As in figure 2 but for surface air temperature averaged in the region 50ºW-

10ºW, 40ºN-60ºN. 



 
Figure 6: As in figure 3 but for surface air temperature averaged in the region 50ºW-

10ºW, 40ºN-60ºN. 

 


