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Abstract

The eastern equatorial Atlantic, with its characteristic cold tongue during boreal sum-

mer, is a region where upper ocean variability is reflected in the most obvious way through

sea surface temperature (SST) anomalies. This region is of high interest for a better under-

standing of climate fluctuations in the tropical Atlantic sector because its SST variability

is significantly correlated with rainfall variability over the tropical ocean and adjacent

land regions. The heat budget in the eastern equatorial Atlantic is largely determined by

non-local exchanges, and this study focuses on the role of horizontal advection via zonal

currents as well as equatorial waves for SST variability.

The Equatorial Undercurrent (EUC) is studied using a simulation for the period 1990−2002

with a high-resolution ocean general circulation model of the Atlantic Ocean. Simulated

transports of the EUC (19.2 Sv across 35◦W and 13.7 Sv across 23◦W) which supplies the

annual mean upwelling in the central and eastern equatorial Atlantic agree well with new

transport estimates derived from shipboard observations. Although the observations are

not conclusive concerning the seasonal cycle of EUC transports, the simulated seasonal

cycles fit largely in the observed range. The analysis of the EUC variability associated

with interannual boreal summer variability of the equatorial cold tongue indicates that

the supply of cold thermocline waters by the EUC weakens (increases) during warm (cold)

events. Additionally, the cold tongue region is found to be affected by equatorial waves.

Moored observations as 20◦C-isotherm depth anomalies and dynamic height anomalies at

the equator, 35◦W and 23◦W also indicate the presence of equatorial Kelvin waves during

both a warm event in 2002 and a cold event in 2005, with relaxed (intensified) winds in the

west and the EUC embedded in a shallower (deeper) thermocline at 23◦W during boreal

summer 2002 (2005). Basinwide satellite sea surface height anomalies are used to derive

an equatorial Kelvin wave mode. The time evolution of this mode represents the basis for

a regression analysis to investigate related oceanic variability with respect to differences in

upper equatorial Atlantic variability during 2002 and 2005: Compared to the exception-

ally strong wave activity in 2002, equatorial Kelvin waves were generally weaker during

2005. The main effect of equatorial Kelvin waves on zonal velocity anomalies at 23◦W, 0◦

is evident well below the EUC core, with a secondary maximum near the surface. Their

direct influence on cold tongue SST is small, but they are found to affect the equatorial

thermocline slope. Prior to the cold tongue onset in 2002 (2005), the presence of equato-

rial Kelvin waves results in a flat (inclined) thermocline that is crucial for the shallowing

(deepening) of the EUC core at 23◦W during boreal summer 2002 (2005) and that might

precondition the development of the warm (cold) event.

The present study shows that knowledge about the input from the west and thus about

the preconditioning of the upper layer stratification in the eastern equatorial Atlantic by

equatorial waves as well as horizontal advection via the zonal currents may be of prime

importance for the prediction of Atlantic extreme events.





Zusammenfassung

Der äquatoriale Ostatlantik mit seiner charakteristischen Kaltwasserzunge im Nordsom-

mer ist eine Region, in der sich die Variabilität des oberflächennahen Ozeans am deut-

lichsten in der Variabilität der Meeresoberflächentemperatur (SST) widerspiegelt. Diese

Region ist von großer Bedeutung für ein besseres Verständnis von Klimaschwankungen im

atlantischen Raum, da Niederschlagsschwankungen in den Tropen und insbesondere auch

über Land eng mit SST-Schwankungen im äquatorialen Ostatlantik verbunden sind. Die

Wärmebilanz im äquatorialen Ostatlantik wird auch durch nichtlokale Prozesse bestimmt,

und diese Studie konzentriert sich auf die Rolle der Wasserzufuhr zum äquatorialen Auftrieb

über Zonalströmungen sowie der äquatorialen Wellen für SST-Schwankungen.

Der Äquatoriale Unterstrom (EUC) wird anhand einer Simulation für den Zeitraum 1990−
2002 mit einem hochauflösenden Ozeanmodell des Atlantiks untersucht. Im Jahresmit-

tel ist der EUC die wichtigste Quelle zur Versorgung des Auftriebs im zentralen und

östlichen äquatorialen Atlantik. Simulierte EUC-Transporte von 19.2 Sv über 35◦W sowie

13.7 Sv über 23◦W stimmen gut mit neuen Transportabschätzungen aus Schiffsmessun-

gen überein. Obwohl die Beobachtungen keine eindeutige Aussage über den Jahresgang

der EUC-Transporte zulassen, fügen sich die simulierten Jahresgänge weitestgehend in

den beobachteten Schwankungsbereich ein. Die Analyse von EUC-Schwankungen verbun-

den mit der interannualen Variabilität der äquatorialen Kaltwasserzunge im Nordsommer

zeigt, dass sich der Transport von kaltem Thermoklinenwasser durch den EUC während

eines Warmereignisses (Kaltereignisses) abschwächt (verstärkt). Darüberhinaus findet sich

auch ein Einfluss von äquatorialen Wellen auf die Region der Kaltwasserzunge.

Anomalien der 20◦C-Isothermentiefe sowie der dynamischen Höhe aus verankerten Instru-

menten am Äquator bei 35◦W und 23◦W lassen sowohl während eines Warmereignisses im

Jahr 2002 als auch während eines Kaltereignisses im Jahr 2005 auf äquatoriale Kelvinwellen

schließen. Im Nordsommer 2002 (2005) zeigt sich dabei eine Abschwächung (Verstärkung)

der Winde über dem Westatlantik und der EUC ist in eine flachere (tiefere) Thermokline

bei 23◦W eingebettet. Beckenweite Anomalien der Meeresoberflächenhöhe aus Satelliten-

messungen werden zur Bestimmung eines äquatorialen Kelvinwellen Modus verwendet. Die

zeitliche Entwicklung dieses Modus stellt die Basis für eine Regressionsanalyse dar, um die

mit dem Modus verbundene ozeanische Variabilität im Hinblick auf Unterschiede in der

Variabilität des oberflächennahen äquatorialen Atlantiks während der Jahre 2002 und 2005

zu untersuchen: Während 2002 eine außergewöhnlich starke Wellenaktivität zu beobachten

ist, waren die äquatorialen Kelvinwellen 2005 vergleichsweise schwach. Der größte Effekt

äquatorialer Kelvinwellen auf Anomalien der Zonalgeschwindigkeit bei 23◦W, 0◦ findet sich

deutlich unterhalb des EUC-Kerns, mit einem zweiten Maximum nahe der Oberfläche.

Die direkten Auswirkungen dieser Wellen auf die SST in der Kaltwasserzunge sind klein,

aber es wurde ein Einfluss auf die äquatoriale Thermoklinenneigung festgestellt. Die

Präsenz äquatorialer Kelvinwellen führt zu einer flachen (geneigten) Thermokline vor dem



Einsetzen der Kaltwasserzunge im Jahr 2002 (2005), die entscheidend ist für die Verflachung

(Vertiefung) des EUC-Kerns im Nordsommer 2002 (2005) und die die Entwicklung des

Warmereignisses (Kaltereignisses) begünstigt haben könnte.

Diese Studie zeigt, dass Kenntnisse über den Eintrag aus dem Westbecken und damit

über eine Präkonditionierung der oberflächennahen Schichtung im äquatorialen Ostatlantik

durch äquatoriale Wellen und Advektion über die Zonalströmungen von großer Bedeutung

für eine Vorhersage von atlantischen Extremereignissen sein können.
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1. Introduction

Figure 1.1: The dominant pattern of surface ocean-atmosphere variability in the tropical Atlantic
region during (left) boreal spring and (right) boreal summer. The black contours
depict the first empirical orthogonal function (EOF) of the regional March - April and
June - August rainfall anomaly (from Global Precipitation Climatology Project data
1979 − 2001) [mm/day]. The EOFs explain 33% and 23% of the seasonal variance
in boreal spring and summer, respectively. The colored field is the March - April
and June - August SST anomaly [◦C, white contours every 0.2◦C] regressed on the
principal component time series of the rainfall EOF. Arrows depict the seasonal mean
surface wind vector [m/s], regressed on the same time series (see arrow scale below
frame). [Kushnir et al., 2006]

The ocean is of major importance for tropical Atlantic variability mainly through the in-

fluence of tropical Atlantic sea surface temperature (SST) on variations of the Atlantic

marine Intertropical Convergence Zone (ITCZ) complex. Climate fluctuations in the trop-

ical Atlantic sector are dominated by two distinct patterns of coupled ocean-atmosphere

variability (Figure 1.1). These modes, collectively referred to as tropical Atlantic variabil-

ity (TAV), are tightly phase locked to the pronounced Atlantic seasonal cycle and vary

on interannual to decadal time scales. During boreal spring, when the equatorial Atlantic

is uniformly warm, conditions are favorable for the development of an interhemispheric
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gradient of SST anomalies often termed as the meridional mode. The so-called zonal mode

is frequently viewed as the Atlantic counterpart of the Pacific El Niño Southern Oscillation

(ENSO) and is most pronounced during boreal summer coinciding with the seasonal devel-

opment of the eastern cold tongue [e.g., Weare, 1977; Merle et al., 1980; Xie and Carton,

2004; Kushnir et al., 2006; Chang et al., 2006].

The most notable climate impacts of these modes in the tropical Atlantic sector are the

variability of rainfall over northeast Brazil and the coastal regions surrounding the Gulf

of Guinea, as well as fluctuations in rainfall and dustiness in sub-Saharan Africa (Sahel)

(see Figure 1.1). During boreal summer, rainfall variability is well correlated with SST

anomalies along the equator and to the south in the eastern cold tongue region. In this

case, the rainfall increases on the anomalously warmer side of the mean ITCZ leading to

an impact on the Guinean coast [e.g., Giannini et al., 2003; Xie and Carton, 2004; Kushnir

et al., 2006; Chang et al., 2006]. This phenomenon has led to speculations that, akin to

the Pacific ENSO mode, the underlying feedback in the Atlantic zonal mode is also the

dynamical Bjerknes [1969] mechanism [e.g., Zebiak , 1993; Xie and Carton, 2004; Chang

et al., 2006; Keenlyside and Latif , 2007]. Although the growth rate in the Atlantic is up

to 50% smaller compared to the Pacific, the Bjerknes feedback was found to be strong

during boreal spring and summer [Keenlyside and Latif , 2007]. But due to the weaker net

feedback, other mechanisms can also contribute to SST variability in the eastern equatorial

Atlantic: 1) There may be a possible link between the two TAV modes as first suggested

by Servain et al. [1999], and 2) ENSO may act as a remote forcing of equatorial Atlantic

variability [e.g., Carton and Huang , 1994; Latif and Grötzner , 2000].

Wyrtki [1975] early proposed that long equatorial waves play a fundamental role in the

context of ENSO. During the extensively studied Atlantic warm event in 1984 that re-

vealed in many respects conditions similar to those during an El Niño [e.g., Philander ,

1986; Katz et al., 1986; Hisard et al., 1986; Weisberg and Colin, 1986], Katz [1987] also

observed prominent eastward propagations along the equator with first baroclinic mode

Kelvin wave characteristics. But Carton and Huang [1994] pointed out that the role of

subsurface ocean dynamics can be different during individual Atlantic warm events: By

contrasting responses of a model simulation to the observed wind changes during 1983/84

and 1987/88, they showed that the subsurface ocean played a preconditioning role for the

warm event in 1984 while such a role was not evident for the warm event in 1988.

Equatorial Kelvin waves also cause perturbations in the zonal current field. A model

study by Seidel and Giese [1999] showed that the passage of these waves at the onset of

the 1997/98 ENSO event was associated with an initial strengthening of the Pacific Equa-

torial Undercurrent (EUC) followed by a rapid shutdown. Such a weakening of the EUC

during ENSO was first noted by Firing et al. [1983] and attributed to an adjustment of

the EUC to the relaxed pressure gradient created by the westerly wind anomalies in the
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Figure 1.2: Schematic representation of the Atlantic STC circulation with subduction (blue) and
upwelling (green) zones. Current branches participating in STC flows are EUC, North
and South Equatorial Currents (NEC and SEC), North Equatorial Countercurrent
(NECC), North and South Equatorial Undercurrents (NEUC and SEUC), North
Brazil Current (NBC) and Undercurrent (NBUC), Guinea and Angola Domes (GD
and AD). Interior equatorward thermocline pathways dotted, transport estimates
[Sv = 106 m3/s] marked for interior and western boundary pathways; surface pole-
ward pathways for the central basin (from drifter tracks, after Grodsky and Carton
[2002]) marked by magenta line. [After Schott et al., 2004]

western and central Pacific. But at odds with expectations, the observations by Hisard

and Hénin [1987] during the warm event in 1984 revealed that the Atlantic EUC appeared

to remain relatively strong and to penetrate nearly to the eastern boundary at the peak of

this event.

The EUC is also the primary equatorial branch of the Atlantic subtropical cells (STCs)

that connect the subtropical subduction regions of both hemispheres to the eastern equa-

torial upwelling regimes by equatorward thermocline and poleward surface flows (Figure

1.2) [e.g., Liu et al., 1994; McCreary and Lu, 1994; Malanotte-Rizzoli et al., 2000; Schott

et al., 2004]. One function of the STCs is to provide the cool subsurface water that is

required to maintain the tropical thermocline. For this reason, STC variability has been

hypothesized to be important for the decadal modulation of ENSO and for Pacific decadal

variability, and it may affect Atlantic equatorial SST as well [Snowden and Molinari , 2003;

Schott et al., 2004]. In the Atlantic, STC pathways are complicated by their interaction

with the other ocean currents, in particular the northward flow of warm water by the
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Figure 1.3: Maps of SST [◦C] as measured by the microwave imager on board the Tropical Rainfall
Measuring Mission (TRMM) satellite: June 7, 2005 (left) and June 7, 2006 (right).
[After Bourlès et al., 2007]

meridional overturning circulation (MOC) [Ganachaud and Wunsch, 2001; Lumpkin and

Speer , 2003]. As a consequence of these interactions, the southern STC is stronger than

the northern one [e.g., Malanotte-Rizzoli et al., 2000; Fratantoni et al., 2000; Zhang et al.,

2003]. The STCs also interact with even shallower overturning cells confined to the trop-

ics that are associated with downwelling driven by the decrease of the poleward Ekman

transport 4− 6◦ off the equator [e.g., Liu et al., 1994; McCreary and Lu, 1994]. Inui et al.

[2002] pointed out that the Atlantic STCs are sensitive to changes in wind stress, and it

has been established that wind-driven STC transport variations (v′T̄ -hypothesis: Kleeman

et al. [1999]) are more relevant than advection of subducted temperature anomalies by the

mean STC currents (v̄T ′-hypothesis: Gu and Philander [1997]) in generating equatorial

SST anomalies [Schott et al., 2004]. The supply of the upwelling regions is foremost by the

EUC but also, at somewhat deeper thermocline levels, by the NEUC and SEUC at 3− 5◦

in latitude (see Figure 1.2) [Schott et al., 2004]. Thus, understanding EUC variability is

important because it can affect SST through its effects on equatorial upwelling.

The main objective here is to determine the role of ocean dynamics for SST variabil-

ity in the eastern equatorial Atlantic, focusing on horizontal advection via zonal currents

and equatorial wave processes. As illustrated in Figure 1.1 (right), interannual cold tongue

SST variability during boreal summer is closely linked with wind and rainfall fluctuations

over wide areas of the tropical Atlantic sector. This correlation suggests a potential pre-

dictability of rainfall variability in case of a predictability of SST. In this regard ocean

dynamics are of significance and thus investigating their role in cold tongue SST variabil-

ity, such as the large interannual SST difference noted during June 2005 and 2006 (Figure

1.3) [Bourlès et al., 2007], is crucial.
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The outline of this study, with the presented results based on already published or submit-

ted manuscripts, is as follows: Chapter 2 introduces the used data, including various kinds

of observations as well as a numerical model simulation. A brief review of the tropical

Atlantic circulation is provided in Chapter 3 before discussing the mean flow in the west-

ern to central equatorial Atlantic from the available shipboard observations. The Atlantic

EUC and associated cold tongue variability are then analyzed using the numerical model

simulation (Chapter 4), while the upper equatorial Atlantic variability during 2002 and

2005 associated with equatorial Kelvin waves is investigated by use of moored and satellite

observations (Chapter 5). A concluding synthesis of the results is given in Chapter 6.



2. Data

2.1 Shipboard observations

In this study, current and hydrographic data from several ship cruises carried out in the

equatorial Atlantic are analyzed (Table 2.1). For direct current measurements, vessel-

mounted (VM) and lowered (L) acoustic Doppler current profilers (ADCPs) have usually

been in use. Near the western boundary, some additional Pegasus drop sonde profilings

were applied during 1990 − 1994 [see Schott et al., 2003]. The VM-ADCP data cover the

range between about 30 m and some intermediate depth, depending on instrument type

used. Uncertainties of 1 h VM-ADCP averages were estimated to be better than 2−4 cm/s

[Fischer et al., 2003] and the accuracy of L-ADCP data was assumed to be better than

5 cm/s [Visbeck , 2002]. Hydrographic parameters, i.e. temperature, salinity and dissolved

oxygen (O2), have been obtained from different conductivity-temperature-depth (CTD)

systems. Typical accuracies for these measurements are 0.002◦C for temperature, 0.002 for

salinity and 1% for dissolved oxygen, with salinity and oxygen sensors calibrated versus

water samples. During post-processing, all available current measurements are merged

with respect to the higher accuracy and better horizontal resolution of the VM-ADCP. For

each section, the current and hydrographic data are finally mapped on a regular horizontal

(0.05◦) and vertical (10 m) grid using a Gaussian interpolation scheme.

Cruise Section Measurements

Meteor (Oct. 1990) 35◦W, 5◦S - 2.5◦N VM-ADCP, L-ADCP,

Pegasus, CTD-O2

Meteor (Jun. 1991) 35◦W, 5.5◦S - 2.5◦N VM-ADCP, L-ADCP,

Pegasus, CTD-O2

∼ 31◦W, 5.25◦S - 0◦ VM-ADCP, L-ADCP,

Pegasus, CTD-O2

Meteor (Nov. 1992) 35◦W, 5◦S - 4◦N VM-ADCP, L-ADCP,

Pegasus, CTD-O2

L’Atalante (Feb. 1993) 35◦W, 5◦S - 7.5◦N VM-ADCP, CTD-O2
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(Cont.)

Cruise Section Measurements

Maurice Ewing (Feb./Mar. 1994) 31◦W, 11.25◦S - 1◦S VM-ADCP, CTD-O2

Meteor (Mar. 1994) 35◦W, 5◦S - 4.5◦N VM-ADCP, L-ADCP,

Pegasus, CTD-O2

Le Noroit (Sep. 1995) 35◦W, 5◦S - 7.5◦N VM-ADCP, CTD-O2

Meteor (Mar. 1996) ∼ 26◦W, 6◦S - 0◦ VM-ADCP, CTD

Edwin A. Link (Apr. 1996) 35◦W, 4.5◦S - 7.5◦N VM-ADCP, L-ADCP,

CTD

Thalassa (Jul./Aug. 1999) 35◦W, 5◦S - 7◦N VM-ADCP, L-ADCP,

CTD-O2

23◦W, 6◦S - 6◦N VM-ADCP, L-ADCP,

CTD-O2

Seward Johnson (Jan. 2000) 28◦W, 6◦S - 0◦ L-ADCP, CTD

25.5◦W, 6◦S - 4◦N L-ADCP, CTD

23◦W, 6◦S - 4◦N L-ADCP, CTD

Meteor (Apr. 2000) 35◦W, 5◦S - 5◦N VM-ADCP, L-ADCP,

CTD-O2

23◦W, 5◦S - 4◦N VM-ADCP, L-ADCP,

CTD-O2

Sonne (Dec. 2000) 35◦W, 5◦S - 9◦N VM-ADCP, L-ADCP,

CTD-O2

Oceanus (Mar. 2001) 35◦W, 1◦S - 7◦N VM-ADCP, L-ADCP,

CTD

Ron Brown (Feb. 2002) 35◦W, 6◦S - 7◦N VM-ADCP, L-ADCP,

CTD

Meteor (May 2002) 35◦W, 5.5◦S - 8◦N VM-ADCP, L-ADCP,

CTD-O2

28◦W, 11.5◦S - 2.5◦N VM-ADCP, L-ADCP,

CTD-O2

Meteor (Oct. 2002) 24◦W, 0◦ - 10◦N VM-ADCP, CTD

Sonne (May 2003) 35◦W, 5◦S - 6.5◦N VM-ADCP, L-ADCP,

CTD-O2

28.5◦W, 11.5◦S - 2.5◦S VM-ADCP, L-ADCP,

CTD-O2

Ron Brown (Aug. 2003) ∼ 27◦W, 6◦S - 10◦N VM-ADCP, L-ADCP,

CTD-O2
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(Cont.)

Cruise Section Measurements

Meteor (Aug. 2004) 35◦W, 5.5◦S - 5◦N VM-ADCP, L-ADCP,

CTD

∼ 29◦W, 5◦S - 2◦N VM-ADCP

28◦W, 5◦S - 2◦N VM-ADCP, L-ADCP,

CTD

Polarstern (Jun. 2005) 23◦W, 20◦S - 20◦N VM-ADCP

Meteor (May 2006) ∼ 23◦W, 2◦S - 0.5◦N VM-ADCP

Ron Brown (Jun. 2006) 23◦W, 5◦S - 20◦N VM-ADCP, CTD-O2

Ron Brown (Jun./Jul. 2006) 23◦W, 5◦S - 14.5◦N VM-ADCP, CTD-O2

Meteor (Jun./Jul. 2006) 35◦W, 5◦S - 5◦N VM-ADCP, CTD-O2

23◦W, 4◦S - 15.25◦N VM-ADCP, CTD-O2

10◦W, 1.5◦S - 1.5◦N VM-ADCP, CTD-O2

0◦, 23◦W - 10◦W VM-ADCP, CTD-O2

2◦N, 22◦W - 11◦W VM-ADCP, CTD-O2

Ron Brown (May 2007) 23◦W, 4◦N - 20◦N VM-ADCP, CTD-O2

James Clark Ross (May 2007) ∼ 30◦W, 10◦S - 10◦N VM-ADCP

L’Atalante (Feb./Mar. 2008) 23◦W, 2◦S - 14◦N VM-ADCP, L-ADCP,

CTD-O2

Polarstern (Apr./May 2008) ∼ 26◦W, 20◦S - 20◦N VM-ADCP

Table 2.2: Ship cruises carried out in the western and central equatorial Atlantic during
1990− 2008.

2.2 Moored observations

Data from two equatorial current meter moorings at 35◦W and 23◦W are also used here

together with data from nearby Pilot Research Moored Array in the Tropical Atlantic

(PIRATA, http://www.pmel.noaa.gov/pirata) moorings [Servain et al., 1998]. The cur-

rent meter mooring at 35◦W was deployed in August 2004 and finally recovered in June

2006. At about 150 m depth, two ADCPs looking up- and downward, with a typical mea-

surement range of 350 m each, were in use. At 500 m, 652 m, 809 m, and 1107 m additional

Sontek (Argonaut) acoustic current meters were applied. The first current meter mooring

at 23◦W, consisting (among other instruments1) of one upward looking ADCP at about

1 The horizontal velocity measurements at intermediate depths as used in Bunge et al. [2008] were not
available here.
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130 m depth, was deployed in December 2001 and recovered in December 2002 within

the framework of the PIRATA program [e.g., Provost et al., 2004; Giarolla et al., 2005].

The successive second and third deployment periods began in February 2004 and lasted

to June 2006. During these deployment periods, the mooring was equipped with both an

up- and a downward looking ADCP covering the water column from the near-surface down

to about 700 m. Unfortunately, a reexamination of the raw data revealed an erroneous

behavior of two of the four beams of the upward looking ADCP used during the second

deployment period from February 2004 to May 2005 [see Brandt et al., 2006] and these

data are excluded in Chapter 5. However, ADCP data of both instruments from each indi-

vidual equatorial mooring at 35◦W and 23◦W are combined to a continuous data set. The

combined data sets have variable depth limits due to mooring motions and in each case

a gap of about 30 m arising from the separation of the two ADCP transducers plus their

individual blanking distance. These gaps are filled by a Lagrangian interpolation algorithm

and the accuracy of the interpolation was estimated as follows: Using the interpolated field

as a reference, a similar gap but with different temporal variability was introduced and the

interpolation repeated. Statistics (reference versus interpolated field) showed a negligible

mean difference (< 1 cm/s) at a standard deviation of about 3 − 5 cm/s, which appears

small relative to the mean speed of the EUC (the gaps are near the EUC center). Finally,

the data (5 m resolution, 1 h intervals) are detided by applying a 40 h low-pass filter and

by subsequent subsampling to 12 h resolution.

At the PIRATA moorings, temperature is recorded at 11 depths between 1 and 500 m,

with 20 m spacing in the upper 140 m. In this study, daily values at 23◦W, 0◦ are used and

gaps are filled by the Langrangian interpolation algorithm as also applied to the velocity

gap of about 30 m arising from the separation of the two ADCP transducers. Besides, daily

20◦C-isotherm depth and dynamic height data at the equator, 35◦W and 23◦W are utilized

as provided by the PIRATA project. Note that corresponding time series farther east are

very gappy during the current meter deployment periods, in particular nearly no data are

available in 2002, and thus data from equatorial PIRATA moorings at 10◦W and 0◦ are

not considered here. The depth of the 20◦C-isotherm was calculated from temperature

profiles using linear interpolation of depth versus temperature and dynamic heights were

computed from temperature profiles by vertically integrating the specific volume anomaly

from the surface to 500 m depth, resulting in dynamic heights at the sea surface referenced

to 500 decibars [Servain et al., 1998].
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2.3 Satellite observations

Additionally, satellite products of sea surface height (SSH), surface wind stress and SST are

used in this study. Multimission gridded SSHs, generated by the SSALTO/DUACS2 altime-

ter data processing software and computed with respect to a 7-year mean, are obtained

from Archiving, Validation and Interpretation of Satellite Oceanographic data (AVISO,

http://www.aviso.oceanobs.com). The horizontal resolution is regularly 1/3◦ × 1/3◦ on a

Mercator grid, while the temporal resolution is 7 days prior to mid-February 2003 and

3 to 4 days thereafter. Daily surface wind stress fields, as retrieved from the NASA Sea-

Winds scatterometer on board QuikSCAT, are provided by the Centre de Recherche et

d’Exploitation Satellitaire (CERSAT, http://cersat.ifremer.fr) on global 1/2◦ × 1/2◦ res-

olution geographical grids. In order to reconstruct gap-filled and averaged synoptic fields

from discrete observations, a statistical interpolation was performed at CERSAT using an

objective method. Besides, daily Microwave Optimally Interpolated SST data based on

the microwave imager on board the TRMM satellite are used here. The gridded SST fields

as provided at http://www.remss.com were derived by blending together the available data

using the optimum interpolation scheme described in Reynolds and Smith [1994], with a

horizontal resolution of 1/4◦ × 1/4◦. These satellite data sets are finally mapped on a

common 3.5-days temporal and 1/2◦ × 1/2◦ spatial grid using linear interpolation in time

and a Gaussian interpolation scheme in space, with coastal regions less than 500 m deep

discarded.

2.4 Drifter climatology

Drifters sample regions of the ocean inhomogeneously which can cause aliased time-mean

values if the presence of strong seasonal variations is neglected. To address this, Lumpkin

[2003] developed a methodology to simultaneously decompose the drifter observations into

time-mean, seasonal and eddy components. Climatological monthly mean fields of the trop-

ical Atlantic, as provided at http://www.aoml.noaa.gov/phod/dac/drifter climatology.html

on a regular 1◦ × 1◦ grid, were derived by combining and integrating time-mean, annual

and semiannual components of the total velocity; results were smoothed via optimum in-

terpolation (OI), assuming a Gaussian autocorrelation function with an isotropic e-folding

scale of 150 km [Lumpkin and Garzoli , 2005].

2 Segment Sol multimissions d’Altimétrie, d’Orbitographie et de localisation précise/Data Unification
and Altimeter Combination System
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2.5 FLAME

This study also utilizes monthly mean fields of a numerical model simulation performed

as part of the Family of Linked Atlantic Ocean Model Experiments (FLAME) hierarchy

of models for studying various aspects of the Atlantic Ocean [Dengg et al., 1999]. FLAME

follows up the kind of ocean models as used in the Community Modeling Effort (CME)

[Bryan and Holland , 1989; Böning and Bryan, 1996] and the European Dynamics of North

Atlantic Models (DYNAMO) ocean model intercomparison study [Willebrand et al., 2001].

The numerical code3 is based on a refined configuration [Redler et al., 1998] of the GFDL

MOM 2.1 code [Pacanowski , 1995]. The model domain covers the Atlantic Ocean between

18◦S and 70◦N, 100◦W and 30◦E, with a horizontal resolution of 1/12◦ in longitude and

1/12◦cos φ in latitude. This z-coordinate model version uses 45 levels in the vertical,

with 10 m - resolution near the surface, smoothly increasing to a maximum of 250 m

below 2250 m. Vertical mixing is parameterized based on the stability-dependent scheme

for vertical diffusivity (κh = 0.1 − 4.0 cm2/s) and viscosity (κm = 2.0 − 10.0 cm2/s) as

described in Böning and Kröger [2005], and a KT-scheme [Kraus and Turner , 1967] is

used for the mixed layer. The model uses biharmonic friction and isopycnal diffusion, with

a diffusivity of 50 m2/s and a viscosity of 2 · 1010 m4/s. The model spin-up starts from

the Levitus climatology [Boyer and Levitus , 1997] for 10 model years under climatological

forcing, based on the monthly mean wind stresses and linearized heat fluxes as derived

from European Center for Medium-Range Weather Forecast (ECMWF) analyses for the

years 1986− 1988 by Barnier et al. [1995]. The surface heat flux includes a relaxation to

climatological SST in a formulation following the work of Haney [1971]:

Q = Q0 + Q2 (SSTmodel − SSTclim) (2.1)

with Q2 = ∂Q
∂SST

∣∣∣
SSTclim

and Q0 denotes the prescribed surface heat flux. The spin-up

phase is followed by an interannually forced period from 1987 to 2003, based on the Na-

tional Center for Environmental Prediction/National Center for Atmospheric Research

(NCEP/NCAR) reanalysis [Kalnay et al., 1996], i.e. the variable surface forcing is realized

by adding the monthly net heat flux and wind stress anomalies from the NCEP/NCAR

reanalysis to the ECMWF-based climatology data. In the present study, monthly output

fields of the time period from 1990 to 2002 are used. Further details and specifications are

found in e.g., Eden and Böning [2002] and Hüttl and Böning [2006].

Monthly mean output fields of the last 2 spin-up years of a second experiment (SPFLAME),

based on the same numerical code and with the same vertical and horizontal resolution

as described above, are additionally used. Subgrid-scale parameterization are here bihar-

monic friction and diffusion (with diffusivity of 0.8 ·1010 m4/s and viscosity of 2 ·1010 m4/s)

3 http://www.ifm-geomar.de/∼spflame
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and a closure for the vertical turbulent kinetic energy (TKE) following Gaspar et al. [1990].

The surface forcing is due to the monthly fields of the ECMWF climatology which were

linearly interpolated onto the model time. For further information see e.g., Eden [2006].

In the context of an extensive model validation, the following monthly observational data

sets are considered: National Oceanic and Atmospheric Administration (NOAA) OI SST

monthly fields (version 2), derived by a linear interpolation of the corresponding weekly

OI fields to daily fields and then averaging the daily values over a month [Reynolds et al.,

2002], are utilized. The horizontal resolution is globally 1◦ × 1◦ and monthly averages are

available from November 1981 onward. Besides, along-track Topex/Poseidon (T/P) sea

surface anomalies as produced by the Jet Propulsion Laboratory, PO.DAAC4 are used.

This data set is organized as 10-day repeat cycles and available from September 1992 on-

ward. The sea surface anomaly represents the difference between the best estimate of the

sea level and a mean sea surface. The sea level was corrected for atmospheric effects (iono-

sphere, wet and dry troposphere), effects due to surface conditions (electromagnetic bias)

and other contributions (ocean tides, pole tide and inverse barometer). The value of the

mean sea surface used to calculate sea surface anomalies is from the mean sea level fields

by Rapp et al. [1994] computed using Deos3, Seasat and about 15 months of T/P altimeter

data [Berwin and Benada, 2000]. For the purpose of the present study, the along-track

data are first mapped on a regular 1◦× 1◦ grid using a Gaussian interpolation scheme and

averaged per month afterward.

4 Physical Oceanography Distributed Active Archive Center



3. Mean flow

The shallow tropical Atlantic circulation is characterized by vigorous zonal currents in the

ocean interior and intense boundary currents near the coasts. In the near-surface layer, the

flow structure is largely influenced by the wind (see Figure 3.1) and the seasonal changes

of the wind field also lead to variations of this circulation [e.g., Richardson and McKee,

1984; Arnault , 1987; Stramma and Schott , 1999; Stramma et al., 2003; Schouten et al.,

2005; Lumpkin and Garzoli , 2005]. The quiver plots of the near-surface flow (Figure 3.1)

emphasize the strong zonal and western boundary currents, among them the northern and

equatorial branches of the SEC (nSEC and eSEC), the NECC and the NBC (see Figure

3.2). The NBC flows northward along the Brazilian coast and after crossing the equator, a

component of the NBC retroflects eastward into the EUC. From its western source region,

Figure 3.1: Time-mean near-surface currents derived from satellite-tracked drifter trajectories:
(Top) total currents and (bottom) Ekman-removed currents. [Lumpkin and Garzoli ,
2005]
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Figure 3.2: Schematic diagram of the shallow subtropical and tropical circulation superimposed
on the climatological distribution of oxygen content [µmol/kg] at 300− 500 m depth
(based on the climatology of Gouretski and Jancke [1998]). Also shown are the
locations of the equatorial moorings at 35◦W and 23◦W (white diamonds). Surface
and thermocline current branches are marked by black dashed lines, and intermediate
currents by black solid lines; see text for details. [After Brandt et al., 2008]

the EUC crosses the entire Atlantic while reducing in strength. In addition, the EUC is

one of the main warm water routes of the Atlantic MOC [e.g., Fratantoni et al., 2000;

Hazeleger et al., 2003]. Studying the fate of the Atlantic EUC, Hazeleger and de Vries

[2003] found that about 2/3 of the EUC transport at 20◦W contributes to the MOC while

about 1/3 recirculates within the STC. On either side of the equator there are additional

subsurface current bands transporting water away from the western boundary toward the

eastern upwelling regimes of the tropical Atlantic, the NEUC and SEUC (see Figure 3.2).

In the western equatorial Atlantic Schott et al. [1995] could verify the existence of the

Equatorial Intermediate Current (EIC) from direct velocity measurements, flowing west-

ward underneath the EUC, and two off-equatorial eastward intermediate currents, the

Southern and Northern Intermediate Countercurrents (SICC and NICC) at 1.5 − 2.0◦ in

latitude. At thermocline and intermediate levels, the western boundary regime is character-

ized by an oxygen maximum, while the eastern part of the basin is occupied by low-oxygen

waters (see Figure 3.2). The strong gradient in the oxygen concentration along the equa-

tor is the reason why eastward and westward flows in the equatorial Atlantic can often be

identified by high and low oxygen values, respectively. While the (eastward decreasing)

oxygen maximum in the thermocline layer associated with the EUC is located directly on

the equator [Metcalf and Stalcup, 1967; Tsuchiya et al., 1992; Schott et al., 1995], high

oxygen values at intermediate depths are typically associated with the eastward flowing

SICC and NICC [Tsuchiya et al., 1992; Schott et al., 1995; Boebel et al., 1999; Bourlès

et al., 2002]. An analysis of equatorial zonal currents and associated oxygen distributions

is found in Appendix A2.
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However, Schott et al. [2003] presented a first mean zonal velocity section at 35◦W from 13

cross-equatorial shipboard profiling sections, with transport estimates for individual cur-

rent branches. Here, this work is extended to the central part of the Atlantic basin and the

mean zonal equatorial circulation of the upper 700 m is now studied based on ship sections

taken during 1990 − 2008 (see Table 2.1); the results will also provide a useful validation

base for model simulations.

3.1 Central equatorial Atlantic

A mean section of zonal currents is here constructed from 19 VM-ADCP/L-ADCP ship

sections taken between 29− 23◦W during 1996− 2008. Above 30 m, the mean flow field is

linearly interpolated toward the mean surface flow obtained from the surface drifter clima-

tology by Lumpkin and Garzoli [2005] (see Figure 3.1). The resulting mean zonal current

section (Figure 3.3) is then evaluated for transports in the same isopycnal layers that have

previously been used for analyzing the mean 35◦W section [Schott et al., 2003]. As there

is reasonable seasonal coverage of the available sections from the central tropical Atlantic,

only a minor seasonal bias is expected.

The EUC transports 14.9 Sv eastward, of which 2.3 Sv occur in the surface layer above

σθ = 24.5 kg/m3, and 12.6 Sv in the thermocline layer 24.5− 26.8 kg/m3. The transports

across this mean section can be compared with the transport across the mean 35◦W sec-

tion, in the western source region of the EUC.

For this purpose the mean 35◦W section of Schott et al. [2003], which was based on 13 ship

surveys has been updated to 16 sections (Figure 3.4), now adding the subsequent Sonne

and Meteor (2) surveys of May 2003 as well as August 2004 and June 2006, respectively.

Furthermore, the top layer, for which Schott et al. [2003] extrapolated the ADCP shears to

the surface, has been treated the same way as the 29− 23◦W section here, i.e. by applying

mean surface drifter currents. The resulting mean EUC transport at 35◦W amounts to

19.9 Sv, with 5.3 Sv above σθ = 24.5 kg/m3 and 14.6 Sv in the thermocline layer. While

the mean EUC transport is about the same as the value of 20.9 Sv given by Schott et al.

[2003], the combined effects of added cruises, different surface layer treatment, and reanal-

ysis of earlier cruises result in a somewhat different distribution between surface layer and

thermocline layer.

The standard error of the estimated mean EUC transports at both longitudes is evaluated

from the standard deviation of EUC transports calculated for each individual section under

the assumption of independent individual realizations. The errors of the mean are deter-

mined to be 1.5 Sv (n = 15) at 35◦W and 1.2 Sv (n = 13) between 29−23◦W, respectively.
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Figure 3.3: Mean zonal velocity distribution from 19 sections taken between 29 − 23◦W [cm/s],
with layer transports [Sv] of different current branches overlaid on potential density
(white lines). [After Brandt et al., 2006]
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Thus, there is a significant difference in the mean EUC transports: Over about 1000 km

of equatorial extent between both mean sections the EUC loses about 5 Sv.

Underneath the EUC, there is the westward core of the EIC transporting 3.5 Sv in the

σθ = 26.8 − 27.1 kg/m3 density range. To either side of this westward flow, in latitude

range 1− 3◦N and S, there are two narrow eastward cores, in correspondence to what was

found at 35◦W [Schott et al., 2003], the NICC and SICC.

The SEUC, with its core located at about 4.5◦S and 160 m depth, transports 7.0 Sv east-

ward in the σθ = 24.5− 27.1 kg/m3 density range, thus doubling its transport after leaving

the 35◦W section. The increase occurs solely in the σθ = 24.5− 26.8 kg/m3 density range

(from 1.3 to 4.8 Sv), while the lower thermocline layer stays constant (2.2 Sv). Inspection

of the individual sections between 29 − 23◦W that run to 5◦S and reach down to 500 m

depth shows that the SEUC actually extends southward to beyond 5◦S, i.e. some trans-

port fractions are lost in the average of Figure 3.3, and the SEUC increase along the way

eastward from the 35◦W section is even larger than these transport numbers express.

3.2 South Equatorial Undercurrent

The evolution of the SEUC from the western to central tropical Atlantic is now investigated

in more detail by considering the available meridional sections at 35◦W (14 cruises), near

30◦W (4 cruises), at 28◦W (5 cruises), near 25◦W (4 cruises), and at 23◦W (4 cruises)

between 6◦S - 0◦ (see Table 3.1). Most of the sections covered the total vertical extent of

the SEUC at different times of the year, but only at 35◦W all seasons are covered. The

mean flow across each of the sections (Figure 3.5) is calculated by averaging the gridded

individual realizations as an Eulerian mean flow field. At 35◦W, the SEUC is only weakly

developed at a mean core speed of about 10 cm/s and the onshore flank is bounded by

the intense north-westward flowing NBUC; thus the SEUC is shifted more to the north,

compared to the SEUC location at the other sections, and centered around 3◦S. Besides the

zonal component, there are several realizations [see Schott et al., 1998] showing a significant

southward (opposite to the NBUC direction) component. Toward the east, already at 30◦W

and more pronounced at 28◦W, the SEUC is significantly stronger (maximum mean speed

is above 20 cm/s), and its width and vertical extent are larger than near the boundary

at 35◦W. East of 35◦W, the SEUC core is located slightly south of 4◦S. Additionally, the

flow at 23◦W appeared weaker, but wider than farther west, with slightly less mean SEUC

transports compared to 28◦W (Table 3.1).
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Transport [Sv] Transport [Sv]

Cruise (24.5− 27.1 kg/m3) (100− 500 m)

35◦W

L’Atalante (Feb. 1993) 8.0 8.0

Ron Brown (Feb. 2002) 5.6 5.4

Meteor (Mar. 1994) 3.7 3.6

Edwin A. Link (Apr. 1996) 8.9 9.5

Meteor (Apr. 2000) 8.7 9.3

Meteor (May 2002) 3.7 4.3

Sonne (May 2003) 5.0 4.7

Meteor (Jun. 1991) [100− 400 m] (2.9)** 3.7* [1.28]

Meteor (Jun. 2006) 4.0 4.1

Thalassa (Jul. 1999) 4.3 4.3

Meteor (Aug. 2004) 6.6 6.5

Meteor (Oct. 1990) 6.1 6.3

Meteor (Nov. 1992) 3.7 3.9

Sonne (Dec. 2000) 4.6 4.6

Mean 5.6 (n = 13) 5.7 (n = 14)

Standard error 0.5 (n = 13) 0.5 (n = 14)

31− 30◦W

Maurice Ewing (Mar. 1994) [100− 400 m] (5.1)** 5.4* [1.03]

James Clark Ross (May 2007) 6.9

Meteor (Jun. 1991) 5.4 5.5

Meteor (Aug. 2004) 8.5

Mean 6.7 (n = 4)

Standard error 0.7 (n = 4)

28◦W

Seward Johnson (Jan. 2000) 9.5 9.4

Meteor (May 2002) 9.9 10.1

Sonne (May 2003) 10.3 10.4

Polarstern (May 2008) [100− 250m] 4.6* [1.61]

Meteor (Aug. 2004) 11.2 11.0

Mean 10.2 (n = 4) 9.7 (n = 5)

Standard error 0.4 (n = 4) 0.6 (n = 5)

26− 25◦W

Seward Johnson (Jan. 2000) 4.8 4.8

Ron Brown (Feb. 2005) 10.2 10.0
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(Cont.)

Transport [Sv] Transport [Sv]

Cruise (24.5− 27.1 kg/m3) (100− 500 m)

Meteor (Mar. 1996) [100− 450 m] (11.2)** 12.9* [1.01]

Ron Brown (Aug. 2003) 10.4 10.4

Mean 8.4 (n = 3) 9.6 (n = 4)

Standard error 1.8 (n = 3) 1.7 (n = 4)

23◦W

Seward Johnson (Jan. 2000) 8.6 8.7

Meteor (Apr. 2000) 10.7 10.6

Polarstern (Jun. 2005) [100− 300 m] 6.0* [1.23]

Thalassa (Aug. 1999) 5.1 5.0

Mean 8.1 (n = 3) 7.9 (n = 4)

Standard error 1.6 (n = 3) 1.2 (n = 4)

* reduced depth range, scaled by factor in brackets for calculating the mean

** for density range 24.5− 26.9 kg/m3, not used in mean

Table 3.2: SEUC transports [Sv] in the western to central tropical Atlantic, for the density range
σθ = 24.5− 27.1 kg/m3 and the depth range 100− 500 m. [Fischer et al., 2008]

The mean transports are derived by averaging the individual section transport estimates,

and uncertainties are calculated from the transport standard deviations and the num-

ber of (independent) section occupations. In order to incorporate the few data sets with

somewhat shallower measurement range, a scaling factor is determined to take that into

account. At the respective locations, full range measurements are used to determine full

SEUC transports, and secondly, transports over the reduced depth range are derived. The

ratio of the two estimates is then used to up-scale the transports from the shallower data

sets.

Quantitatively, the SEUC transports increase significantly (see error estimates in Table

3.1) from 5.6 Sv near the western boundary at 35◦W to about 10 Sv 800 km farther

east. Two types of vertical boundaries are chosen for the transport calculations, isopycnals

(24.5 < σθ ≤ 27.1 kg/m3; see Figure 3.5 and Table 3.1) and depth range (100 − 500 m);

both give roughly the same values. In order to uniformly capture the full SEUC transports

from the western boundary to the interior, the here chosen isopycnal range is somewhat

wider than that used by Schott et al. [1998] for the western boundary only. East of 28◦W,

the transports of the SEUC remain almost constant, with some insignificant reduction in

the area 25◦W to 23◦W.
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In contrast to this method, transport averages are also calculated from the mean (Eu-

lerian) velocity sections of Figure 3.5, which should be somewhat smaller than the average

core transports listed in Table 3.1. Particularly, the 35◦W transports from the mean ve-

locity section are 3.8 Sv compared to 5.6 Sv and thus by about 30% smaller, which is an

indication of relatively large variability in the position of the current core at this location.

Large variability and large differences between the two methods point to meandering as

the primary source of the variability at 35◦W. At 28◦W, the scatter of core location is

much smaller, and the transport estimates are more similar, at 8.5 Sv and 10.2 Sv, re-

spectively (Table 3.1). Presumably, meandering is less dominant and SEUC pulsation may

add to the variability. Finally, at 23◦W transports scatter quite significantly, but means

are rather similar (7.8 Sv vs. 8.1 Sv) again making pulsations more likely than meandering.
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3.3 Summary and discussion

A new mean cross-equatorial section of zonal currents between 29 − 23◦W, based on 19

VM-ADCP/L-ADCP ship sections, was composed and allowed mean transport estimates

of the principal equatorial current branches in the central equatorial Atlantic. From an up-

dated earlier mean zonal velocity section at 35◦W near the western boundary [Schott et al.,

2003] and the new central equatorial Atlantic section, a reduction of the EUC transport

by about a quarter is derived, suggesting substantial recirculation into westward flowing

current branches surrounding the western EUC. Below the EUC, a mean westward flow

associated with the EIC was observed in the shipboard velocity measurements. The EIC

transport was estimated to be about 10 Sv between σθ = 26.8 kg/m3 (about 300 m) and

σ1 = 32.15kg/m3 (about 1150 m) at 35◦W [Schott et al., 2003]. Out of the 10 Sv at 35◦W,

about 6 Sv are transported between σθ = 26.8 kg/m3 and 700 m which is the same value

estimated for the central part of the basin. Up to now, the observed westward EIC flow

with mean velocities above 5 cm/s could not be reproduced by state-of-the-art numerical

models, and Jochum and Malanotte-Rizzoli [2003] suggested that the shipboard measure-

ments represented snapshots in time that were biased by seasonal Rossby waves.

Near its origin at 35◦W, the SEUC transport is fairly well determined to be 5.6± 0.5 Sv

and it increases substantially during its eastward progression; at 28◦W the transport has

almost doubled and then stays fairly constant (just a slight decay) out to 23◦W. This

transport variation is caused by a significant increase in SEUC volume and core velocity.

Water mass properties indicated that the SEUC is not supplied out of the oxygen-rich and

low-salinity NBUC, but is mostly made up of low-oxygen interior recirculation waters out

of the SEC [Schott et al., 1998], yet recognizable by admixtures of boundary waters [Arhan

et al., 1998]. A supply through interior recirculations is also suggested by comparing the

almost nonexistent SEUC above σθ = 26.6 kg/m3 at 35◦W with the strong eastward flow

in the same layer but farther east (Figure 3.5).

Numerical models of the tropical Atlantic Ocean have been used for investigating the struc-

ture and physical mechanisms of the off-equatorial undercurrents: Jochum and Malanotte-

Rizzoli [2004] suggested by using an idealized model configuration that eddy fluxes in-

duced by tropical instability waves (TIWs) maintain the SEUC in the central equatorial

Atlantic. In a more realistic high-resolution simulation of the Atlantic Ocean, Hüttl-Kabus

and Böning [2008] noted that the SEUC in the western part of the equatorial Atlantic is

almost exclusively fed by internal recirculations between eastward and westward current

bands. Both these types of present-day models show eastward SEUC flow at the observed

latitude, but current speeds and transports are weaker than observed.
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Away from the recirculation cells in the western tropical Atlantic, the 23◦W section seems

to be an optimal place for studying the supply route of thermocline waters toward the

eastern equatorial and off-equatorial upwelling regimes. As discussed by Foltz et al. [2003]

for the seasonal cycle of the upper layer heat budget, zonal temperature advection is of

particular importance for the cold tongue region during boreal summer. This might also

hold for the interannual variability, with zonal advection contributing significantly to the

zonal SST mode, which is associated with interannual wind and rainfall variability of wide

areas of the tropical Atlantic [e.g., Kushnir et al., 2006].
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In the Pacific, mean transport and seasonal cycle of the EUC are fairly well known across

most of the basin, and EUC variability is known to occur in association with SST variations

in the eastern cold tongue region on both seasonal and interannual time scales [Philander

et al., 1987; Yu and McPhaden, 1999; Keenlyside and Kleeman, 2002; Johnson et al., 2002;

Izumo, 2005].

Presently, little can be said about the seasonal cycle of Atlantic EUC transport from obser-

vations, but a sufficient number of cross-equatorial ship sections are now available at 35◦W

and near 23◦W to afford reasonable estimates of the mean EUC structure and transport at

these locations (see Section 3.1). Farther east, measurements are sparse and the observed

snapshot transports indicate a large variability of the current system [Hisard and Hénin,

1987; Bourlès et al., 2002; Mercier et al., 2003]. Due to the limited number of observations

in the equatorial Atlantic, a high-resolution ocean model is used here to investigate the

Atlantic EUC and associated cold tongue variability.

4.1 Model-data comparison

Mean and seasonal cycle

In order to validate the FLAME model, mean sections at 35◦W and at/near 23◦W from

SPFLAME as well as from observations (see Section 3.1) are considered (Figure 4.1). The

mean sections from the models are evaluated for transports in isopycnal layers according

to the observations, but because of a too shallow σθ = 24.5kg/m3-isopycnal in the FLAME

model σθ = 25.4 kg/m3 is chosen instead as a lower boundary of the surface layer. This

feature can primarily be ascribed to a too diffuse thermocline as already noted by Schott

and Böning [1991] for the CME model. Besides, individual EUC transport estimates from

observations at 35◦W and at/near 23◦W are calculated by taking only eastward veloci-

ties into account for both the density range σθ = 24.5 − 26.8 kg/m3 and the depth range

30 − 300 m. Mean transports are derived by averaging the individual section transports

and uncertainties are estimated from the standard deviation of EUC transports assuming
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Figure 4.1: Upper panels: Mean zonal velocity [contour interval is 10 cm/s] at 35◦W from FLAME
(left), SPFLAME (middle) and from 16 ship sections (right), with layer transports
[Sv] of different current branches overlaid on potential density (thick solid lines).
Lower panels: Mean zonal velocity [contour interval is 10 cm/s] at/near 23◦W from
FLAME (left), SPFLAME (middle) and from 13 ship sections (right), with layer
transports [Sv] of different current branches overlaid on potential density (thick solid
lines). [Hormann and Brandt , 2007]

independent individual realizations (Table 4.1). The transports for the density range are

somewhat smaller compared to the ones for the depth range, thus some eastward transport

above σθ = 24.5kg/m3 is missed by the chosen density range. In order to capture the total

range of EUC transport variability from observations, the transports for the 30 − 300 m

depth range are chosen here. Figure 4.2 presents these individual transport estimates at

35◦W and at/near 23◦W in comparison with the respective seasonal cycles of EUC trans-

port from both models, calculated from the eastward zonal velocities between ±2.5◦ in

latitude and within the layer 31.5− 310.6 m by monthly averaging.

35◦W Section. The mean 35◦W zonal velocity section from 16 cruises shows the EUC cen-

tered at the equator, with its core at about 100 m depth and a maximum velocity of about

65 cm/s. The EUC transport calculated from the mean velocity section amounts to 19.9 Sv,
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with 5.3 Sv in the surface layer and 14.6 Sv in the thermocline layer σθ = 24.5−26.8kg/m3.

Although the mean EUC transport at 35◦W from the FLAME model (19.2 Sv) is in good

agreement with the value derived from observations, the transport distribution between

surface and thermocline layer is different, i.e. of nearly equal magnitude. This difference is

mainly due to a shallower model EUC core, located slightly south of the equator at about

70 m depth in the surface layer. In case of the SPFLAME model, the vertical extent of the

EUC is, particularly toward the surface, much diminished compared to the FLAME model

and the observations. But in agreement with the observations, the core of the SPFLAME

EUC is found in the thermocline layer at about 100 m depth. Due to its shrunken upper

part the EUC transports here only 2.8 Sv in the surface layer and 11.1 Sv in the thermocline

layer. The too deep SPFLAME EUC also results in significant differences concerning the

westward surface flow. While the FLAME model and the observations show two separated

bands of westward flow in the surface layer, the SPFLAME model has just a broad band

of westward surface flow. Note that the EUC in both models is not clearly separated from

the SEUC in the thermocline layer as indicated by the observations.

The seasonal cycle of EUC transport at 35◦W from the FLAME model is characterized by

two transport maxima of about equal magnitude during March/April and September. On

the other hand, the seasonal cycle of EUC transport in the SPFLAME model run shows a

maximum during April and another during November. But EUC transports obtained from

15 cross-equatorial sections at 35◦W are in reasonable agreement with both simulated sea-

sonal cycles, with the largest discrepancies during June 1991 and September 1995. Because

of the limited number of measurements, the EUC transport observations do not allow to

evaluate the quality of the simulated seasonal cycles of both model runs.

23◦W Section. As pointed out in Chapter 3, the EUC transport reduces by about a

quarter over about 1000 km of equatorial extent between 35◦W and about 23◦W. This

reduction is well reproduced by the FLAME model, with an EUC transport of 13.7 Sv

across 23◦W compared to 19.2 Sv across 35◦W. The differences concerning the character-

istics of the mean EUC core from observations and the FLAME model, as noted above

for the comparison of the mean 35◦W sections, are also apparent in the central Atlantic.

But the observed and simulated EUC transport distributions between surface and thermo-

cline layer are in better agreement in the central equatorial Atlantic than near the western

boundary. Contrary to the observations, the EUC transport in the SPFLAME model

run stays fairly constant, with 12.8 Sv across 23◦W compared to 13.9 Sv across 35◦W.

However, the shape of the SPFLAME EUC is in an overall better agreement with the

observations in the central equatorial Atlantic. To the north and south of both observed

and simulated EUC, two branches of the westward SEC are present in the surface layer

and the corresponding westward transports are of comparable magnitude. Contrary to the
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Transport [Sv] Transport [Sv]

Cruise (24.5− 26.8 kg/m3) (30− 300 m)

L’Atalante, 35◦W (Feb. 1993) 18.50 23.67

Ron Brown, 35◦W (Feb. 2002) 15.98 20.92

Meteor, 35◦W (Mar. 1994) 13.43 19.38

Oceanus, 35◦W (Mar. 2001)

Edwin A. Link, 35◦W (Apr. 1996) 16.63 24.55

Meteor, 35◦W (Apr. 2000) 13.44 22.58

Meteor, 35◦W (May 2002) 15.02 23.98

Sonne, 35◦W (May 2003) 17.50 21.81

Meteor, 35◦W (Jun. 1991) 24.83 36.24

Meteor, 35◦W (Jun. 2006) 17.10 23.52

Thalassa, 35◦W (Jul. 1999) 13.54 17.63

Meteor, 35◦W (Aug. 2004) 19.24 23.76

Le Noroit, 35◦W (Sep. 1995) 23.85 35.83

Meteor, 35◦W (Oct. 1990) 19.51 24.77

Meteor, 35◦W (Nov. 1992) 14.76 18.63

Sonne, 35◦W (Dec. 2000) 12.28 14.75

Mean 17.04 (n = 15) 23.47 (n = 15)

Standard error 0.96(n = 15) 1.51 (n = 15)

Seward Johnson, 23◦W (Jan. 2000) 10.32 15.07

Seward Johnson, 25.5◦W (Jan. 2000) 10.87 17.27

Seward Johnson, 28◦W (Jan. 2000)

Meteor, 23◦W (Apr. 2000) 9.77 14.19

Meteor, 28◦W (May 2002) 9.23 10.47

Sonne, 28.5◦W (May 2003)

Meteor, ∼ 23◦W (May 2006)

Polarstern, 23◦W (Jun. 2005) 22.48

Meteor, 23◦W (Jun. 2006) 19.41 20.17

Thalassa, 23◦W (Aug. 1999) 12.81 14.73

Ron Brown, 25◦W (Aug. 2003) 21.51 24.50

Meteor, 28◦W (Aug. 2004) 14.70 22.01

Meteor, 24◦W (Oct. 2002)

Mean 13.58 (n = 8) 17.88 (n = 9)

Standard error 1.64 (n = 8) 1.56 (n = 9)

Table 4.1: EUC transports [Sv] in the western and central equatorial Atlantic from cross-
equatorial ship sections, for the density range σθ = 24.5 − 26.8 kg/m3 and the depth
range 30− 300 m. [Hormann and Brandt , 2007]
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35◦W section, the SEUC is clearly separated from the EUC at 23◦W in both simulations

and its eastward transport amounts to 1.9 Sv and 0.8 Sv in the thermocline layer of the

FLAME and SPFLAME model, respectively. In agreement with the mean sections from

observations, the simulated SEUCs increase toward the east, but the model transports are

significantly lower than observed.

Considering the seasonal cycle of EUC transport at 23◦W from the FLAME model, trans-

port maxima during September and April as well as minima during February and May/June

are apparent. While the simulated maxima at 35◦W are of nearly equal magnitude, the

September maximum is significantly stronger compared to the April one at 23◦W. Contrary

to the 35◦W section, the simulated seasonal cycles of EUC transport from FLAME and
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SPFLAME are in general agreement in the central equatorial Atlantic. Individual EUC

transports are derived here from 9 cross-equatorial sections carried out between 29−23◦W.

These snapshot transports exhibit a large range of variability that prevents from establish-

ing a definite seasonal cycle from observations. In particular, one of the highest transport

estimates is obtained at 23◦W during June 2005, coincident with a minimum of the simu-

lated seasonal cycles.

The comparison between the FLAME and SPFLAME model runs reveals significant dif-

ferences concerning the annual mean and seasonal cycle of the EUC at 35◦W, whereas a

general agreement is found at 23◦W. As first pointed out by Pacanowski and Philander

[1981], the simulation of the equatorial upper-layer currents, and in particular the EUC,

depends strongly on the parameterization of the vertical mixing of momentum. The strong

sensitivity of the simulated EUC to the vertical viscosity is here suspected to be the main

reason for differences in the representation of the simulated EUC. Apart from different

vertical mixing schemes, the larger discrepancies at 35◦W may be attributed to the sensi-

tivity of the recirculation patterns near the western boundary to parameterization choices

of lateral mixing as stated by Böning and Kröger [2005]. However, analysis of the model

sensitivity to different mixing parameterizations is beyond the scope of this study.

Both at 35◦W and 23◦W, the simulated seasonal cycles of EUC transport from the FLAME

model are in general agreement with results presented in previous studies. Philander and

Pacanowski [1986b, Figure 3] found a maximum EUC transport during July to September

at 30◦W and 10◦W as well as secondary maxima during March/April and January/February,

respectively. Likewise, Schott and Böning [1991, Figure 8] at 30◦W and Hazeleger et al.

[2003, Figure 2] at 35◦W and 20◦W yielded comparable results. The basinwide description

of the seasonal cycle of EUC transport by Arhan et al. [2006, Figure 6a] also revealed two

maxima, one during August to November in the basin interior and the other one during

January to June, most pronounced between 40 − 35◦W near the western boundary, but

extending eastward to about 10◦W. A recent study by Hüttl and Böning [2006, Figure 6a],

also based on the FLAME hierarchy of models, yielded significant differences concerning

the seasonal cycle of the EUC at 35◦W in the 1/12◦ and 1/3◦ model versions. While

the 1/12◦-case reveals the double-maximum EUC cycle (see Figure 4.2, upper panel), the

boreal winter/spring maximum is missing in the coarser resolution case, attributed to an

unrealistically weak thermocline part. These findings by Hüttl and Böning [2006] along

with the here presented results concerning the seasonal cycle of EUC transport at 35◦W

point toward the uncertainties in determining a seasonal cycle of EUC transport near the

western boundary from model simulations. But evidence from observations is still limited,

as exemplified in case of the 35◦W and near 23◦W sections. Katz et al. [1981], using 22 sec-

tions taken between 33− 25◦W during the Global Weather Experiment, found the highest
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EUC transport during early March (based on a single section) and a secondary maximum

during August. From an evaluation of the 8 FOCAL/SEQUAL1 cruises at 23◦W, Hisard

and Hénin [1987] obtained maximum EUC transports during autumn, but time series of

moored current meters at 28◦W, 0◦ by Weisberg et al. [1987] during 1983 − 1985 did not

show a detectable seasonal cycle of EUC transport.

Surface velocity

Inspection of longitude-time diagrams of the zonal surface velocity, averaged between ±2.5◦

in latitude, from the FLAME model and the drifter climatology by Lumpkin and Garzoli

[2005] (Figure 4.3) yields good agreement concerning the periods of maximum westward

velocities during April to July and during November to December. But besides, there are

remarkable differences regarding periods of weakest westward or even eastward velocities

particularly in the region east of 5◦E. The drifter climatology reveals slightly westward

velocities west of about 0◦ during both January to March and August to October, with an

eastward velocity maximum between about 0 − 5◦E during the latter period. Otherwise,

the model shows mainly eastward velocities during the first quarter of the year as well as to

the east of about 4◦W during August to October and largest velocities (≥ 20 cm/s) occur

between about 4◦W and 5◦E during February and March. But note that despite these

differences the longitudinal averaged seasonal cycle from the FLAME model fits generally

in the error margins of the drifter climatology.

Cold tongue

In this study, the simulated near-surface temperature in 15 m depth is chosen instead of

SST because of the applied Haney-type surface heat flux relaxation [Haney , 1971]. The

modeled SST will therefore be constrained to be close to the climatological SST and, in

particular, interannual SST variability is significantly affected. However, near-surface tem-

perature anomalies are derived here by removing the respective seasonal cycle of the 13-year

model simulation at each grid point and Figure 4.4 shows a time series of the near-surface

temperature anomaly within the cold tongue region 20◦W - 5◦E, 6◦S - 2◦N in comparison

with a corresponding time series of the NOAA OI SST data set. Overall, the agreement

between the two time series is reasonable (r = 0.52), with largest differences occuring in

1 Programme Français Océan et Climat dans l’Atlantique Equatorial/Seasonal Response of the Equa-
torial Atlantic
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the mid-1990s. The additionally marked monthly anomaly values from the original daily

Microwave OI SST data set give an idea of the uncertainties inherent in the observations.

4.2 Mean and seasonal cycle

Mean flow

In order to present a view of the EUC evolution in the eastern equatorial Atlantic, Figure

4.5 shows the annual mean zonal velocity distributions at 10◦W and 3◦E from the FLAME

model. In comparison to the 23◦W section (Figure 4.1, lower left panel), the EUC has

significantly weakened at 10◦W. Above σθ = 26.8 kg/m3 the EUC transports only 9.2 Sv

eastward and the velocity of its core, still located slightly south of the equator at about

50 m depth, has reduced to about 65 cm/s compared to 80 cm/s at 23◦W. But note that

contrary to the above discussed 23◦W section, the EUC is found here nearly completely

below σθ = 25.4kg/m3. The aforementioned two branches of the SEC are again observable

in the surface layer to either side of the EUC as well as the SEUC in the thermocline layer

near the southern boundary of the section. In the surface layer to the north of about 2◦N

there are indications of the eastward Guinea Current. At 3◦E, the overall circulation has

largely weakened and the EUC transport has reduced to 2.3 Sv, only three quarters of the

transport at 10◦W.
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Figure 4.5: Annual mean zonal velocity [contour interval is 10 cm/s] at 10◦W (left panel) and 3◦E
(right panel) from FLAME. Marked are isopycnals σθ = 25.4 and 26.8 kg/m3 (thick
solid lines). [Hormann and Brandt , 2007]

Seasonal cycle

Contrary to the afore discussed seasonal cycles of EUC transport that are calculated for

a fixed depth range, isopycnal layers are considered here for the meridional sections at

23◦W, 10◦W and 3◦E. Isopycnal layers are chosen because they follow the depth range

of the thermocline better. The seasonal cycle of thermocline EUC transport is derived

from eastward zonal velocities between ±2.5◦ in latitude and within the isopycnal range

σθ = 25.4−26.8kg/m3, whereas the seasonal cycle of total eastward transport is calculated

between ±2.5◦ in latitude and above σθ = 26.8kg/m3 (Figure 4.6). It is differentiated here

between thermocline EUC transport and total eastward transport because of the presence

of eastward surface currents, particularly in the eastern equatorial Atlantic during January

to March (Figure 4.3, upper panel).

At 23◦W, where a significant part of the EUC is found above σθ = 25.4 kg/m3 (Figure

4.1, lower left panel) and equatorial surface currents are usually westward (Figure 4.3,

upper panel), the seasonal cycle of total eastward transport represents that of the EUC. In

correspondence to Figure 4.2 (lower panel), the seasonal cycle of total eastward transport

at 23◦W is characterized by a maximum during September, a secondary maximum during

April and minima during May/June and February. The seasonal cycle of thermocline EUC

transport shows rather an annual cycle, with a maximum during August/September and

a minimum during February. At 10◦W, the seasonal cycles of thermocline EUC transport

and total eastward transport are in close agreement except during February to April. The

seasonal cycle of total eastward transport reveals maxima during September and March

and minima during May and boreal winter. In agreement with the 23◦W section, the sea-

sonal cyle of thermocline EUC transport is characterized by a maximum during September
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Figure 4.6: Seasonal cycle of thermocline EUC transport (dashed lines) and total eastward trans-
port (solid lines) [Sv] at 23◦W (upper panel), 10◦W (middle panel) and 3◦E (lower
panel) from FLAME. Transports are calculated between ±2.5◦ in latitude and be-
tween σθ = 25.4 − 26.8 kg/m3 in case of the thermocline EUC transport and above
σθ = 26.8 kg/m3 in case of the total eastward transport, respectively. [Hormann and
Brandt , 2007]

and a minimum during February/March. Overall, the seasonal cycles of both isopycnal

ranges are much diminished at 3◦E. But weak thermocline EUC transport maxima dur-

ing February and July as well as a pronounced total eastward transport maximum during

February are observable.

The strong thermocline EUC transport reduction compared to the total eastward transport

during boreal winter/spring at all three locations suggests that the boreal winter/spring

maximum is rather due to an eastward flow in the surface layer than in the thermocline

layer. This feature is in agreement with recent time series from moored ADCPs at 23◦W,

0◦ revealing the EUC closer to the surface during January to May [Provost et al., 2004;

Giarolla et al., 2005; Brandt et al., 2006].
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Figure 4.7: Longitude-time diagram of the meridional Ekman divergence between 2.5◦N and S
from FLAME. Contour interval is 1 m2/s. [Hormann and Brandt , 2007]

Meridional Ekman divergence

In order to study the relation between the seasonal cycle of EUC transport and wind-

induced equatorial upwelling, the meridional Ekman divergence between 2.5◦N and S(
T 2.5◦N

ek − T 2.5◦S
ek

)
from the FLAME model is presented (Figure 4.7). The pattern can

generally be described by divergences, associated with prevailing easterly winds, to the

west of about 0◦ and convergences, due to an eastward wind stress component related to

the low-pressure system on the African continent [du Penhoat and Treguier , 1985], farther

east. While the meridional Ekman divergence maximum during November can be found

throughout the equatorial Atlantic, there are regional differences concerning another max-

imum during boreal spring/summer. To the east of about 15◦W, this maximum shows up

during April to June whereas it appears between about 25−15◦W during July and farther

west during August. In the central and eastern equatorial Atlantic, the meridional Ekman

divergence is at minimum during August/September and February/March.

However, seasonal variations of the meridional Ekman divergence are rather dominated by

an annual harmonic near the western boundary, whereas a prevailing semiannual signal

is apparent in the central and eastern part of the basin [see Philander and Pacanowski ,

1986a].

Obviously, the seasonal cycle of the meridional Ekman divergence is not simply related

with the seasonal cycle of thermocline EUC transport, in particular due to a remote forc-

ing of the EUC strength. The boreal summer/autumn maximum of the EUC is regarded

as a near-equilibrium response to the equatorial easterly trades in the western and central

Atlantic [e.g., Philander and Pacanowski , 1980, 1986a], and thus a correspondence between

this EUC maximum and a maximum of the meridional Ekman divergence can be expected

near the western boundary during boreal summer/autumn. During February/March, the

meridional Ekman divergence minimum that is present throughout the equatorial Atlantic
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coincides with the thermocline EUC transport minima at 23◦W and 10◦W as well as with

the weak thermocline EUC transport maximum at 3◦E. Favored by the eastward shoaling

of the EUC, eastward wind stress anomalies drive directly surface and undercurrent layer

in the easternmost part of the equatorial Atlantic.

Mean box budget

For the purpose of further examining the relation between horizontal transports and up-

welling, in particular with regard to the EUC, Figure 4.8 (upper panel) shows an annual

mean box budget of the central and eastern equatorial Atlantic calculated from the FLAME

model. The boxes are defined by zonal sections at 2.5◦N, 2.5◦S, 7.5◦S and 15◦S as well as

by meridional sections at 23◦W, 10◦W and 3◦E, with section horizontal transports indi-

cated for both thermocline and surface layer. These mean transports are derived by first

calculating the respective transports for each time step and then averaging over the whole

period. Upwelling across σθ = 25.4kg/m3, which is generally below the mixed layer, results

from the continuity of the corresponding section horizontal transports of the surface layer,

i.e. horizontal transport divergences (convergences) lead to upwelling (downwelling).

At 23◦W, the thermocline layer is characterized by a strong eastward inflow in the equato-

rial belt (5.9 Sv) due to the EUC and a reduction of the eastward flow toward the African

coast. Associated with the eastward weakening of the thermocline flow along the equator,

there is significant upwelling throughout the equatorial belt. In this region, the surface

layer transports are predominantly characterized by a meridional divergence west of 10◦W

and a zonal divergence east of 10◦W. This feature is also illustrated in Figure 4.8 (lower

panel). While the total surface layer transport divergence is mainly determined by the

zonal transport divergence from the eastern boundary up to about 10◦W, the meridional

transport divergence contributes significantly just to the west of about 10◦W. The addi-

tionally depicted annual mean meridional Ekman divergence shows weak convergences to

the east of 5◦W, followed by a steep increase toward the west. As discussed by McCreary

and Lu [1994], the meridional transport in the surface layer is given by the Ekman drift

and the geostrophic transport [see Schott et al., 2004]. The geostrophic transport always

counteracts the Ekman transport which is the main reason for the difference between total

surface layer transport divergence and meridional Ekman divergence. However, equatorial

upwelling is most intense between 10◦W and 3◦E (1.5 Sv), coincident with strongest ther-

mocline EUC transport reduction (4.3 vs. 1.1 Sv). Although the eastward weakening of

the EUC is in part also due to a southward transport in the thermocline layer across 2.5◦S,

a significant part of the EUC supplies the equatorial upwelling. The adjacent southern belt

reveals also eastward transports in the thermocline layer, here attributed to the SEUC, as
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Figure 4.8: Upper panel: Annual mean transports [Sv] across box boundaries from FLAME
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westward starting at the African coast. [Hormann and Brandt , 2007]

well as westward transports above σθ = 25.4 kg/m3. As aforementioned, between 10◦W

and 3◦E the EUC loses some transport toward the south and thus contributes partly to the

strong upwelling (1.1 Sv) between 2.5−7.5◦S. But besides, the SEUC is also of importance

considering the upwelling in this belt. The coastal upwelling south of 2.5◦S is supplied

by a weak southward flow out of the equatorial belt and eastward flow across 3◦E. The

southernmost box, located east of 3◦E between 7.5− 15◦S, indicates a cyclonic circulation

in the thermocline layer as well as significant upwelling. These features can be associated
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with the Angola Dome which center was reported at 5◦E, 13◦S by Gordon and Bosley

[1991].

The annual mean box budget of the central and eastern equatorial Atlantic from the

FLAME model suggests a partial supply of both equatorial and coastal upwelling by the

EUC. In agreement with Figure 4.8 (upper panel), showing that the EUC transport loss

between 23◦W and 10◦W is mainly due to equatorial upwelling, a former study of the

tropical Atlantic’s mean mass budget by Philander and Pacanowski [1986b] yielded that

the EUC reduces its transport from 14.6 Sv across 30◦W to 4.5 Sv across 10◦W because

of equatorial upwelling. Philander and Pacanowski [1986a] pointed out that the eastern

equatorial Atlantic has a distinct semiannual cycle of upwelling and downwelling which

is primarily associated with the divergence of the westward surface flow, not with the

divergence of the meridional Ekman drift [Philander and Pacanowski , 1986b]. Similarly,

Verstraete [1992] noted that neither the meridional Ekman divergence at the equator nor

the coastal Ekman divergence due to alongshore winds can explain a significant part of

the upwelling in the Gulf of Guinea. A concomitant analysis of thermocline water masses

indicated a supply of the coastal upwelling by the EUC. Hazeleger and de Vries [2003]

studied the fate of water masses in the Atlantic EUC using a global 1/4◦ ocean model and

determined sites where water masses from the EUC upwell and later downwell by analyzing

Lagrangian trajectories. In the model study by Hazeleger and de Vries [2003], most of the

EUC water upwells in the equatorial region, even though other upwelling sites are found

close to the African continent.

4.3 Interannual variability

Boreal summer cold tongue variability

In order to further investigate the relation between zonal advection and equatorial up-

welling in the Atlantic cold tongue region, the focus is here on the period from June to

August (JJA) when the cold tongue is most pronounced. Considering the mean June-July-

August average of the near-surface temperature from the FLAME model in the central and

eastern equatorial Atlantic (Figure 4.9, left panel), a patch of low temperatures shows up

within the region 20◦W - 5◦E, 6◦S - 2◦N [see Xie and Carton, 2004] and in correspondence,

steric height values are also dropped in this region during boreal summer (Figure 4.9, right

panel). For both quantities, cold tongue indices are derived by averaging the near-surface

temperature and steric height anomalies of the 13-year model simulation during boreal

summer over the specified region (Figure 4.10a, b). The resulting time series are highly
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Figure 4.9: Mean June-July-August averages of 15m-temperature [contour interval is 2◦C] (left
panel) and steric height (relative to about 500 m) [contour interval is 4 cm] (right
panel) from FLAME. Marked is the box 20◦W - 5◦E, 6◦S - 2◦N. [Hormann and
Brandt , 2007]

correlated with each other (r = 0.87) and warm events occur generally in conjunction

with positive steric height anomalies. Calculating comparable cold tongue indices from

the NOAA OI SST and T/P sea surface anomaly data sets (Figure 4.10a, b) confirms the

close link between both time series found in the model (r = 0.84). Overall, there is also a

reasonable agreement of the respective extrema from the model and the observations, with

largest differences in the mid-1990s (see Figure 4.4).

Figure 4.10c shows the June-July-August averages of the thermocline EUC transport

anomalies, i.e. within the isopycnal range σθ = 25.4 − 26.8 kg/m3, at 35◦W, 23◦W and

10◦W. While the two time series at 23◦W and 10◦W are significantly anticorrelated with

both cold tongue indices from the model, correlation coefficients, in particular concerning

the near-surface temperature-based cold tongue index, are lower regarding the thermocline

EUC transport anomalies at 35◦W (Table 4.2). Both simulated cold tongue indices are

significantly correlated with the time series of the June-July-August average of equatorial

zonal wind stress anomalies in the western and central Atlantic (Figure 4.10d). This wind

time series is in turn anticorrelated with the time series of the thermocline EUC transport

anomalies, i.e. stronger EUC under enhanced easterlies.

In order to further illustrate the relation between extreme events and thermocline EUC

transport anomalies during boreal summer, Figure 4.11 presents the mean June-July-

August equatorial zonal velocities, zonal velocity anomalies and potential temperature

anomalies at 23◦W and 10◦W for three warm [1991, 1999, 2002] (cold [1990, 1992, 2001])

years occurring in conjunction with significantly reduced (enhanced) thermocline EUC

transports. The warm and cold events are clearly captured by the temperature distri-

butions, with anomalies generally more pronounced near the surface at 10◦W. It is also

apparent that the eastward EUC and the westward SEC north and south of the equator

are weaker (stronger) during warm (cold) events. Largest anomalies are found above the
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CTIθ15m CTISH500m

EUC, 35◦W -0.29 -0.53

EUC, 23◦W -0.59 -0.88

EUC, 10◦W -0.59 -0.58

Table 4.2: Correlation coefficients between cold tongue indices (CTI) and June-July-August ther-
mocline EUC transport anomalies from FLAME at 35◦W, 23◦W and 10◦W. 95%- and
99%-significance levels are 0.51 and 0.64, respectively. [Hormann and Brandt , 2007]

EUC core, i.e. mainly above σθ = 25.4 kg/m3, at 23◦W extending up to the surface. Thus,

westward surface velocities directly above the EUC core are enhanced (reduced) during

warm (cold) events.

It has been shown here that during boreal summer positive (negative) near-surface tem-

perature and steric height anomalies in the equatorial cold tongue region are linked with

reduced (enhanced) thermocline EUC transports in the central and eastern Atlantic as well

as weakened (increased) easterlies in the western and central part of the basin. Several

studies [e.g., Merle, 1980; Servain et al., 1982; Zebiak , 1993; Ruiz-Barradas et al., 2000]

already indicated that there is a link between SSTs in the east and surface winds in the

west and Góes and Wainer [2003] showed that the upper-ocean circulation decreases (in-

tensifies) during extreme warm (cold) years, with warm events usually occurring during

July.

Role of equatorial waves

Inspection of the zonal velocity and temperature anomalies during warm and cold events

showed generally largest anomalies within the surface layer (see Figure 4.11). Figure 4.12

(left panels) depicts transport anomalies of the 13-year model simulation after subtracting

the mean seasonal cycle, calculated between ±2.5◦ in latitude and above σθ = 25.4 kg/m3

at 23◦W and 10◦W. The corresponding variance-conserving power spectra (Figure 4.12,

right panels) reveal in both cases a spectral peak at a period of about 5 months, i.e. on

intraseasonal time scales. Cross-correlation analyses are now carried out between these

two transport time series and both near-surface temperature and steric height anomalies

(Figures 4.13 and 4.14). Note that transports within the surface layer are enhanced (re-

duced) during warm (cold) events. The surface layer transports in the equatorial belt are

generally dominated by the westward SEC that weakens (strengthens) during warm (cold)

events, although westward surface velocities directly above the EUC core are enhanced

(reduced) during warm (cold) events (Figure 4.11).
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The cross-correlation of the transport anomalies at 23◦W and 10◦W with near-surface tem-

perature anomalies in the central and eastern equatorial Atlantic (Figure 4.13, left panels)

reveals high correlations (up to 0.7) in the near-equatorial region to the west of 10◦W in

the cases of both sections. Focusing on the 10◦W section, somewhat weaker correlations

are also found in the near-equatorial region to the east of 10◦W as well as in coastal regions

south of the equator. The examination of the corresponding cross-correlations between the

transport anomalies and steric height anomalies (Figure 4.13, right panels) shows signifi-

cant correlations along the equator up to the African coast. Along the coast, the signal can

be traced up to 10◦N and 18◦S, respectively. This pattern is more pronounced regarding

the 10◦W section, particularly in the easternmost part of the basin.

Considering the corresponding cross-correlation time scales (Figure 4.14), an eastward

phase propagation along the equator, indicative of the presence of equatorial Kelvin waves,

can be found. Note that the time scales are somewhat different: Near-surface temperature

anomalies react slower to surface layer transport anomalies than steric height anomalies.

This can be explained by considering the propagation of downwelling/upwelling equatorial

Kelvin waves. The deepening and shallowing of the isopycnals associated with these waves
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Figure 4.13: Cross-correlation of transport anomalies, calculated between ±2.5◦ in latitude and
above σθ = 25.4kg/m3, at 23◦W (upper panels) and 10◦W (lower panels) with 15m-
temperature (left panels) and steric height anomalies (relative to about 500 m) (right
panels) in the central and eastern equatorial Atlantic from FLAME (95%-confidence
interval is 0.16). [Hormann and Brandt , 2007]
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2007]
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act in different ways: While the steric height relative to a fixed depth (here about 500 m) is

increased (reduced) in case of deeper (shallower) isopycnals, the near-surface temperature

is more indirectly affected by vertical mixing leading to a reduced (increased) downward

heat flux at the base of the mixed layer in case of deeper (shallower) isopycnals.

At the African coast, there are as well differences between the two quantities. In case of the

steric height anomalies, the signal bifurcates into two poleward branches along the coast

and a separation from the coast as well as an associated westward phase propagation can

be found between about 2 − 5◦N and S. The correlation between the 10◦W surface layer

transport anomalies and the near-surface temperature anomalies shows only a westward

phase propagation south of the equator whereas the northern counterpart is missing.

The cross-correlation analyses suggest a significant relation between equatorial transport

anomalies within the surface layer in the central and eastern Atlantic and both near-surface

temperature and steric height anomalies in the equatorial and coastal upwelling regions.

These findings are also confirmed by a corresponding coherence analysis at a period of

about 5 months (not shown) where both transport time series show their energy maxima

(see Figure 4.12, right panels).

4.4 Summary and discussion

The 1/12◦ FLAME model of the Atlantic Ocean was used here to study the EUC and

associated cold tongue variability. It was shown that the FLAME model is generally in

line with mean zonal velocity sections derived from shipboard observations at 35◦W and

near 23◦W, with mean EUC transports of 19.2 and 13.7 Sv compared to 19.9 and 14.0 Sv

from the observations. Considering the aspect of different vertical mixing parameteriza-

tions, FLAME was also compared to the SPFLAME run. While significant differences

emerged at 35◦W concerning the mean zonal velocity distribution and seasonal cycle of

EUC transport, a general agreement was found at 23◦W. Large discrepancies concerning

the seasonal cycle of EUC transport at 35◦W were also obtained by Hüttl and Böning

[2006] using model simulations with different horizontal resolutions. Studying the seasonal

variability of deep currents in the equatorial Atlantic, Böning and Kröger [2005] stated

that in contrast to the zonal flow patterns in the interior the recirculation patterns near

the western boundary appear sensitive to model resolution and parameterization choices.

However, due to the limited number of observations, a clear seasonal cycle of EUC trans-

port based on cross-equatorial ship sections is still not derivable.

A clear eastward weakening of the simulated FLAME EUC is apparent throughout the
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equatorial Atlantic. The seasonal cycle of total eastward transport is generally charac-

terized by two distinct maxima, one during boreal summer/autumn and another during

boreal winter/spring, but only the boreal summer/autumn maximum is found concerning

the thermocline EUC transport. In the easternmost part of the equatorial Atlantic there

is additionally a weak boreal winter/spring maximum in the thermocline layer that cor-

responds to an Ekman divergence minimum, and a forcing by local eastward wind stress

anomalies is suggested.

The simulation of the equatorial upper-layer currents, particularly the EUC, depends

strongly on the parameterization of the vertical mixing of momentum [Pacanowski and

Philander , 1981; Wacongne, 1989; Blanke and Delecluse, 1993]. Differences in the repre-

sentation of the surface mixed layer were suspected to be a main reason for variations in the

strength and eastward penetration of the EUC in the DYNAMO models [Dynamo Group,

1997]. The strong sensitivity of the simulated EUC to the vertical viscosity was confirmed

by Böning and Kröger [2005, Figure 2] considering several test runs with different pa-

rameterizations of the near-surface vertical mixing. Nevertheless, the simulated eastward

weakening of the EUC, in particular in the eastern equatorial Atlantic, is consistent with

several observations in this region [e.g., Hénin et al., 1986; Hisard and Hénin, 1987; Gou-

riou and Reverdin, 1992; Bourlès et al., 2002; Mercier et al., 2003]. This weakening of the

EUC was explained as closely related to thermocline shoaling, equatorial upwelling and

enhanced vertical mixing [Wacongne, 1989; Peterson and Stramma, 1991; Gouriou and

Reverdin, 1992].

While the boreal summer/autumn maximum is a common and well-understood feature of

the Atlantic EUC, regarded as a near-equilibrium response to the equatorial easterly trades

in the western and central part of the basin [e.g., Philander and Pacanowski , 1980, 1986a],

the causes of the boreal winter/spring maximum are less evident. In particular, different

mechanisms seem to be at play in the easternmost part of the equatorial Atlantic and the

regions to the west. The study by Arhan et al. [2006], showing the secondary EUC trans-

port maximum most pronounced near the western boundary, suggested remote forcing by

the low-latitude rotational wind component as well as supply from the western boundary

currents. Hisard and Hénin [1987] observed a much more rapid eastward weakening of

the EUC around 4◦W during summer and autumn than during winter and spring and a

survey of the subsurface salinity maximum associated with the EUC core suggested also

a deeper penetration of the EUC in the Gulf of Guinea during the latter two seasons. In

this context, the seasonal migration of the zonal wind reversal in the Gulf of Guinea is

believed to be of importance. The zonal winds in the Gulf of Guinea change from easterly

to westerly near 4◦W in the annual mean, but this reversal migrates westward with the

northward movement of the ITCZ. It is expected that the associated reversal of the zonal

pressure gradient migrates with the wind reversal, leading to an earlier termination of the
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EUC during boreal summer and autumn [Philander and Pacanowski , 1986a; Hisard and

Hénin, 1987].

The annual mean upwelling in the central and eastern equatorial Atlantic is found to be

supplied by the EUC, but the SEUC contributes as well. In the equatorial belt, the surface

layer transports are predominantly characterized by a meridional divergence west of 10◦W

and a zonal divergence east of 10◦W.

As a major contribution of the present study, a significant anticorrelation between EUC

transport anomalies in the central and eastern equatorial Atlantic and both near-surface

temperature and steric height anomalies in the cold tongue region is found during boreal

summer. The derived cold tongue indices are also linked with equatorial zonal wind stress

anomalies in the western and central part of the Atlantic basin, i.e. positive (negative)

near-surface temperature and steric height anomalies in the equatorial cold tongue region

occur in conjunction with weakened (enhanced) easterlies to the west. Consequently and

in agreement with the dynamics of the EUC, the EUC is reduced (enhanced) while the

winds relax (intensify).

In order to investigate the existence and seasonality of a coupled variability similar to

ENSO in the equatorial Atlantic, a recent study by Keenlyside and Latif [2007] discussed

the individual components of the Bjerknes feedback in the Atlantic. They concluded that a

weak Bjerknes feedback exists in the Atlantic, only active during boreal spring and summer.

The Bjerknes feedback which may be established on a time scale of one to two months can

amplify SST anomalies in the cold tongue region. These findings are confirmed by the here

performed analysis of the cold tongue season. Warm events are generally found to occur in

conjunction with relaxed easterlies to the west of the equatorial cold tongue which in turn

are linked with reduced EUC transports. Thus, the supply of cold thermocline waters to

the equatorial upwelling regions weakens leading to a further warming of the cold tongue.

In the Pacific, a pronounced variability of the EUC is known to occur in association with

El Niño, including a complete shutoff of the EUC during the largest events [Johnson et al.,

2002; Izumo, 2005].

Another main point here are the results of the cross-correlation analyses between equatorial

transport anomalies above σθ = 25.4 kg/m3 at 23◦W and 10◦W, with a spectral peak at a

period of about 5 months, and both near-surface temperature and steric height anomalies

in the central and eastern Atlantic. Significant correlations are found in the equatorial

and coastal upwelling regions and the corresponding cross-correlation time scales point

at an eastward phase propagation along the equator toward the African coast where the

signal bifurcates into two poleward branches along the coast. A separation from the coast

and an associated westward phase propagation are found between 2 − 5◦N and S. This

propagation pattern suggests the presence of equatorial waves. The linear equatorial wave

reflection theory indicates that an eastward propagating equatorial Kelvin wave imping-
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ing on a meridional east coast would be reflected into symmetrical westward propagating

Rossby waves and coastal Kelvin waves [Moore and Philander , 1977]. In consistency with

these theoretical considerations, França et al. [2003] yielded a significant lag correlation

between Kelvin and first meridional mode Rossby waves near the African coast from al-

timetry.

Model studies suggest different mechanisms creating SST anomalies in the cold tongue

region, among them are air-sea fluxes and subsurface processes as well as horizontal tem-

perature advection [Peter et al., 2006]. Of particular importance for the mixed layer heat

budget seem to be the dynamics associated with TIWs as shown by Jochum and Mur-

tugudde [2006]. However, observational data are up to now not sufficient enough to close

the mixed layer heat budget in the cold tongue region especially on interannual time scales.

In the present study, the Atlantic EUC and associated cold tongue variability were ana-

lyzed using the high-resolution FLAME model. While the available cross-equatorial ship

sections are very useful for determining the mean flow and possibly also the seasonal cycle

of EUC transport, simulated interannual EUC transport variability can only be verified by

moored observations mainly due to the large intraseasonal variability that is typically not

captured by shipboard measurements.



5. Upper equatorial Atlantic variability during 2002

and 2005

The model results in Section 4.3 showed that equatorial waves are of importance for the

Atlantic cold tongue region and the objective here is to investigate the upper equatorial

Atlantic variability associated with equatorial Kelvin waves within the context of the in-

terannual boreal summer variability from observations.

Substantial progress in the description of equatorial waves from observations has been

made with the availability of altimeter measurements: First attempts to fit meridional

equatorial wave modes to altimetric SSH data took place in the Pacific to investigate the

ENSO phenomenon [e.g., Delcroix et al., 1991]. In the Atlantic, equatorial waves and their

seasonal time scales have been described at an early stage from altimeter measurements

[e.g., Arnault et al., 1992] while their interannual time scales have only more recently been

established by França et al. [2003].

5.1 Interannual boreal summer variability

Surface conditions

The interannual boreal summer SST variability in the eastern Atlantic cold tongue and

the corresponding zonal wind stress variability in the western and central part of the basin

are presented in terms of June-July-August averages over the respective regions (Figure

5.1; see Section 4.3). In general, warm (cold) events in the east are linked with reduced

(increased) easterlies toward the west which is in good agreement with previous studies

[e.g., Servain et al., 1982; Zebiak , 1993]. The focus is here on the warm year 2002 and the

cold year 2005 when concomitant moored velocity observations are available.

Figure 5.2 illustrates the evolution of the different surface conditions prevailing during
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Figure 5.1: (a) June-July-August averages of SST over the region 20◦W - 5◦E, 6◦S - 2◦N (solid)
and zonal wind stress over the region 40◦W - 20◦W, 3◦S - 3◦N (dashed); normalized
by standard deviation. Marked are the years 2002 and 2005. (b) Mean June-July-
August zonal velocity [cm/s] at 23◦W, 0◦, with standard deviation (shaded), during
2002 (dashed line, light gray shading) and 2005 (solid line, dark gray shading); mean
flow calculated by subtracting annual and semiannual harmonics. (c) Same as (b), but
for temperature [◦C] at 23◦W, 0◦. (d) Temperature gradient [◦C/m] corresponding
to (c).[Hormann and Brandt , 2008]

these events: In boreal spring 2002, large positive SST anomalies1 (up to 2◦C) appear

in the eastern cold tongue region while the corresponding pattern during 2005 resembles

that of a dipole, with cold (warm) SST anomalies south (north) of the equator [see Foltz

and McPhaden, 2006, Figure 2b]. Considering the respective wind stress fields, reduced

(enhanced) easterlies are found in the western and central part of the basin during 2002

(2005). The easterlies are then around normal conditions in this region during boreal

summer 2002, but still enhanced in 2005. Compared to the boreal spring situation, SST

anomalies in the cold tongue region are reduced (enhanced) during boreal summer 2002

(2005) and a strong cooling of up to 2◦C is now observable in 2005. During boreal fall,

1 Note: Anomalies, as hereinafter referred to, are computed by subtracting the mean plus annual and
semiannual harmonics of both the respective satellite and (as far as available) mooring data for the
period end-August 2001 to December 2006.
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Figure 5.2: (a, c) March-April-May [MAM], (b, e) June-July-August [JJA] and (c, f) September-
October-November [SON] averages of SST anomalies [◦C; color coded] and zonal wind
stress anomalies [N/m2; vectors, with scale indicated in (a) and (c)] for the years 2002
(a - c) and 2005 (d - f). [Hormann and Brandt , 2008]

anomalies are generally small for both years.

However, the evolution of the surface conditions points to a possible relation between the

meridional and zonal mode during 2005 as first suggested by Servain et al. [1999]. Although

the northern hemisphere was on the whole anomalously cold during boreal spring 2002,

the large zonal gradient of southern hemisphere SST anomalies is here not characteristic

for the meridional mode.

Moored observations

In order to illustrate the subsurface differences between 2002 and 2005, mean boreal sum-

mer profiles at the equator, 23◦W are calculated from the moored observations (Figure

5.1b-d).
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Figure 5.3: (a) Zonal velocity anomalies [cm/s] at 23◦W, 0◦ from March to November 2002, with
marked 20◦C-isotherm depth (black line) to indicate thermocline depth. (b) Same as
(a), but for 2005. (c) Same as (b), but at 35◦W, 0◦. Data are smoothed by 7-day
running mean. [Hormann and Brandt , 2008]

The mean boreal summer zonal velocitiy profiles reveal a somewhat stronger and shallower

EUC core in 2002 (84± 16 cm/s, 65 m) than in 2005 (76± 16 cm/s, 90 m). Additionally,

the mean boreal summer temperature profiles reveal a deepening of the isotherms in the

depth range 40−120 m during 2005 compared to 2002. Considering the associated vertical

temperature gradients, the EUC is found to be embedded in a shallower (deeper) thermo-

cline during 2002 (2005).

The observed differences are also obvious as regards the corresponding zonal velocity

anomalies from March to November. Using the depth of the 20◦C-isotherm as an indicator

for thermocline depth, positive anomalies prevail above the shallow thermocline during

boreal summer 2002 (Figure 5.3a) while largely negative values are found above the deeper

thermocline during boreal summer 2005 (Figure 5.3b). In contrast to 23◦W, where anoma-

lies are most pronounced above the thermocline, distinct negative zonal velocity anomalies

are observable down to 200 m depth at 35◦W during boreal summer 2005 (Figure 5.3c).

Basically, the shallowing (deepening) of the EUC core during warm (cold) events is consis-

tent with the dynamics of the EUC driven by the eastward zonal pressure gradient force
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[e.g., Philander and Pacanowski , 1986a; Wacongne, 1989]. The observations are also in

general agreement with the model study by Góes and Wainer [2003] as well as with the

results presented in Section 4.3 revealing a shallower (deeper) structure of the EUC during

warm (cold) events. The oceanic adjustment to changes in the wind (responsible for set-

ting up the zonal pressure gradient) involves the presence of wind-driven waves [e.g., Cane

and Sarachik , 1976, 1977; Moore and Philander , 1977; Philander and Pacanowski , 1986a].

A recent study by Han et al. [2008] showed that equatorial Kelvin waves dominated sea

level and thermocline variability throughout the equatorial Atlantic during boreal spring

2002. In the following, these waves are further investigated with respect to the observed

differences in the upper equatorial Atlantic oceanic conditions during 2002 and 2005.

5.2 Equatorial Kelvin waves

Moored observations

In order to document the presence of equatorial Kelvin waves during both the warm event

in 2002 and the strong cold event in 2005, the available moored 20◦C-isotherm depth

(Figure 5.4a, d) and dynamic height anomalies (Figure 5.4b, e) at 35◦W, 0◦ and 23◦W,

0◦ are considered for the respective March to November periods. These time series are

found to be highly correlated (correlation coefficient [cc] ∼ 0.9, with 95%-significance level

of 0.13) at both locations during 2002 and 2005.

Besides, reasonable correlations are found between 20◦C-isotherm depth anomalies and

EUC core depth anomalies (cc = 0.54/0.38 at 23◦W, 0◦ during March/June to November

2002/2005 and cc = 0.47 at 35◦W, 0◦ during March to November 2005), and dynamic

heights are closely related to SSHs at the two mooring sites (not shown).

As stated by Rebert et al. [1985] for the tropical Pacific, dynamic height and sea level

fluctuations agree only in those areas where the thermal structure resembles a two-layer

system very well and sea level fluctuations were as well observed to be a good measure of

thermocline depth variations.

Cold tongue SSH and SST anomalies are also well correlated with each other during 2002

(cc = 0.72, 95%-significance level is 0.22), with positive anomalies prevailing around mid-

May related to the warm event (Figure 5.4c). During 2005, the correlation of the two

variables drops to 0.50 and large discrepancies are found from mid-May to mid-July when

SST anomalies are strongest negative (Figure 5.4f).

França et al. [2003] already noted a partial lack of correspondence between SSH and SST

anomalies in the equatorial region. The propagation of equatorial Kelvin waves from the
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Figure 5.4: (a) Time series of 20◦C-isotherm depth anomalies at 35◦W, 0◦ [m; gray] and 23◦W, 0◦

[m; black] from March to November 2002; positive values indicate deeper thermocline.
Data are smoothed by 7-day running mean. (b) Same as (a), but for dynamic height
anomalies [cm]. (c) Time series of SSH [cm; gray] and SST [◦C; black] anomalies
averaged over the region 20◦W - 5◦E, 6◦S - 2◦N from March to November 2002.
(d - f) Same as (a - c), but for 2005. [Hormann and Brandt , 2008]
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year

(Mar. - Nov.) variable correlation lag phase velocity

2002 z20◦C 0.62 12 d 1.3 m/s

2002 dyn. h 0.58 11 d 1.4 m/s

2005 z20◦C 0.47 10 d 1.5 m/s

2005 dyn. h 0.38 7 d 2.2 m/s

Table 5.1: Maximum lagged correlation coefficients and corresponding lags of equatorial 20◦C-
isotherm depth anomalies (z20◦C) and dynamic height anomalies (dyn. h) at 35◦W, 0◦

with their respective counterparts at 23◦W, 0◦ (according to the time series shown in
Figure 5.4a, b and d, e); 95%-significance level is 0.13. Also given are estimated phase
velocities (see text for details). [Hormann and Brandt , 2008]

35◦W, 0◦ ∼ 23◦W, 0◦

1. baroclinic mode 2.5 m/s 2.4 m/s

2. baroclinic mode 1.5 m/s 1.4 m/s

3. baroclinic mode 1.0 m/s 0.9 m/s

Table 5.2: Theoretical phase velocities of the first three baroclinic modes as estimated from a
vertical mode decomposition at 35◦W, 0◦ and near 23◦W, 0◦ (see text for details).
[Hormann and Brandt , 2008]

western basin into the eastern basin could be followed in the SSH data, but not in the SST

data. As the SSHs can mainly be attributed to dynamical effects, the observed differences

between SSH and SST in the cold tongue region during boreal summer 2005 suggest that

the influence of ocean dynamics on SST might be of minor importance.

However, considering lagged correlations of the equatorial 20◦C-isotherm depth anomalies

and dynamic height anomalies at 35◦W with their respective counterparts at 23◦W (Table

5.1), significantly larger coefficients are obtained for 2002 than 2005. The lags (dt) of

maximum correlation are then used to estimate corresponding phase velocities:

c =
dx

dt
(5.1)

with dx here the distance between 35◦W, 0◦ and 23◦W, 0◦. Apart from the 2005 - dynamic

height case, where pronounced differences are obvious between the 35◦W - and 23◦W -

time series and correlation is lowest (cc = 0.38), the calculated phase velocities are around

1.4 m/s eastward.

These estimates agree well with theoretical values of the second baroclinic equatorial Kelvin

wave mode (Table 5.2) as derived from a vertical mode decomposition of the mean stratifi-

cation at 35◦W, 0◦ and near 23◦W, 0◦ by use of the available ship sections at these locations
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(see Table 2.1). Comparable values were also reported in recent studies by Illig et al. [2004,

Table 1], Schouten et al. [2005] and Han et al. [2008, Table 1].

Basinwide characteristics

In order to investigate the equatorial Kelvin waves in a basinwide context, the available

satellite observations of SSHs are now considered in detail. Figure 5.5 illustrates appar-

ent eastward propagating SSH anomalies along the equator which are superimposed on

a strong seasonal cycle [see e.g., Arnault et al., 1992; Schouten et al., 2005]. The SSH

anomalies also mirror the general features of the boreal summer extreme events as shown

in Figure 5.1a, with prevailing positive (negative) values in the cold tongue region during

warm (cold) events [see e.g., França et al., 2003].

The wind-driven characteristics of these eastward propagations are illustrated by perform-

ing a lagged correlation analysis between zonal wind stress anomalies in the west (Figure

5.6a, same wind region as in Figure 5.1a) and SSH anomalies in the entire equatorial

basin. Significant positive maximum correlation coefficients are found along the equator

from about 30◦W toward the African coast and an eastward phase propagation along the

equator is obvious (Figure 5.6b, c). The corresponding propagation velocity can be esti-

mated to 1.6 m/s (see Equation 5.1) which is again close to the theoretical value of the

second baroclinic Kelvin wave mode (see Table 5.2). As regards the equatorial region to

the west of about 30◦W where positive correlations are insignificant or negative correla-

tions are present [see Han et al., 2008], the SSH variability is here generally lower than in

the regions farther east along the equator as well as northward and southward along the

African coast (Figure 5.6d). High SSH variability at the western boundary and along 5◦N

is associated with the NBC retroflection/generation of NBC rings and the instability of

the NECC [e.g., Schouten et al., 2005; von Schuckmann et al., 2008, Figure 1].

However, zonal wind stress anomalies in the west appear to play an important role in

forcing equatorial Kelvin waves as was also most recently suggested by Han et al. [2008].

In addition, Han et al. [2008] noted a particularly strong correlation between zonal wind

anomalies in the central-western equatorial basin and anomalous sea levels across the equa-

torial basin during 2002.

Kelvin wave fit

The equatorial SSH variability, strongly indicating the presence of equatorial Kelvin waves,

will now be discussed in terms of the linear equatorial wave theory [Matsuno, 1966].
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Figure 5.5: (a) SSH [cm] and (b) corresponding anomalies [cm] along the equator. Positive values
are shaded gray and contour interval is 5 cm. [Hormann and Brandt , 2008]
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Figure 5.6: (a) Time series of zonal wind stress anomalies averaged over the region 40◦W - 20◦W,
3◦S - 3◦N. (b) Positive maximum lagged correlation coefficients above 95%-significance
level [= 0.08] and (c) corresponding lags between the wind time series shown in (a),
region is marked by the box, and equatorial Atlantic SSH anomalies. Anomalies are
smoothed by 10.5-day running mean. (d) Standard deviation of equatorial Atlantic
SSH anomalies. [Hormann and Brandt , 2008]
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Figure 5.7: Lagged correlation analyses of SSH anomalies along the equator with (a) 35◦W, 0◦

and (b) 23◦W, 0◦ as reference longitudes. Contour interval is 0.2 (black) and white
line corresponds to estimated phase velocity as given in the lower right-hand corner
(see text for details). [Hormann and Brandt , 2008]

First, the phase velocitiy of the SSH anomalies along the equator for the period end-

August 2001 to December 2006 is computed in a more rigorous manner by performing

lagged correlation analyses as a function of longitudinal separation. 35◦W and 23◦W are

chosen as reference longitudes and in each case a 2-dimensional polynomial fit in time is

applied at all single longitudes along the equator for a better estimate of the linear slope

through the points of maximum correlation. This slope is then used to finally calculate

the respective phase velocities by taking only correlations greater or equal 0.2 into account

(see Equation 5.1, Figure 5.7). The obtained values are 1.8 m/s for the 35◦W - case and

2.0 m/s for the 23◦W - case which are somewhat higher than the above estimates and fall

within the range between the first and second baroclinic mode of equatorial Kelvin waves

(see Table 5.2). These phase velocities are also in good agreement with previously reported

values based on altimeter measurements [e.g., Katz , 1997; França et al., 2003; Han et al.,

2008; Polo et al., 2008].

Using an average phase velocity of c = 1.9 m/s, the equatorial Atlantic SSH anomalies

are fitted in a least-square sense to the theoretical meridional (y) structure of equatorial

Kelvin waves:

η(y) = η0 exp(−βy2/2c) (5.2)

with β = 2.28 × 10−11 m−1s−1 (see Appendix A1). This fit accounts for up to 90% of

the variance along the equator while explained variances decrease to about 60% at 3◦ and

20% at 5◦ in latitude, respectively (Figure 5.8). The structure function (Equation 5.2)

that represents a mixture between first and second baroclinic mode waves is thus able to

capture the dominant part of the equatorial Kelvin wave variability in the Atlantic.
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Figure 5.8: (a) Theoretical meridional structure of equatorial Kelvin waves according to Equation
5.2, with η0 = 1 and c = 1.9 m/s. (b) Explained variances corresponding to the least-
square fit of SSH anomalies in the equatorial Atlantic to the theoretical meridional
structure of equatorial Kelvin waves. [Hormann and Brandt , 2008]

Equatorial Kelvin wave mode

The fitted SSH anomalies are then used to describe the equatorial Kelvin wave variability

in terms of complex empirical orthogonal functions (CEOFs) [Barnett , 1983]. This tech-

nique is here more suitable than traditional EOF analysis because it is capable of detecting

propagating features in space.

The 1. CEOF explains 50.1% of the variance along the equator, with spatial amplitude

maxima in the central part of the basin and relative phase increasing from west to east

(Figure 5.9c). This spatial phase distribution clearly indicates an eastward propagation

along the equator as consistent with the equatorial Kelvin waves. Considering the corre-

sponding temporal amplitudes, equatorial Kelvin waves appear to be exceptionally strong

during 2002 (Figure 5.9a, b).

However, this mode shows a robust pattern of eastward propagating Kelvin waves along

the equator and is adequate to describe their interannual variability in the equatorial region.
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Figure 5.9: 1. CEOF of fitted SSH anomalies along the equator: (a) temporal amplitude, (b)
corresponding real (black) and imaginary (gray) components [normalized units], and
(c) spatial amplitude [cm; black] and relative phase [◦; gray]. [Hormann and Brandt ,
2008]

Regression analyses

The equatorial Kelvin wave mode, i.e. the real and imaginary temporal components (see

Figure 5.9b), is taken as a basis to analyze related oceanic variations with respect to the

observed differences during 2002 and 2005. In order to do so, linear regression analyses are

carried out with both satellite and moored observations.

Satellite observations

The absolute regression map of SSH anomalies for the period end-August 2001 to December

2006 reproduces well the pattern of eastward propagating Kelvin waves along the equator,

with largest amplitudes in the central equatorial Atlantic (Figure 5.10a). Remarkable dif-
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Figure 5.10: (a) Absolute regression map of SSH anomalies [cm] in the equatorial Atlantic onto the
1. CEOF real and imaginary temporal components (see Figure 5.9b), with superim-
posed relative phase contours [◦]. (b, c) Corresponding regressed SSH anomalies [cm]
along the equator for March to November 2002 (b) and 2005 (c); positive values are
shaded gray and contour interval is 2 cm. (d) Explained variances according to (b, c)
[2002: black, 2005: gray]. [Hormann and Brandt , 2008]

ferences become obvious when comparing the time series of regressed SSH anomalies along

the equator from March to November 2002 and 2005. While positive (negative) anomalies

prevail during boreal spring (summer and fall) 2002, weak positive anomalies are found

from about mid-March to mid-October 2005 (Figure 5.10b, c).

The regression analysis accounts for about 80% and 55% of the variance in the central

part of the basin during 2002 and 2005, respectively. Although somewhat lower values are

also found in the eastern equatorial Atlantic during 2002, there is a substantial decrease to
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Figure 5.11: (a) Absolute regression map of SST anomalies [◦C] in the equatorial Atlantic onto
the 1. CEOF real and imaginary temporal components (see Figure 5.9b) for March
to November 2002, with superimposed explained variances. (b) Same as (a), but
for 2005. Note the different color scales for 2002 and 2005. White box marks cold
tongue region. [Hormann and Brandt , 2008]

only about 15% of explained variance during 2005 (Figure 5.10d). This strong reduction

confirms the previous suggestion that dynamic processes, i.e. the eastward propagation of

equatorial Kelvin waves, might be of minor importance in the cold tongue region during

boreal summer 2005.

Likewise, there are also differences in Kelvin wave related SST variability during 2002 and

2005. Figure 5.11 shows the respective March to November absolute regression maps of SST

anomalies in the equatorial Atlantic, with generally larger values in the central and eastern

part of the basin during 2005 (up to twice as much, note the different color scales in Figure

5.11). In the central equatorial Atlantic, where magnitudes are rather small compared to

regions farther east, explained variances are in both cases between about 15 − 40%. In

contrast, there is less agreement between both years in the eastern part of the cold tongue,

with generally lower values of explained variance during 2005. These characteristics that

are obtained from the co-variance between the equatorial Kelvin wave mode and SST also

fit together on the one side with the observed strong cold tongue cooling during boreal

summer 2005 (i.e., large amplitudes of SST anomalies) and on the other side, as above

discussed, with the minor importance of equatorial Kelvin waves in the eastern equatorial

Atlantic during that same year.
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Additionally, maximum regression values are found in the eastern coastal regions south of

the equator during both 2002 and 2005. But while the regression analysis accounts for

about 40% of the variability in this region during 2002, again lower values are obtained

for 2005. As indicated in Figure 5.10a, the equatorial Kelvin waves appear to propagate

further along the African coast and can consequently contribute to the SST variability in

the coastal upwelling regions. This continuing propagation as coastal Kelvin waves from

the equator northward and southward along the African coast is studied in detail by Polo

et al. [2008].

Moored observations

The subsurface oceanic variability during 2002 and 2005 co-varying with the equatorial

Kelvin wave mode is now examined by using the available mooring data.

Basically, the regressed 20◦C-isotherm depth anomalies at 35◦W, 0◦ and 23◦W, 0◦ (not

shown) resemble the time series of regressed SSH anomalies during 2002 and 2005 (see

Figure 5.10b, c). In order to point toward possible causes for the observed differences in

the eastern equatorial Atlantic, corresponding regressed thermocline slope anomalies along

the equator are considered here. The thermocline slope is computed as the difference be-

tween the moored 20◦C-isotherm depths at 35◦W and 23◦W divided by the distance, with

positive slope anomalies indicating an increased eastward thermocline rise compared to the

mean state.

The regressed anomalies show negative thermocline slope anomalies from March to June

2002, a strong increase of the thermocline slope during June/July and positive thermocline

slope anomalies afterwards. During 2005, the thermocline slope is increased (reduced) prior

to (after) July 2005 (Figure 5.12a). As regards the regressed SST anomalies in the cold

tongue region, positive (negative) values usually occur in correspondence with a(n) reduced

(increased) thermocline slope. Note that while the observed evolution of cold tongue SST

anomalies is generally captured by the regressed time series during 2002, the strong cooling

during 2005 is not reproduced by the regression analysis (Figure 5.12b).

While the direct influence of equatorial Kelvin waves on SST variability in the cold tongue

region is small, the anomalous reduced (increased) thermocline slope co-varying with the

equatorial Kelvin wave mode prior to the cold tongue onset in 2002 (2005) appears to be

favorable for the development of a warm (cold) event.

Considering now the zonal velocity anomalies at 23◦W, 0◦ co-varying with the equatorial

Kelvin wave mode, both the overall regression amplitude (∼ 6.5 cm/s) and corresponding

explained variance (∼ 20%) are largest at 110 m depth with a secondary maximum near
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Figure 5.12: (a) Regressed thermocline slopes, with the 1. CEOF real and imaginary temporal
components taken as a basis (see Figure 5.9b), from March to November 2002 (black)
and 2005 (gray); positive slope anomalies indicate an increased eastward thermocline
rise (see text for details). (b) Same as (a), but for regressed SST anomalies averaged
over the cold tongue region 20◦W - 5◦E, 6◦S - 2◦N. [Hormann and Brandt , 2008]

the surface (Figure 5.13a). Figure 5.13b presents variance-conserving power spectra of

30 m - and 110 m - zonal velocities at 23◦W, 0◦ and generally higher power is found for

the near-surface current. Besides the strong spectral peaks in 30 m - zonal velocities at

periods of about 7 and 25 days that are extensively discussed by e.g. Grodsky et al. [2005]

and Bunge et al. [2007] for the first current meter mooring deployment period during 2002

and the latter one related to TIWs, enhanced power is also observable at a period of about

60 days. This 60 - day variability is as well present in the 110 m - zonal velocities, here of

equal magnitude as the 25 - day peak, and Han et al. [2008] attributed the dominant spec-

tral peak at 40 - 60 days during 2002/03 mainly to first and second baroclinic equatorial

Kelvin wave modes.

In order to further illustrate the effect of equatorial Kelvin waves on 23◦W - zonal velocity

anomalies at the equator, a lagged correlation analysis is performed with respect to SSH

anomalies all along the equator (Figure 5.13c, d). Both the primary and secondary max-

imum of the regression analysis (Figure 5.13a) are here well reproduced and maximum
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cients above 95%-significance level [= 0.14] and anomalies are smoothed by 10.5-day
running mean for the correlation analysis; mooring position is marked by black “x”
at 0 m. [Hormann and Brandt , 2008]

correlation coefficients at around 110 m depth are up to twice as much as near the sur-

face. Note the negative values in between these maxima, with a minimum at about 50 m

depth near the western boundary. In case of the near-surface currents largest coefficients

are confined to the central and eastern equator whereas maximum values are found at the

western and central equator as regards the currents around 110 m depth. Although there

are also indications for an eastward propagation along the equator in case of the near-

surface currents, such a propagation is more pronounced in the depth range of the primary

regression maximum. For the 110 m - zonal velocity anomalies, the corresponding phase

velocity can be estimated to about 1.8 m/s which again fits well in the range between the
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first and second baroclinic equatorial Kelvin wave modes (see Table 5.2).

While the high correlation coefficients at the central and eastern equator can be related

to zonal wind variations in the western and central equatorial Atlantic, such fluctuations

are not responsible for the large values in the west as obtained for the depth range of the

primary regression maximum (see Figure 5.6b). In this context, wave reflection processes

at the western boundary may be of importance, but it was not possible to establish such

a mechanism using the available data. Illig et al. [2004] suggested that the presence of

a strong western boundary current, the NBC, may modify/inhibit reflections of westward

propagating Rossby waves into equatorial Kelvin waves. During boreal fall - winter, Polo

et al. [2008a] surmised a forcing of SSH anomalies in the west by Ekman pumping anoma-

lies due to basinscale atmospheric intraseasonal oscillations associated with shifts of the

ITCZ.

For low baroclinic modes, near-surface positive correlation coefficients are associated with

Kelvin waves and negative correlation coefficients with Rossby waves. The observed nega-

tive correlation coefficients in between regions of positive correlation coefficients near the

surface and below the EUC core (Figure 5.13c) might be related to equatorial Rossby waves

[e.g., Moore and Philander , 1977], but a corresponding westward propagation could not be

evidenced here.

5.3 Summary and discussion

The upper equatorial Atlantic variability during 2002 and 2005 was here analyzed with

respect to equatorial Kelvin waves; based on both moored and satellite observations.

The inspection of the interannual boreal summer cold tongue variability revealed a warm

event during 2002 and a strong cold event during 2005 in conjunction with reduced and

enhanced easterlies to the west, respectively. According to its dynamics, the EUC was

observed to be embedded in a shallower (deeper) thermocline during boreal summer 2002

(2005) at 23◦W, 0◦. But while model studies also indicate an overall weakening (increasing)

of the upper ocean equatorial circulation during warm (cold) events [see Section 4.3; Góes

and Wainer , 2003], the EUC core velocity was here observed to be somewhat stronger in

2002 than 2005. Weisberg et al. [1987] analyzed moored observations at 28◦W, 0◦ from

February 1983 to October 1985 (i.e., covering the warm event during 1984) and noted that

the speed at the EUC core remained relatively steady throughout the year.

However, it was shown that anomalous winds in the west can excite Kelvin waves along

the equator and former studies suggested a remote forcing of SST anomalies in the eastern

equatorial Atlantic via these waves [e.g., Moore et al., 1978; Servain et al., 1982; McCreary
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et al., 1984]. During both 2002 and 2005, equatorial Kelvin waves were found to be present

in moored observations of 20◦C-isotherm depth anomalies and dynamic height anomalies at

35◦W, 0◦ and 23◦W, 0◦. Their phase velocity was basically estimated to be about 1.4 m/s

eastward which is in good agreement with the theoretical value of the second baroclinic

equatorial Kelvin wave mode (see Tables 5.1 and 5.2).

Eastward propagations along the equator were also prominent in the basinwide SSH anoma-

lies, with an overall phase velocity between 1.8− 2.0 m/s. This somewhat higher estimate

for the whole period from end-August 2001 to December 2006 fits well in the range between

the first and second baroclinic mode of equatorial Kelvin waves. Note that the SSH is most

sensitive to the lowest baroclinic modes as for higher baroclinic modes the canceling effect

of positive and negative isopycnal displacements within the water column increases. How-

ever, the second baroclinic mode was found to be the most energetic in the model study

by Illig et al. [2004] and Han et al. [2008] also suggested a more important role of this mode.

The SSH variability was then described in terms of an equatorial Kelvin wave mode by

first performing a least-square fit to the theoretical meridional Kelvin wave structure that

was in turn subject to a CEOF analysis. This mode accounted for 50.1% of the variance

along the equator and captured well the characteristics of equatorial Kelvin waves, with

wave activity exceptionally strong during 2002.

Based on the equatorial Kelvin wave mode, regression analyses were carried out to derive

related oceanic variations with respect to the observed differences during 2002 and 2005.

The regressed SSH anomalies along the equator clearly illustrated strong discrepencies in

Kelvin wave activity during the two years, with generally weaker waves in 2005. While a

large part of the SSH variability in both the central and eastern equatorial Atlantic was

captured by the regression analysis during 2002, this was different during 2005: In the

central part of the basin, more than 50% of the SSH variance could be explained but only

about 15% in the east. In addition, the observed evolution of cold tongue SST anomalies

was generally captured by the regressed time series during 2002 but the strong cooling

during 2005 was not. Thus, these findings confirmed the suggested minor importance of

ocean dynamics during the cold event itself (see Figure 5.4f).

The direct influence of equatorial Kelvin waves on SST was found to be generally small, i.e.

SST anomalies co-varying with the equatorial Kelvin wave mode explain only a small part

of the large SST variability in the cold tongue region. But preconditioning of the upper

layer stratification before the onset of the cold tongue may be important for its strength

during boreal summer. The examination of the regressed thermocline slope anomalies dur-

ing 2002 and 2005 revealed that an anomalously reduced (increased) thermocline slope may

be favorable for the development of a warm (cold) event. In consequence of an anoma-

lously steep slope, the thermocline will be closer to the surface in the east than usual and
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subsurface ocean processes are more tightly coupled to surface processes. As a result, the

role of equatorial dynamics may be diminished in this region and the exceptional shallow

thermocline in the eastern equatorial Atlantic during boreal summer 2005 [B. Bourlès, pers.

comm.] may be a reason for the ascertained minor importance of the equatorial Kelvin

waves here compared to 2002.

Anomalous thermocline slopes prior to Atlantic extreme events are generally well estab-

lished and ocean dynamics are known to play a prominent role in their generation [e.g.,

Philander , 1986; Weisberg and Tang , 1987; Carton and Huang , 1994; Carton et al., 1996;

Vauclair and du Penhoat , 2001]. For instance, the anomalous deepening of the oceanic

thermocline in the eastern basin prior to the warm event in 1984 that was proceeded

by weaker-than-normal trade winds [Philander , 1986] resulted from an eastward shift of

anomalous heat within the equatorial waveguide [Carton and Huang , 1994]. Due to re-

laxed (intensified) winds in the west, the thermocline there shoals (deepens) and excited

equatorial Kelvin waves are believed to be important for the subsequent adjustment of

the thermocline slope along the equator [e.g., Moore et al., 1978; McCreary et al., 1984;

Zebiak , 1993]. In addition, linear equatorial wave reflection theory indicates that an east-

ward propagating Kelvin wave impinging on a meridional east coast would be reflected

into symmetrical westward propagating Rossby waves and coastal Kelvin waves [Moore

and Philander , 1977]; leading to an extended response throughout the eastern basin.

The reversal of the regressed thermocline slope anomalies during boreal summer also in-

dicates a possible contribution of equatorial Kelvin waves to the oceanic readjustment

after the extreme events, with prevailing upwelling (downwelling) Kelvin waves along the

equator after the warm (cold) event in 2002 (2005). Otherwise, the simple model study

by Zebiak [1993] suggested that the dominant processes contributing to the decay of the

SST in the eastern equatorial Atlantic are horizontal advection, particularly the meridional

component, and the damping effect of the surface heat flux.

However, the zonal velocity anomalies at 23◦W, 0◦ were also found to co-vary with the

equatorial Kelvin wave mode and the main effect of these waves was noticed well below

the EUC core at 110 m depth, with a secondary maximum near the surface. Johnson

and McPhaden [1993a] studied the vertical structure of equatorial Kelvin waves in the

Pacific using frequency-domain EOFs. Besides an amplitude maximum at the surface, the

spatial zonal velocity patterns revealed a local amplitude maximum below the EUC core

attributed to wave - mean flow interactions. In a follow-up study, Johnson and McPhaden

[1993b] identified mean vertical advection as the most important effect in modifying linear

equatorial Kelvin wave propagations. A subsurface amplitude maximum in zonal velocity

below the EUC core was also found by Kutsuwada and McPhaden [2002] investigating

intraseasonal variations in the upper equatorial Pacific prior to and during the 1997-98 El

Niño.
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As a key result here, the presence of equatorial Kelvin waves resulted in a flat (inclined)

thermocline prior to the cold tongue onset in 2002 (2005) that is crucial for the shallowing

(deepening) of the EUC core at 23◦W and that might precondition the development of

the warm (cold) event. Preconditioning of the upper layer stratification may also be im-

portant for a predictability of Atlantic extreme events that are closely linked with rainfall

variability over the tropical ocean and adjacent land regions [e.g., Carton and Huang , 1994;

Giannini et al., 2003; Kushnir et al., 2006; Chang et al., 2006].



6. Concluding synthesis

The aim of this study was to contribute to the understanding of the ocean’s role for climate

variability in the tropical Atlantic sector. In this regard, the focus was on the importance

of the EUC and equatorial Kelvin waves for SST variability in the eastern Atlantic cold

tongue region. On interannual time scales, the coupled ocean-atmosphere variability as-

sociated with the zonal mode is often viewed as the Atlantic counterpart of the Pacific

ENSO [e.g., Merle et al., 1980; Xie and Carton, 2004; Kushnir et al., 2006; Chang et al.,

2006]. While considerable progress has been made in understanding tropical Pacific vari-

ability with the deployment of the Tropical Atmosphere-Ocean (TAO) array starting in

the mid-1980s [McPhaden et al., 1998], observations are more limited in the Atlantic; par-

ticularly in the eastern part of the basin.

Although a sufficient number of shipboard current profiling sections is now available in both

the western and central equatorial Atlantic to determine the mean structure of the zonal

circulation, and to estimate mean transports of the principal equatorial current branches

(see Chapter 3), the observations are still not conclusive with regard to the seasonal trans-

port cycles (see Chapter 4). In addition, shipboard measurements usually do not capture

interannual transport variability (mainly due to large intraseasonal fluctuations) that can

only be determined by moored observations. On the other hand, a single equatorial moor-

ing does not allow definite statements on transport changes, even though they have been

shown to be extremely valuable for documenting upper ocean processes such as equatorial

waves (see Chapter 5). Despite limitations in spatial and temporal coverage of moored

observations compared to satellite data sets typically used to study equatorial wave dy-

namics, these latter products need to be evaluated against in-situ measurements.

The backbone of the current observational system in the tropical Atlantic are the PIRATA

Autonomous Temperature Line Acquisition System (ATLAS) buoys, with data made avail-

able in real time, complemented by (non-real time) equatorial subsurface moorings at 35◦W,

23◦W, 10◦W, and 0◦. Within the framework of various programs, specifically the Trop-

ical Atlantic Climate Experiment (TACE), observational efforts are underway to extend

the moored time series measurements in the central and eastern tropical Atlantic that are

essential for the understanding of the relative contributions of air-sea fluxes and ocean

dynamics to SST variability and subsurface heat content at seasonal to interannual time
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Figure 6.1: TACE observational strategy. The proposed observing system components include
(see legend): Continuation of PIRATA moorings, subsurface moorings, island me-
teorological and tide gauge stations, enhanced float/drifter coverage in the eastern
tropical Atlantic, repeated atmospheric soundings along 23◦W, ship-of-opportunity
(SOOP) expendable bathythermograph (XBT) lines, and selected glider transects.
[From http://tace.ifm-geomar.de]

scales. Besides an extended mooring array, the proposed TACE observational strategy in-

cludes also an enhanced drifter/float coverage in this region as well as glider transects (see

Figure 6.1) [Schott et al., 2004a]. As proven by the Pacific TAO array, intensified obser-

vations are needed for a more comprehensive understanding of the underlying dynamics of

coupled ocean-atmosphere phenomena and their predictability to develop forecast systems

using coupled ocean-atmosphere models.

At present, the eastern equatorial Atlantic is poorly represented in such models and is a

region of low prediction skill on seasonal to interannual time scales. Most coupled models

without flux corrections show large deviations from observed SST in this area, displacing

the cold tongue far to the west and instead possessing a warm eastern equatorial regime

[Davey et al., 2002]. Any successful dynamic prediction, requires the elimination of such

biasses in the fully coupled models. In order to achieve progress in this regard, a more re-

alistic model representation of the important ocean mechanisms affecting cold tongue SST

is required and the current observational initiatives in the tropical Atlantic will provide

the necessary data base to critically test and improve forecast models. In this context, the

proposed observations can be utilized in the routine generation of assimilation products

for both state estimation and initialization of the coupled ocean-atmosphere models.
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SST prediction as well as climate change projections in the tropical Atlantic sector are

presently still limited, but focused observational and modelling efforts in this region are

underway to shed light on the underlying processes that are crucial for advancing the pre-

dictability of climate variability in the Atlantic.



Appendix

A1 Linear equatorial wave theory

A brief review of the linear equatorial wave theory is presented to establish the theoretical

framework of the analysis in Section 5.2.

Considering the nondimensionalized inviscid shallow water equations on an equatorial β-

plane in the long-wave, low-frequency approximation [with cn defined as the nth baro-

clinic mode phase speed, nondimensionalization is performed by a horizontal length scale

L = (cn/β)1/2 and a time scale T = 1/(βcn)1/2]:

ut − yv + ηx = F

yu + ηy = G (A1.1)

ηt + ux + vy = Q

where u, v, and η are the nondimensionalized zonal velocity, meridional velocity, and sea

level, respectively; F , G, and Q are the three nondimensionalized components of the forcing

vector; and subscripts denote differentiation.

A detailed solution of the shallow water equations (A1.1) is given by Cane and Sarachik

[1976]. They have shown that these equations can be reduced to a single equation in v:

vyy + (ω2 − kω−1 − k2 − y2)v = 0 (A1.2)

with k and ω the zonal wavenumber component and frequency, respectively. In nondi-

mensional form, the dispersion relation of the equatorially trapped waves results then in

[v → 0 for y → ±∞]:

ω2 − kω−1 − k2 = 2m + 1 (A1.3)

where m is the meridional mode number (Figure A1.1). The corresponding eigenfunctions

are expressed in terms of the Hermite functions:

Ψm(y) = π−1/4(2mm!)−1/2 exp(−y2/2)Hm(y) (A1.4)

with Hm the mth Hermite polynomial (see Figure A1.2).
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Figure A1.1: Dispersion relation for equatorial wave modes. The scaling applied [length and time
scales related by c = L/T , β = (LT )−1] collapses plots for all vertical modes onto
one set of curves. In meridional modes m = 1, 2, . . . the propagating Rossby and
inertia-gravity modes are plotted as solid lines, while the complex wavenumber at
frequencies between the maximum Rossby and the minimum gravity wave frequency
is plotted with dashes (solid/dot) for the imaginary (real) part. Curve for the real
part is ωk = −β/2 for all m; this is locus of points of zero zonal group velocity.
The only physically meaningful root at m = 0 is the Yanai or mixed Rossby-gravity
wave, which shares with Kelvin wave the property of real wavenumber and eastward
group velocity at all ω.[Knox and Anderson, 1985]

For the equatorial Kelvin waves, the sea level and zonal velocity fields are

η = u = Ψ0(y) exp(ikx− ωt) (A1.5)

and for the long low-frequency Rossby waves (m ≥ 1), they become

η = 2−3/2[(m + 1)−1/2Ψm+1(y) + m−1/2Ψm−1(y)] exp(ikx− ωt) (A1.6)

u = 2−3/2[(m + 1)−1/2Ψm+1(y)−m−1/2Ψm−1(y)] exp(ikx− ωt) (A1.7)

Note that (1) at low frequency, Kelvin waves as well as long Rossby waves are nondispersive

and have η and u in geostrophic balance; and (2) the phase (= group) speeds of the

equatorial Kelvin wave ck and Rossby wave cr are linked by the following relationship:

cr = −ck/(2m + 1) (A1.8)
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Figure A1.2: The latitudinal structure of (a) symmetrical and (b) antisymmetrical Hermite func-
tions that describe the meridional velocity component. The unit of distance in the
northward direction is the equatorial radius of deformation. [Philander , 1990]



A2 Oxygen tongues and zonal currents

Recent moored observations at 23◦W confirmed the presence of westward mean current

cores associated with the EIC below the EUC [Brandt et al., 2006]. A strong seasonal cy-

cle of the flow in the depth range of the EIC as suggested by different model studies [Jochum

and Malanotte-Rizzoli , 2003; Thierry et al., 2004] is in general agreement with recent ob-

servations of seasonal variability of the equatorial current and density fields [Brandt and

Eden, 2005]. This variability can be best described by equatorial Kelvin and Rossby beams

represented by the first few baroclinic modes [McCreary , 1984]. At intermediate depths

(as well as at larger depth) the zonal circulation often shows the presence of vertically

alternating eastward and westward jets with short vertical length scales [e.g., Ponte et al.,

1990; Gouriou et al., 2001]. In the deep water layers of the central equatorial Atlantic,

eastward jets are associated with a maximum in Chlorofluorocarbon concentration indi-

cating advection of newly formed North Atlantic Deep Water from the western boundary

toward the interior Atlantic [Andrié et al., 1998; Gouriou et al., 2001; Bourlès et al., 2003].

These so-called equatorial deep jets or stacked jets are in general not well represented in

present ocean general circulation models, probably because their simulation requires very

high vertical and horizontal resolutions [d’Orgeville et al., 2007; Eden and Dengler , 2008].

New current and hydrographic observations are used here to describe the mean and in-

terannually varying equatorial circulation and its effects on the oxygen distribution in the

equatorial belt.

Zonal flow in the equatorial Atlantic

The zonal velocity on the equator at 35◦W and 23◦W as measured by the moored ADCPs

(Figure A2.1) shows the eastward flowing EUC as the dominant signal. The core depths

(core velocities) in the Eulerian mean flow field are 95 m (69 ± 3 cm/s) at 35◦W and
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Figure A2.1: (Upper panels) Zonal velocity at the equator, 35◦W from two 150-kHz narrow-
band ADCPs, and (lower panels) zonal velocity at the equator, 23◦W from 300-kHz
Workhorse ADCPs and 75-kHz Long Ranger ADCPs. Data are detided, and data
gaps in between the instruments are interpolated. The mean flow is calculated by
subtracting the annual and semiannual harmonics (left panels, solid red line) with
standard error (shaded). [Brandt et al., 2008]

85 m (72 ± 2 cm/s) at 23◦W, respectively. The seasonal cycle of the equatorial zonal ve-

locity associated with the EUC shows a shallow current core during March to April and

a deep current core during late summer to autumn. During the latter phase the ITCZ

is farthest north, the zonal wind on the equator is westward, the zonal surface pressure

gradient is strongest toward the east and the near-surface flow is strongest toward the west

[see Chapter 4; Provost et al., 2004]. In general, the EUC at 35◦W extends deeper and

has a larger vertical extent compared to the EUC at 23◦W. The standard error1 of the

mean zonal velocity in the depth range of the EUC is small, despite the large standard

deviation of about 15 cm/s. This is due to the high numbers of degrees of freedom (NDF)

of the time series resulting from pronounced intraseasonal fluctuations (see Figure A2.1

and Table A2.1).

1 The standard errors of the moored mean currents, calculated after subtracting annual and semiannual
harmonics of the moored time series, are estimated by scaling the standard deviations with the
numbers of degrees of freedom (NDF; see e.g. Table A2.1) determined from the autocorrelation
of the detided time series.
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Standard Standard

Depth [m] Mean [m/s] Deviation [m/s] Error [m/s] NDF

Equator, 35◦W

Near surface 25 0.00 0.18 0.03 49

EUC 95 0.69 0.17 0.03 36

EIC, upper core 280 -0.05 0.09 0.03 10

Eastward core 345 0.02 0.08 0.02 16

EIC, lower core 455 -0.09 0.08 0.02 12

Equator, 23◦W

Near surface 15 -0.15 0.21 0.02 101

EUC 85 0.72 0.15 0.02 55

EIC, upper core 250 -0.06 0.07 0.02 17

Eastward core 320 0.05 0.10 0.05 4

EIC, lower core 455 -0.12 0.05 0.01 23

Table A2.1: Depth of local maxima of the zonal flow on the equator at 35◦W and 23◦W; together
with means, standard deviations, standard errors, and numbers of degrees of freedom
(NDF) of the zonal velocity time series. [Brandt et al., 2008]

Above the EUC the mean flow, as estimated by surface drifter trajectories, is westward

[Lumpkin and Garzoli , 2005]. Their climatology, yielding a zonal flow on the equator of

−13± 15 cm/s at 35◦W and −19± 14 cm/s at 23◦W, can be compared to the uppermost

ADCP measurements. The upward looking ADCP at 23◦W yielded better data to shal-

lower depths than did the instrument at 35◦W owing to a shallower instrument position

and less range reduction associated with surface reflections. The moored mean near-surface

velocity of 0±3 cm/s in 25 m depth at 35◦W and −15±2 cm/s in 15 m depth at 23◦W are

smaller than the drifter velocities from the climatology. This discrepancy may result from

the vertical shear present in the upper 20 m of the water column that was not covered by

the moored observations and is completely missed by standard shipboard observations.

Below the EUC, the zonal flow measured by the moored ADCPs is mostly westward

and associated with the EIC (Figure A2.1). The deeper current meters at 35◦W, down

to 1100 m, also recorded predominantly westward velocities (Figure A2.2), which confirm

previous results obtained from shipboard measurements at 35◦W showing westward ve-

locities in the depth range from below the EUC down to 2500 m [Schott et al., 2003].

The amplitudes of the annual harmonics of the deeper velocity time series are larger than

10 cm/s at 500 m, 652 m, and 809 m with maximum eastward velocities in July, May, and

March, respectively. These findings are in general agreement with the presence of down-
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Figure A2.2: Zonal velocity time series from four Argonaut current meters at the equator, 35◦W
(solid black lines). Also given are interannual variations (solid gray lines) calcu-
lated by subtracting annual and semiannual harmonics and 9-month low-passed
filtering, annual harmonics (dashed gray lines), and deployment-long means (black
dashed lines) with standard error, calculated by subtracting annual and semiannual
harmonics. Zero velocity is marked by dotted lines. [Brandt et al., 2008]

ward propagating Rossby beams as already suggested from the analysis of meridional ship

sections taken along 35◦W by Brandt and Eden [2005].

Ollitrault et al. [2006], analyzing trajectories of acoustically tracked floats drifting at 750

to 850 m also obtained a mean westward velocity on the equator of −6± 2 cm/s between

33◦W and 20◦W that was attributed to the EIC. The moored mean at 35◦W at about

800 m depth yields −8± 4 cm/s (Figure A2.2), slightly larger than the float velocity, but

in agreement within the standard errors of both observations.

The mean flow structure obtained in the western and central Atlantic shows many similar-

ities with that of the Pacific. Firing et al. [1998] described a westward EIC in the depth

range 250− 500 m using direct current measurements from 41 sections taken along 159◦E

within about 16 months. Below 500 m, down to 2500 m the flow was still mostly westward,

however, superimposed by current bands with short vertical scales. Using direct current
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measurements of the upper 400 m, Johnson et al. [2002] found a westward strengthening of

the EIC with strong westward velocities at about 350 m depth in the western Pacific west

of 155◦W and weak or slightly eastward flow east of that longitude at the same depth.

In the moored records from 35◦W and 23◦W, two cores of westward flow can be identified

in the EIC depth range. The upper core of the EIC deepens from about 250 m at 23◦W to

about 280 m at 35◦W, following the depth changes of the lower EUC limit located above.

In contrast, the lower core of the EIC stays at the same depth from 23◦W to 35◦W (Figure

A2.1 and Table A2.1). Between the two westward flowing cores insignificant mean east-

ward flow is found (Figure A2.1 and Table A2.1). The particularly large standard error at

23◦W below the EUC is predominantly due to strong interannual variability that will be

discussed in the following.

Oxygen tongues and zonal jets

The oxygen distribution in the ocean is a result of a subtle balance between supply via

advection and diffusion and oxygen consumption as a result of heterotrophic respiration.

In the tropical Atlantic, oxygen minimum zones (OMZs) are located north and south of

the equator in the shadow zones of the ventilated thermocline [Luyten et al., 1983]. The

23◦W section from 4◦S to 15◦N that was taken during June - July 2006 cuts through the

OMZ of the tropical North Atlantic as well as through the equatorial belt (Figure A2.3).

Minimum dissolved oxygen values of about 17 µmol/kg and 40 µmol/kg in the South and

North Atlantic, respectively, are found at depths of 300 to 500 m or in the potential den-

sity range σθ = 26.6 kg/m3 to σθ = 27.1 kg/m3 [Tsuchiya et al., 1992; Karstensen et al.,

2008; Stramma et al., 2008]. The potential density surface σθ = 27.1 kg/m3 represents the

boundary between Central Water and Antarctic Intermediate Water. In general, there is

an eastward decrease of dissolved oxygen concentration throughout the central and inter-

mediate water layers from the western boundary regime toward the sluggish flow near the

eastern boundary. In the equatorial zone, westward and eastward subsurface jets are thus

often characterized by low and high oxygen concentrations, respectively.

Below the surface mixed layer, the EUC can be identified as an oxygen maximum. The

cross-sectional area of the EUC with dissolved oxygen values larger than 130 µmol/kg as

well as the oxygen maximum at about the core depth of the EUC decreases from 35◦W to

10◦W (Figure A2.4). The EUC mainly carries ventilated waters from the southern hemi-

sphere supplied by the NBUC in the potential density range σθ = 24.5−26.8kg/m3 [Metcalf

and Stalcup, 1967; Tsuchiya et al., 1992; Schott et al., 1995, 2005]. The high-oxygen tongue

associated with the EUC is flanked by low-oxygen waters transported westward with the
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Figure A2.3: Dissolved oxygen [µmol/kg] along 23◦W from shipboard observations in June - July
2006. Also included are depths of potential density surfaces [kg/m3] (thick solid
lines). [Brandt et al., 2008]

nSEC and eSEC [Stramma and Schott , 1999].

The shipboard observations during June - July 2006 show a secondary oxygen maximum

underneath the EUC between the upper and lower cores of the EIC (Figure A2.4). This

tongue of increased dissolved oxygen can be found at the three meridional sections along

35◦W, 23◦W and 10◦W between about 300 and 350 m depth. It can also be followed along

the equatorial section from 23◦W to 10◦W, with the maximum dissolved oxygen concen-

tration decreasing from 130 µmol/kg at 23◦W to 110 µmol/kg at 10◦W (Figure A2.4, lower

panel). As already discussed, the moored mean velocity profiles at 35◦W and 23◦W show

an eastward velocity anomaly between two westward velocity cores associated with the

EIC, which is associated with the oxygen tongue. Velocity measurements at 23◦W during

June - July 2006 strongly deviate from the annual mean profile for the period March 2005

to February 2006 suggesting that the high-oxygen tongue is generated by the eastward jet

prevailing during the preceding year (Figure A2.5). Above and below this oxygen max-

imum, low oxygen values are associated with the upper and lower core of the westward

flowing EIC. The dissolved oxygen concentration increases in these EIC cores from 10◦W

to 35◦W.

While the two EIC cores represent a drainage pathway for low-oxygen waters from the

OMZs, the eastward jet in between represents a pathway for high-oxygen waters toward
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Figure A2.5: Zonal velocity [m/s; lower x axis] and dissolved oxygen [µmol/kg; upper x axis] at
23◦W, 0◦. Solid curve denotes zonal velocity obtained from moored instruments for
the period March 2005 to February 2006 with standard error derived for the whole
mooring period February 2004 to June 2006 (see Figure A2.1, left panels; shaded);
dashed and dotted curves denote zonal velocity and dissolved oxygen, respectively,
observed in June 2006 and averaged between 1◦S and 1◦N. [Brandt et al., 2008]

the eastern equatorial Atlantic. Previous observational studies concentrated on the SICC

and NICC which are located at about 2◦S and 2◦N and which are marked by high oxygen

values originating in the NBUC [Tsuchiya et al., 1992; Schott et al., 1995; Boebel et al.,

1999; Bourlès et al., 2002]. In particular, the NICC was identified as an oxygen source for

the OMZ of the tropical North Atlantic [Stramma et al., 2005]. In the observational data

taken during June - July 2006, the highest oxygen values in the depth range of the tropical

OMZ are found directly at the equator (Figure A2.3).

Acoustically tracked RAFOS floats [Rossby et al., 1986] drifting along isopycnal surfaces

are additionally used to study the equatorial circulation and the rapid exchange between

the western boundary current regime and the eastern tropical Atlantic is captured by the
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Figure A2.6: Trajectory of an acoustically tracked RAFOS float (RAFOS 623) drifting at poten-
tial density surface σθ = 26.8kg/m3 (about 300 m depth). Even months are plotted
white, and odd months are plotted black. [Brandt et al., 2008]

RAFOS float trajectory2 shown in Figure A2.6. This float drifted on an isopycnal surface

of σθ = 26.8 kg/m3 at about 300 m depth. After a relative slow westward drift starting

at 1◦N, 28◦10′W in August 2004 the float reached the equator at 35◦W in December 2004

(Figure A2.7, yellow arrows). There the float stalled until April 2005. With the onset of

eastward flow at 35◦W (Figure A2.1), the float accelerated eastward and covered the dis-

tance between 35◦W and 12◦W in about 5 months, meandering around the equator along

its way east. During the latter period, the Lagrangian zonal velocity fluctuated between

15 and 30 cm/s (Figure A2.7).

Figure A2.7 summarizes direct velocity observations at the depth of the potential density

surface σθ = 26.8 kg/m3 from the two equatorial moorings at 35◦W and 23◦W and from

RAFOS floats drifting near the equator between 1◦S and 1◦N. These observations suggest

large zonal coherence of the eastward jet during May to September 2005.

To address the relative importance of oxygen consumption, diapycnal turbulent diffusivity,

and lateral eddy diffusivity, the following Lagrangian diffusion equation for the oxygen

decrease along the equator from 35◦W to 10◦W within the oxygen tongue at 300− 350 m

is applied:
∂C

∂t
= −JC + Kν

∂2C

∂z2
+ Kh

∂2C

∂y2
(A2.1)

Here, C is the dissolved oxygen concentration, J is the dissolved oxygen consumption con-

stant, Kν is the coefficient of the diapycnal turbulent diffusivity, and Kh is the coefficient

of the lateral eddy diffusivity. The temporal derivative on the left-hand side of Equation

A2.1 must be balanced by the sum of the terms on the right-hand side. The temporal

derivative can be estimated given the time that the RAFOS float (Figure A2.6) needed

2 For the calculation of float trajectories, the arrival time data of acoustic signals stored by the floats
are used. These signals were transmitted from seven different sound sources at a repetition period of
12 h. To get an optimum coverage the sound sources were distributed between 35◦W and 10◦W and
between 10◦S and 1◦N. The RAFOS floats used here were equipped with a compressee adjusting the
float compressibility to that of seawater [Rossby et al., 1985].
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Figure A2.7: Zonal velocity at the equator at the depth of the potential density surface
σθ = 26.8 kg/m3 (about 300 m depth) from moored observations at 35◦W and 23◦W
as well as from RAFOS float trajectories drifting near the equator between 1◦S and
1◦N. Trajectory of RAFOS float 623 is shown in Figure A2.6. [Brandt et al., 2008]
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Figure A2.8: Meridional velocity component [m/s; solid, left y axis] and dissolved oxygen
[µmol/kg; dashed, right y axis) along 2◦N averaged between 400 and 600 m depth
from shipboard observations in June 2006. [Brandt et al., 2008]

to travel from 35◦W to 10◦W, that is, about 6 months. The difference in the dissolved

oxygen concentration at the core of the oxygen tongue from 35◦W to 10◦W measured in

June - July 2006 was about −30 µmol/kg. Thus, the left-hand side of Equation A2.1 is

about −60 µmol/kg a−1. The first term on the right-hand side of Equation A2.1 describes

the oxygen consumption, which is taken from literature. van Geen et al. [2006] estimated

the dissolved oxygen consumption constant by constraining a one-dimensional advection-

diffusion model for the North Pacific OMZ with Chlorofluorocarbon data. Using their best

fit value of 0.041 a−1 and a mean dissolved oxygen concentration of 130 µmol/kg, an oxygen

consumption rate of 5.3 µmol/kg a−1 is obtained. This is in general agreement with rates

estimated for the Pacific and Atlantic Oceans by Karstensen et al. [2008], who obtained

a maximum oxygen consumption rate of about 10 µmol/kg a−1 below the euphotic zone

decreasing exponentially with depth. The oxygen consumption is one order of magnitude

smaller than the temporal derivative of Equation A2.1 and cannot explain the decrease in

oxygen concentration from west to east within the core of the oxygen tongue.

The diapycnal turbulent diffusivity and the lateral eddy diffusivity are estimated by fit-

ting second-order polynomials to vertical and horizontal profiles, respectively, through the

oxygen maximum of the oxygen tongue. The obtained quadratic coefficients varied only

slightly among the different oxygen distributions at 35◦W, 23◦W, and 10◦W and corre-

spond to a reduction in oxygen of 10 µmol/kg within mean distances of 37 m and 63 km

above/below and north/south of the oxygen maximum, respectively. Using a diapycnal

turbulent diffusivity coefficient of Kν = 10−5 m2/s that is at the upper bound of coeffi-

cients observed in the equatorial Pacific and Atlantic Oceans below the EUC [Gregg et al.,

2003], a diapycnal turbulent diffusivity of −4.7 µmol/kg a−1 results. This value is of the

same order of magnitude as the oxygen consumption, but it is also one order of magnitude

smaller than the temporal derivative in Equation A2.1.

Using a lateral eddy diffusivity coefficient of Kh = 400 m2/s that can be considered as

a typical value [Eden et al., 2007], a lateral eddy diffusivity of −63 µmol/kg a−1 results.
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These rough estimates suggest that the reduction of the dissolved oxygen concentration

from west to east in the core of the oxygen tongue is dominantly balanced by lateral eddy

diffusivity. Substantial meridional velocity and oxygen fluctuations that possibly generate

lateral eddy fluxes were in fact observed in June 2006 along the zonal section along 2◦N in

the depth range 400 to 600 m (Figure A2.8). Such fluctuations could result in an oxygen

flux away from the equatorial region toward the OMZs of the tropical North and South

Atlantic.

Interannual variability of zonal flow

The zonal velocity on the equator at 23◦W at about 300 m depth, shows predominantly

westward flow from February 2004 to February 2005 and eastward flow during a 7-month

period afterward (Figure A2.7) suggesting substantial interannual variability of the flow at

intermediate depths. The strong year-to-year variability below the EUC at 23◦W becomes

also evident, when calculating successive annual mean zonal velocities, that is, from March

2004 to February 2005 and from March 2005 to February 2006, respectively (Figure A2.9).

While the EUC remains almost unchanged, the annual mean velocities below 300 m differ

by up to 20 cm/s. Main differences between the two annual mean profiles are a weakening

of the upper core of the EIC, a strengthening of the eastward velocity anomaly between

the two cores of the EIC associated with a lowering of the intermediate maximum, and a

lowering of the lower core of the EIC.

Strong interannual variability of the flow at intermediate depth was also found in a re-

gional model of the tropical Atlantic forced by interannually varying wind fields [Brandt

and Eden, 2005]. The simulated interannual variations in the velocity field were inter-

preted as downward propagating Kelvin and Rossby beams. However, these beams that

are similar to those obtained for the annual cycle are composed of the first few baroclinic

modes and are not able to explain the short vertical scales associated with the observed

eastward jet within the EIC.

Top to bottom velocity profiles have revealed the existence of high baroclinic mode vari-

ability in the equatorial Atlantic, occupying almost the whole water column below the EUC

[Ponte et al., 1990; Gouriou et al., 1999; Schmid et al., 2005; d’Orgeville et al., 2007]. These

stacked jets are characterized by alternating zonal flow with amplitudes of up to 20 cm/s

and a meridional scale of about 1◦ in latitude. In the deeper ocean, their vertical wave-

lengths peak at about 600 m, which corresponds to vertical modes 14 through 16 [Gouriou

et al., 1999; Eden and Dengler , 2008]. Here, a vertical mode decomposition of a top to bot-

tom mean density profile from the central equatorial Atlantic is performed. The resulting
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Figure A2.9: Annual mean equatorial zonal velocity profiles at 23◦W for March 2004 to February
2005 (dashed) and March 2005 to February 2006 (solid). Standard errors are derived
for the whole mooring period February 2004 to June 2006 (see Figure A2.1, left
panels; shaded). [Brandt et al., 2008]

dimensionless vertical structure functions are then fitted to the vertically detrended 23◦W

mooring data between 200 m and 700 m using a covariance criterion. The obtained vertical

mode spectrum (Figure A2.10a) shows higher energy levels at vertical modes 12 through

20, with a distinct peak at mode 15. A comparison between this vertical mode spectrum

and a vertical mode spectrum calculated from velocity data between 700 and 2000 m is

depicted in Figure A2.10a. The used 47 deep zonal velocity profiles are acquired between

0.5◦S and 0.5◦N and between 35◦W and 23◦W. The mean deep vertical mode spectrum

shows smaller energy levels than the shallow vertical mode spectrum, while single deep

vertical mode spectra may overcome the energy levels of the mean shallow vertical mode

spectrum. However, largest energy levels in the deep spectrum are found between mode

13 and 21 suggesting that the high baroclinic mode fluctuations at shallower depth have

similar vertical wavelengths as the stacked jets in the deeper water column as analyzed by

Eden and Dengler [2008].

A description of the temporal variability of the stacked jets is particularly difficult owing

to their long time scales. While an analysis of extensive hydrographic data by Johnson
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Figure A2.10: Vertical mode analysis of zonal velocity at the equator, 23◦W. Vertical mode spec-
trum (a) is obtained by fitting dimensionless vertical structure functions to moored
velocity data from below the EUC between 200 and 700 m (thick solid line) using
a covariance criterion. In (b) the dimensionless vertical structure function of mode
15 is shown, and in (c) the time series of the corresponding amplitude is shown.
Also included in (a) are vertical mode spectra that are calculated from zonal ve-
locity data between 700 and 2000 m (thin gray lines) of 47 deep velocity profiles
measured between 0.5◦S and 0.5◦N and between 35◦W and 23◦W as well as their
mean (dashed line). [Brandt et al., 2008]

and Zhang [2003] suggested a period of stacked jets of about 5 years, recent direct velocity

observations show that individual jets seem to persist over a time span from 6 months to

2 years [Send et al., 2002; Schmid et al., 2005; Bunge et al., 2006]. Firing [1988] described

jet-like structures in the Pacific Ocean at intermediate depths below the EUC. In his ob-

servations, these jets were nearly constant in depth for about half of the 16-month time

series, while constantly rising during the rest of the observational period. In the moored

data set used here, the mode (mode 15, Figure A2.10b) that best represents the eastward

jet has eastward velocities at 330 m from February 2005 to May 2006 (Figure A2.10c).

The temporal behavior of the observed feature thus agrees with the temporal behavior of

stacked jets observed previously.

The high-resolution oxygen distribution of different meridional sections taken during RV

Thalassa cruise along 23◦W in August 1999, during RV Ron Brown cruise along 25◦W in

August 2003, and during RV Meteor cruise along 23◦W in June - July 2006 (Figure A2.11)
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Figure A2.11: Dissolved oxygen [µmol/kg] from shipboard observations along meridional sections
crossing the equator at 23◦W in August 1999, at 25◦W in August 2003, and at
23◦W in June - July 2006. Also included are depths of potential density surfaces
[kg/m3] (thick solid lines). [Brandt et al., 2008]

additionally suggest a large variability in the occurrence of the jets in the central equato-

rial Atlantic. During August 1999 and August 2003 the dissolved oxygen concentration at

intermediate depths (300− 700 m) does not show an equatorial oxygen maximum. During

August 2003 the oxygen concentration is enhanced away from the equator, particularly

at about 1.5◦N. This structure can be explained by the presence of the SICC and NICC

with eastward core velocities larger than 10 cm/s as found in the mean zonal velocity field

obtained from different ship sections in the central equatorial Atlantic (see Section 3.1).

However, during June - July 2006 the situation changed and maximum dissolved oxygen

concentration is found right on the equator at 300 to 350 m depth that could be explained

by the presence of a strong eastward zonal jet prevailing during the preceding year.
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Summary and Discussion

The availability of about 22-month- and 28-month-long velocity time series from 35◦W and

23◦W allows for the first time to determine annual mean zonal velocities at two separate

equatorial positions unbiased by seasonal Rossby waves. It was shown that during the

observational period a westward flowing EIC was present at 35◦W and 23◦W consisting of

two current cores at about 250 m and 450 m depth, respectively. The upper core deepens

westward from 23◦W (mean velocity of 6± 2 cm/s) to 35◦W (mean velocity of 5± 3 cm/s)

by about 30 m. The lower core is about twice as strong with 12 ± 1 cm/s at 23◦W and

9± 2 cm/s at 35◦W.

A similar two-core structure of the EIC was simulated in a high-resolution model of the

Atlantic Ocean [Böning and Kröger , 2005]. However, the simulated mean core velocities

were substantially smaller than observed. Other models likewise show weak time-mean

currents at intermediate depths [Jochum and Malanotte-Rizzoli , 2003; Brandt and Eden,

2005; Eden, 2006]. In general, the recent model developments have shown that the time-

mean current structure and strength improves when switching from low to high resolution

[Hüttl and Böning , 2006, Figure 3], suggesting that a further reduction of vertical and/or

lateral mixing of momentum may improve the simulation of the mean equatorial flow field

at intermediate depths.

Between the two westward flowing EIC cores, a weak mean eastward flow was present dur-

ing the mooring period. At 23◦W, the eastward flow was particularly strong from May to

September 2005 in the depth range between 300 and 350 m while during the same period

one year earlier the flow was westward or only slightly eastward (Figure A2.7). This strong

year-to-year variability below the EUC was emphasized by a comparison of two annual

mean velocity profiles from 23◦W (Figure A2.9). The eastward jet with an annual mean

velocity of about 15 cm/s for the period March 2005 to February 2006 (Figure A2.7) was

found to be responsible for the equatorial oxygen maximum in the depth range 300−350 m

observed during June - July 2006 (Figures A2.4 and A2.5). An analysis of the vertical scale

suggested that the feature is best described by vertical mode number 15 that corresponds

to a wavelength of about 600 m in the deep ocean. The temporal as well as vertical scale

both agree with characteristics of stacked jets in the deep Atlantic Ocean as previously

observed.

The large time scale associated with the stacked jets results in small NDF and correspond-

ingly in large standard errors of the mean zonal velocity profiles below the EUC (Figure

A2.1). While the interannual variations may exceed 20 cm/s in the depth range 200 to

500 m, the deeper velocity observations at 35◦W show strong interannual fluctuations,

as well, with observed interannual fluctuations at 800 m reaching 7 cm/s (Figure A2.2).

To estimate the effect of the stacked jets on the mean zonal velocity, the moored means



94 Appendix

Figure A2.12: Mean equatorial zonal velocity profiles at (a) 35◦W and (b) about 23◦W, from ship-
board observations (thick solid line), moored ADCP observations (thin solid line)
with standard error (see Figure A2.1, left panels; shaded), and moored Argonaut
observations (thin dashed line, black circles with error bars). The number of avail-
able shipboard observations from different ship sections at 35◦W (a) and between
29−23◦W (b) is denoted by the thick dashed line (N, upper x axis). [Brandt et al.,
2008]

at 35◦W and 23◦W are compared with mean zonal velocities calculated from shipboard

velocity data taken at 35◦W (Figure A2.12a) and between 29 − 23◦W (Figure A2.12b),

respectively. The shipboard observations span here a period from 1990 to 2006 (see Sec-

tion 3.1). The amplitude of the high-baroclinic mode variability in the shipboard means

is smaller compared to the moored means. Particularly at 35◦W, where a large number of

shipboard observations is available, there is an almost depth-independent westward flow

below 500 m suggesting the presence of a mean EIC independent on the existence of the

stacked jets.

Eastward jets as the one observed from May to September 2005 at 300 to 350 m contribute

to the ventilation of the eastern equatorial Atlantic: The fast exchange between western

boundary current regime and the eastern equatorial Atlantic could be demonstrated by an

isopycnic RAFOS float drifting within a few months along the equator from 35◦W to 12◦W
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(Figure A2.6). By applying a simple advection-diffusion balance it is suggested that the

oxygen decrease from 35◦W to 10◦W within the observed oxygen tongue is mainly balanced

by lateral eddy diffusivity, oxygen consumption and diapycnal turbulent diffusivity playing

only a minor role. As observed velocities in the SICC and NICC are of similar magnitude

as in the eastward jet described here, such balance may hold also for the off-equatorial

countercurrents. The strong variability of the oxygen concentration in the region of the

SICC and NICC during different years (Figure A2.11) consequently should result from

interannual variations in the strength of the off-equatorial countercurrents.

The measurements along the 23◦W section revealed that during June - July 2006 the equa-

torial oxygen maximum associated with the observed eastward jet was characterized by the

highest oxygen concentrations in the isopycnal layer defined by potential density surfaces

σθ = 26.8 kg/m3 and σθ = 27.1 kg/m3 from 4◦S to 15◦N (Figure A2.3). Besides the zonal

supply pathways via the NECC system and the NICC, transporting high-oxygen waters

from the western boundary eastward [Stramma et al., 2005, 2008], equatorial zonal jets

could significantly contribute, via lateral eddy fluxes, to the ventilation of the OMZ of the

tropical North Atlantic.





Glossary

AD Angola Dome

EIC Equatorial Intermediate Current

ENSO El Niño Southern Oscillation

EUC Equatorial Undercurrent

GD Guinea Dome

ITCZ Intertropical Convergence Zone

MOC Meridional Overturning Circulation

NBC North Brazil Current

NBUC North Brazil Undercurrent

NEC North Equatorial Current

NECC North Equatorial Countercurrent

NEUC North Equatorial Undercurrent

NICC Northern Intermediate Countercurrent

OMZ Oxygen Minimum Zone

SEC South Equatorial Current

eSEC equatorial SEC

nSEC northern SEC

SEUC South Equatorial Undercurrent

SICC Southern Intermediate Countercurrent

SSH Sea Surface Height

SST Sea Surface Temperature

STC Subtropical Cell

TAV Tropical Atlantic Variability

TIW Tropical Instability Wave
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Andrié, C., J. F. Ternon, M. J. Messias, L. Memery, B. Bourlès, Y. Gouriou, and C. Oudot

(1998), Chlorofluoromethane distributions in the deep equatorial Atlantic during Jan-

uary - March 1993, Deep-Sea Res., Part I, 45, 903–930.

Arhan, M., H. Mercier, B. Bourlès, and Y. Gouriou (1998), Hydrographic sections across

the Atlantic at 7◦30N and 4◦30S, Deep-Sea Res., Part I, 45, 829–872.

Arhan, M., A. M. Treguier, B. Bourlès, and S. Michel (2006), Diagnosing the annual cycle

of the Equatorial Undercurrent in the Atlantic Ocean from a general circulation model,

J. Phys. Oceanogr., 36, 1502–1522.

Arnault, S. (1987), Tropical Atlantic geostrophic currents and ship drifts, J. Geophys. Res.,

92 (C5), 5076–5088.

Arnault, S., A. Morlière, J. Merle, and Y. Ménard (1992), Low-frequency variability of

the tropical Atlantic surface topography: Altimetry and model comparison, J. Geophys.

Res., 97 (C9), 14,259–14,288.

Barnett, T. P. (1983), Interaction of the monsoon and Pacific trade wind system at inter-

annual time scales. Part I: The equatorial zone, Mon. Weather Rev., 111, 756–773.

Barnier, B., L. Siefridt, and P. Marchesiello (1995), Thermal forcing for a global ocean

circulation model using a three-year climatology of ECMWF analysis, J. Mar. Sys., 6,

363–380.

Berwin, R. W., and J. R. Benada (2000), TOPEX/POSEIDON Sea Surface Anomaly Prod-

uct, User’s Reference Manual, Version 1.0, Physical Oceanography Distributed Active

Archive Center.

Bjerknes, J. (1969), Atmospheric teleconnections from the equatorial Pacific, Mon. Weather

Rev., 97, 163–172.

Blanke, B., and P. Delecluse (1993), Variability of the tropical Atlantic Ocean simulated by

a general circulation model with two different mixed-layer physics, J. Phys. Oceanogr.,

23, 1363–1388.



100 References

Boebel, O., R. E. Davis, M. Ollitrault, R. G. Peterson, P. L. Richardson, C. Schmid,

and W. Zenk (1999), The intermediate depth circulation of the western South Atlantic,

Geophys. Res. Lett., 26 (21), 3329–3332.
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Hüttl, S., and C. W. Böning (2006), Mechanisms of decadal variability in the shallow

subtropical-tropical circulation of the Atlantic Ocean: A model study, J. Geophys. Res.,

111 (C07011), doi:10.1029/2005JC003414.
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Stramma, L., S. Hüttl, and J. Schafstall (2005), Water masses and currents in the up-

per tropical Northeast Atlantic off northwest Africa, J. Geophys. Res., 110 (C12006),

doi:10.1029/2005JC002939.

Stramma, L., P. Brandt, J. Schafstall, F. Schott, J. Fischer, and A. Körtzinger (2008), The
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providing the data; model integrations have been performed using the computing facilities

at MLRE, Hamburg supported by the staff of the DKRZ. I am also grateful for allocating

shipboard current and hydrographic data by the PIs of the various German, French and US

cruises. Moored ADCP measurements were provided by C. Provost as well as B. Bourlès

and PIRATA mooring data were made available through the TAO project office. The

drifter climatology was developed by R. Lumpkin (NOAA/AOML) in collaboration with

S. Garzoli and M. Pazos (NOAA/AOML), J. Redman (CIMAS), and Z. Garraffo (RSMAS,

University of Miami). Multimission gridded SSHs were produced by SSALTO/DUACS and

distributed by AVISO with support from CNES. Surface wind stress data were obtained
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