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S easonal time-scale climate predictions are now
made routinely at a number of operational
meteorological centers around the world, using

comprehensive coupled models of the atmosphere,
oceans, and land surface (e.g., Stockdale et al. 1998;
Mason et al. 1999; Kanamitsu et al. 2002; Alves et al.

2002). This development can be traced back to a revo-
lution in our understanding of the coupled ocean–
atmosphere system in the second half of the twenti-
eth century (Neelin et al. 1998), to the development
and deployment of specialized buoys to observe and
measure the evolution of near-surface waters in the
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tropical Pacific (McPhaden et al. 1998), and, most im-
portantly, to successful predictions of El Niño by pro-
totype coupled ocean–atmosphere models (Zebiak
and Cane 1987). In turn, these developments were
fostered by the outstandingly successful international
Tropical Ocean Global Atmosphere (TOGA) pro-
gram (World Climate Research Programme 1985).

Seasonal forecasts are clearly of value to a wide
cross section of society, for personal, commercial,
and humanitarian reasons (e.g., Stern and Easterling
1999; Thomson et al. 2000; Pielke and Carbone 2002;
Hartmann et al. 2002a; Murnane et al. 2002).
However, notwithstanding predictable signals aris-
ing from atmosphere–ocean coupling, the overlying
atmosphere is intrinsically chaotic, implying that pre-
dicted day-to-day evolution of weather is necessar-
ily sensitive to initial conditions (Palmer 1993; Shukla
1998). In practice, the impact of such sensitivity can
be determined by integrating forward-in-time en-
sembles of forecasts of a coupled ocean–atmosphere
model, the individual members of the ensemble dif-
fering by small perturbations to the starting condi-
tions of the atmosphere and underlying oceans. The
phase-space dispersion of the ensemble gives a quan-
tifiable flow-dependent measure of the underlying
predictability of the flow.

However, if uncertainties in initial conditions are
the only perturbations represented in a seasonal fore-
cast ensemble, then the resulting measures of predict-
ability will not be reliable; the reason being that the
model equations are also uncertain. More specifically,
although the equations for the evolution of climate are
well understood at the level of partial differential
equations, their representation as a finite-dimensional
set of ordinary differential equations, for integrating
on a digital computer, inevitably introduces inaccu-
racy. Such inaccuracies can, in principle, propagate
upscale and infect the entire spectrum of scales be-
ing predicted by the model.

At present, there is no underlying theoretical for-
malism from which a probability distribution of
model uncertainty can be estimated (see Palmer
2001); as such, a more pragmatic approach must be
sought. One such approach relies on the fact that glo-
bal climate models have been developed somewhat
independently at different climate institutes. An en-
semble comprising such quasi-independent models
is referred to as a multimodel ensemble. The ability
of multimodel ensembles to produce more reliable
probability forecasts of seasonal climate risk over
single-model ensembles has been addressed by the
Prediction of Climate Variations on Seasonal to
Interannual Timescales (PROVOST) project funded

by the European Union IVth Framework Environ-
ment Programme; a similar “sister” project, Dynami-
cal Seasonal Prediction (DSP), was undertaken in the
United States (Palmer and Shukla 2000, and refer-
ences therein).

As part of the PROVOST project, several atmo-
spheric general circulation models were integrated
over 4-month time scales with prescribed observed
sea surface temperatures (SSTs). Each model was it-
self run in ensemble mode, based on nine different
initial conditions from each start date; results were
stored in a common archive in identical format. One
of the key results from PROVOST and DSP is that,
despite identical SSTs, ensembles showed consider-
able model-to-model variability in the estimates both
of the SST-forced seasonal-mean signal, and the sea-
sonal-mean “noise” generated by internal dynamics
(Straus and Shukla 2000; Pavan and Doblas-Reyes
2000). As a result, single-model ensemble estimates
of the response to observed SSTs were generally not
reliable. Within the PROVOST project, both single-
model and multimodel ensembles were treated as po-
tential forecasts (assuming, in some sense, oracular
knowledge of the ocean), and scored using probabil-
ity forecast skill scores (Doblas-Reyes et al. 2000;
Graham et al. 2000; Palmer et al. 2000). A key result
was that probability scores based on the full
multimodel ensemble were generally higher than
those from any of the single-model ensembles.

Based on such results, the Development of a Eu-
ropean Multimodel Ensemble System for Seasonal to
Interannual Prediction project (DEMETER) was con-
ceived, and funded under the European Union Vth
Framework Environment Programme. The principal
aim of DEMETER was to advance the concept of
multimodel ensemble prediction by installing a num-
ber of state-of-the-art global coupled ocean–atmo-
sphere models on a single supercomputer, and to pro-
duce a series of 6-month multimodel ensemble
hindcasts with common archiving and common di-
agnostic software. Such a strategy posed substantial
technical problems, as well as more mundane but
nevertheless important issues (e.g., agreeing on units
in which model variables were archived).

A description of the DEMETER coupled models,
the DEMETER hindcast integrations, the archival
structure, and the common diagnostics package used
to evaluate the hindcasts, is given in section 2. Some
meteorological and oceanographic results, compar-
ing these single and multimodel ensemble hindcasts,
are described in section 3.

The DEMETER project has applications partners
in agronomy and in tropical disease prediction. These
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applications are described in section 4. A general
methodology for assessing the value of ensemble fore-
casts for such users was discussed in Palmer (2002).
In particular, if users have quantitative application
models requiring forecast weather information as in-
put (Hartmann et al. 2002b), these models can be di-
rectly linked to the output of individual members of
the forecast ensemble. The net result is a probability
forecast, not of weather or climate, but of a variable
directly relevant to the user, for example, in the case
of the agronomist, a forecast probability distribution
of crop yield. The potential usefulness of the
DEMETER system can then be judged by asking
whether the forecast probability distributions of crop
yield are sufficiently different from climatological
probability distributions, and sufficiently reliable for
the agronomist to be able to make decisions or rec-
ommendations, for example, on the types of crop to
plant. As such, the design of DEMETER was based on
the concept of an “end to end” system (Buizer et al.
2000; Pielke and Carbone 2002), in which users feed
information back to the forecast producers. (To ob-
tain more information on seasonal-to-interannual
prediction applications, visit the WMO–CLIPS pro-
gram Web site at www.wmo.ch/web/wcp/clips2001/
html/index.html.)

Quantitative application models of the sort used in
DEMETER have been derived using data from spe-
cific meteorological stations. By contrast, the output
from global climate models represents averages over
a relatively coarse grid. As such, the statistics of model
variables, especially precipitation in regions of steep
orography, can differ substantially from the statistics
of station data. It is therefore necessary to downscale
the climate model output (Goddard et al. 2001), ei-
ther by some statistical/empirical scheme, or by em-
bedding a high-resolution limited-area model into the
climate model. Both approaches have been followed
in DEMETER, and are described in section 4 before
discussing the application results.

Section 5 describes some experiments intending to
analyze the sensitivity of the results to different fac-
tors involved in ensemble seasonal prediction with
coupled models.

As a result of DEMETER, real-time multimodel
ensemble seasonal predictions are now routinely
made at the European Centre for Medium-Range
Weather Forecasts (ECMWF). This development, and
other plans that derive from DEMETER, are outlined
in section 6.

THE DEMETER SYSTEM. Coupled models and ini-
tialization procedures. The DEMETER system com-

prises seven global coupled ocean–atmosphere
models. A brief summary (detailed information on the
models and the initialization procedures can be found
on the DEMETER Web site www.ecmwf.int/research/
demeter/general/docmodel/index.html) of the differ-
ent coupled models used in DEMETER is given in
Table 1. From each model, except that of the Max-
Planck Institute (MPI), uncertainties in the initial
state are represented through an ensemble of nine
different ocean initial conditions (Fig. 1). This is
achieved by creating three different ocean analyses; a
control ocean analysis is forced with momentum,
heat, and mass flux data from the ECMWF 40-yr Re-
analysis (ERA-40 henceforth; ERA-40 intends to pro-
duce a global analysis of variables for the atmosphere,
land, and ocean surface for the period 1958–2001;
more information is available online at www.ecmwf.
int/research/era), and two perturbed ocean analyses
are created by adding daily wind stress perturbations
to the ERA-40 momentum fluxes. The wind stress
perturbations are randomly taken from a set of
monthly differences between two quasi-independent
analyses. In addition, in order to represent the uncer-
tainty in SSTs, four SST perturbations are added and
subtracted at the start of the hindcasts. As in the case
of the wind perturbations, the SST perturbations are
based on differences between two quasi-independent
SST analyses. Atmospheric and land surface initial
conditions are taken directly from ERA-40. A sepa-

FIG. 1. Schematic representation of the ensemble gen-
eration and hindcast production strategy. Dashed lines
represent the three continuous runs of ocean analyses
forced by ERA-40 data, the control analysis without any
wind stress perturbations (gray) and two additional
analyses with positive/negative (green/red) daily wind
stress perturbations applied. In order to generate nine
different initial conditions for the coupled hindcasts,
four SST perturbations (represented by the ellipses) are
added (blue ellipse) and subtracted (yellow ellipse) to
the ocean analyses. Thus, there is one member with no
wind stress or SST perturbations applied and eight per-
turbed ensemble members. This procedure is per-
formed every 3 months at every start date of the
hindcasts.
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rate ensemble initialization procedure is used for the
MPI model. Ocean data assimilation has been used in
the Met Office experiment after 1987 as well as in a
sensitivity experiment carried out with the ECMWF
model.

Definition of hindcast experiments. The performance of
the DEMETER system has been evaluated from a
comprehensive set of hindcasts over a substantial part
of the ERA-40 period. Only hindcasts for the period
1980–2001 will be discussed in this paper. This is the
period for which all seven coupled models participat-
ing in the project have generated hindcasts. Longer
time series (up to 43 yr) are available for a smaller
number of models.

In order to assess seasonal dependence on skill, the
DEMETER hindcasts have been started from 1 Feb-
ruary, 1 May, 1 August, and 1 November initial con-
ditions. Each hindcast has been integrated for
6 months and comprises an ensemble of nine mem-
bers. In its simplest form, the multimodel ensemble
is formed by merging the ensemble hindcasts of the
seven models, thus comprising 7 × 9 ensemble mem-
bers. To enable a fast and efficient postprocessing and
analysis of this complex dataset, much attention was
given to the definition of a common archiving strat-
egy for all models; the ECMWF’s Meteorological Ar-
chival and Retrieval System (MARS) was used for this
purpose. A large subset of atmosphere and ocean vari-
ables (a complete description of the atmosphere and
ocean archived variables can be found on the
DEMETER Web site www.ecmwf.int/research/
demeter/news/var_list.html), with both daily data and
monthly means, has been stored in MARS. Special
attention was given to the time-consuming task of
ensuring that all model output complies with agreed
data formats and units.

A significant part of the DEMETER dataset
(monthly averages of a large subset of surface and up-
per-air fields) is freely available for research purposes
through an online data retrieval system installed at
ECMWF. (Model hindcasts can be retrieved in GRIB
and NetCDF formats from the Web site
www.ecmwf.int/research/demeter/data. A tool to dis-
play the fields is also available.)

Diagnostics and evaluation tools. The need to provide
a common verification methodology has been recog-
nized by the World Meteorological Organization
Commission for Basic Systems (WMO–CBS), and an
internationally accepted standardized verification
system (SVS) is being prepared. Based upon this stan-
dard, a comprehensive verification system to evalu-

ate all DEMETER single models as well as the
multimodel DEMETER ensemble system has been set
up at ECMWF. It is run periodically to monitor
hindcast production, to quality control the data (and
correct archival) and to calculate a common set of
diagnostics.

The DEMETER verification system is designed
with a modular structure so as to easily incorporate
new evaluation tools provided by project partners or
other sources. The basic set of diagnostics is summa-
rized as follows.

• Global maps and zonal averages of the single-
model bias are shown. Hindcast anomalies are
computed by removing the model climatology for
each grid point, each initial month, and each lead
time from the original ensemble hindcasts. A simi-
lar process is used to produce the verification
anomalies.

• Time series of specific climate indices, for example,
related to area-averaged SSTs, precipitation, and
circulation patterns, are displayed.

• Standard deterministic ensemble mean scores,
such as anomaly correlation coefficient (ACC),
root-mean-square skill score (RMSSS), and mean
square skill score (MSSS) are shown.

• Probabilistic skill measures, such as the reliability
diagrams, relative operating characteristic (ROC)
score, Brier score, ranked probability skill score
(RPSS), and potential economic value curves, are
calculated and displayed. Significance tests are
applied to most of the skill measures.

• The skill of single-model ensembles is compared
with that of multimodel ensembles using scatter
diagrams of area-averaged skill measures and
probability density functions (PDFs) of gridpoint
skill scores.

Both anomalies and scores have been computed
using a cross-validation “leave one out” method
(Wilks 1995; Livezey 1999). To generate the anomaly
or the score for a particular time t, only data at other
times different from t have been used.

The main verification dataset used in this system
is ERA-40. This is consistent with the general concept
of producing the DEMETER hindcasts, in which
ERA-40 is used as forcing for the ocean analyses and
as atmospheric and land surface initial conditions.
Effectively, it is assumed that we are “living in the
ERA-40 world.” However, because of the modularity
of the validation system, it is possible to validate the
model data with more than one verification dataset.
In fact, precipitation has been verified against the
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Global Precipitation Climatology Project (GPCP)
dataset. (The GPCP dataset can be found online at
http://cics.umd.edu/~yin/GPCP/.)

HINDCAST SKILL ASSESSMENT. A sample of
results from the DEMETER standard verification sys-
tem is presented in this section. To view a more com-
prehensive set of verification diagnostics the reader
is referred to the DEMETER Web site. (A selection
of the verification results is displayed and automati-
cally updated at www.ecmwf.int/research/demeter/
verification/index.html.)

The scientific basis for seasonal atmospheric pre-
diction relies on the premise that the lower bound-
ary forcing, in particular SST, can impart significant
predictability on atmospheric development (e.g.,
Palmer and Anderson 1994). Thus, a prerequisite for
successful seasonal forecasts is an ability to represent
and predict accurately the state of the ocean. A basic
problem faced when attempting to predict SST with
coupled models is the bias in the model forecasts,
which may be comparable to the magnitude of the
interannual anomalies to be predicted. Since SSTs in
the tropical Pacific are a major source of predictabil-
ity in the atmosphere on seasonal time scales, model
performance in the tropical Pacific is of particular
interest. To demonstrate the typical level of skill in
this area, Table 2 shows the anomaly correlation co-
efficient (ACC) of the ensemble mean for the single-
model ensembles and the multimodel ensemble for
the SSTs averaged over the Niño-3.4 area. The cor-
relation has been computed for the 1-month and
3-month lead seasonal hindcasts starting in Febru-
ary, May, August, and November. Therefore, the
values verify during the seasons MAM, JJA, SON, and
DJF for the 1-month lead hindcasts, and MJJ, ASO,
NDJ, and FMA for the 3-month lead hindcasts.
Results suggest that the single-model ensembles gen-
erally perform well as El Niño–Southern Oscillation
(ENSO) prediction systems. For the sake of compari-
son, the ACC for a persisted-SST hindcast has been
included. The SST anomaly in the month previous
to the starting date has been taken as a persistence
hindcast. For instance, the 6-month-long persistence
hindcasts starting on the first of February are ob-
tained from the anomaly on the previous January.
Both the multimodel ensemble and the single mod-
els perform at levels comparable to dedicated ENSO
prediction models and much better than persistence,
especially in the 3-month lead-time range. In addi-
tion, note the high correlation of the multimodel
ensemble for both lead times, proving it to be the
most skillful system in an overall assessment. The bias
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of the single models is generally in
the range of ±1 K (Table 2). These
are typical figures for current state-
of-the-art coupled models. As is the
case for most variables and areas,
there appears to be no clear relation-
ship between bias and skill, though
this is a topic that needs further
investigation.

Figure 2 shows 1980–2001 time
series of precipitation ACC for all
single models and the multimodel
ensemble, for summer (June to Au-
gust, May start date) over the Trop-
ics (Fig. 2a) and winter (December
to February, November start date)
over the northern extratropics
(Fig. 2b). The skill in the northern
extratropics is considerably less than
in the Tropics. In both regions the
variability in prediction skill, both
from year to year and between dif-
ferent single models, is clearly evi-
dent. The occurrence of higher skill
during ENSO events is consistent
with relatively large ACC for 1982/
83, 1987/88, and 1997/98 (Fig. 2).
This, in turn, is consistent with the
link between ENSO activity and sea-
sonal predictability found in many
studies (for PROVOST see Brankovi
and Palmer 2000). In general, the
identity of the most skillful single
model varies with region and year.
Finally, this figure illustrates the
relatively skillful performance of the
multimodel ensemble. In spite of the
multimodel ensemble not being dis-
tinctly superior to the best single-
model ensemble for individual
events or small regions, in agreement with Peng et al.
(2002), it is systematically the most skillful when the
scores are averaged over large regions or long time
series.

To further summarize atmospheric hindcast skill,
Fig. 3 shows indices of the winter (December to Feb-
ruary, November start date) Pacific–North American
(PNA) and North Atlantic Oscillation (NAO) pat-
terns for the multimodel ensemble. The indices are
computed following the method described in the
Doblas-Reyes et al. (2003). Values are obtained by
projecting every ensemble member anomaly onto the
leading empirical orthogonal function (EOF) of the

500-hPa geopotential height [computed over the win-
ter monthly mean anomalies using National Centers
for Environmental Prediction (NCEP) reanalyses for
the period 1949–2000]. The EOF analysis was carried
out using data over the regions 20∞–87.5∞N and 110∞–
90∞W for the PNA and 20∞–87.5∞N and 90∞W–60∞E
for the NAO. The spatial covariance between the
monthly anomaly patterns and the reference pattern
was then computed for every single member of the
hindcast ensemble. Monthly covariances were aver-
aged to produce seasonal means. Figure 3 displays the
index against time using a box-and-whisker represen-
tation in which the central box and each whisker con-

FIG. 2. Time series of the ensemble-mean precipitation anomaly cor-
relation coefficients for the multimodel (thick red bars) and all indi-
vidual models (thin bars; ECMWF: blue, Met Office: green, Météo-
France: orange, MPI: cyan, LODYC: pink, INGV: yellow, CERFACS:
gray). (a) One-month lead summer (JJA) precipitation in the Tropics
(latitudinal band of 30∞∞∞∞∞S–30∞∞∞∞∞N); (b) 1-month lead winter (DJF) pre-
cipitation in the northern extratropics (latitudinal band of 30∞∞∞∞∞–87.5∞∞∞∞∞N).
Additionally, the average over the whole period 1980–2001 is shown
at the end of each plot.
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tain one- third of the ensemble members. The value obtained computing the spa-
tial covariance between the reference pattern and the ERA-40 anomalies is also
displayed. Comparison of the interannual variations of ERA-40 and ensemble-
mean values gives a visual impression of ensemble-mean hindcast skill. The veri-
fication lies within the multimodel ensemble range in all but two cases for both
indices. In addition, skill measures indicate a higher reliability for the multimodel.
Table 3 shows the correlation between the two time series for the multimodel
and the single-model ensembles. The multimodel ensemble shows one of the
highest correlations among all the models for both indices. In addition, the
multimodel ensemble correlation can be considered nonzero with a 95% con-
fidence level using a two-sided t test, which is not always the case for the single-
model ensembles. However, it should be noted that scores based on indices
are less robust than scores based on large-area correlations, when calculated
with relatively short time series. For example, the high PNA correlation for
some single models may be explained by good predictions in 1982 and 1997.
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FIG. 3. Time series of the 1-month lead winter (DJF) (a) PNA and (b) NAO
index for the period 1980–2001. The multimodel ensemble spread is depicted
by the box-and-whisker representation with the whiskers containing the lower
and upper tercile of the ensemble. The blue dots represent the ensemble mean,
the ERA-40 anomalies being displayed by slightly bigger red bullets. The hori-
zontal lines around the solid zero line mark the terciles of the ERA-40 (red)
and hindcast data (blue).
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Note that, while PNA index hindcast skill tends
to be quite satisfactory (Fig. 3a), NAO index skill is
lower but always positive. Figure 3b indicates that the
multimodel ensemble can produce a useful signal in
years when the observed NAO index is large in mag-
nitude, such as 1987, 1988, and 1997. These years may
in themselves account for the high correlation coef-
ficient obtained in Table 3. Nevertheless, the model
signal in some years is very weak (little shift of the
predicted index away from zero) as in 1992 and 1995,
when the observed index was large in magnitude.

Considerable effort has been devoted to the vali-
dation of the ensembles as probability forecasts. The
dashed blue and red lines in Fig. 3 correspond to the
ensemble and ERA-40 terciles. The probabilistic skill
measure used is the RPSS (Epstein 1969) based on
these terciles. Hindcast performance is summarized
in Table 3. RPSS is defined so that positive values
imply higher skill than climatology forecasts and per-
fect forecasts have a skill score of 1. The skill of the
multimodel ensemble for the PNA index is close to
the skill of the best models and is statistically signifi-
cant at the 95% confidence level, in good agreement
with the correlation results. Also, for the NAO index,
RPSS values are generally high and tend to be statis-
tically significant, which was not the case for the cor-
relation (RPSS statistical confidence has been assessed
by computing the distribution of the skill score from
a random set of hindcasts obtained by scrambling the
available hindcasts and verifications).

In order to get a more comprehensive assessment
of the single-model versus multimodel ensemble skill,
a number of ROC skill scores are collected together
(Fig. 4). The value of the area under the ROC curve
is a probabilistic skill measure ranging from 0 to 1
(Swets 1988). The ROC skill score is constructed as
twice the area minus one, ranging between –1 and +1.
Values below 0 imply lower skill than climatology,
while a perfect forecast has a ROC skill score of 1. The
comparison of all ROC skill scores for 2-m tempera-
ture, calculated over different regions, start dates, lead
times, and events, shows that, although in some cases
single-model ensembles have a higher ROC score than
the multimodel ensemble, in the vast majority of cases
(90%) the ROC skill score of the multimodel en-
semble exceeds the score of the single models.
Furthermore, the number of cases with less skill than
climatology is greatly reduced for the multimodel en-
semble; for the latter there are no cases with negative
ROC skill score compared to 25 cases for the single
models.

The greater probabilistic skill of the multimodel
ensemble compared to the single-model skill leads to

an increased potential economic value (Richardson
2000; Palmer et al. 2000; Atger 2001). For instance, it
has been found that, for predictions of positive tropi-
cal winter (December to February, November start
date) precipitation anomalies, the multimodel en-
semble improves the potential economic value from
15% to 80%, depending on the single model taken as
reference (not shown).

In spite of the clear improvement of the
multimodel ensemble performance an important
question arises. This improvement could be due ei-
ther to the multimodel approach itself or to the in-
creased ensemble size resulting from collecting all
members of the single-model ensembles to construct
the multimodel ensemble, or to both. In order to sepa-
rate the benefit of the multimodel approach that is
derived from combining models of different formu-
lation from the benefit due to the increase in ensemble
size, a 54-member ensemble hindcast has been gen-
erated with the ECMWF model alone for the period
1987–99 using only a single start date (1 May). The

FIG. 4. Scatterplot of single-model (ECMWF: blue, Met
Office: green, Météo-France: orange, MPI: cyan,
LODYC, pink, INGV: yellow, CERFACS: gray; bullets
of different size have been used for better visibility of
all models) vs multimodel ROC skill scores of the 2-m
temperature hindcasts from 1980–2001. The plot com-
prises results from seasonal hindcast scores for eight
different areas (northern extratropics, Tropics, south-
ern extratropics, North America, Europe, West Africa,
East Africa, southern Africa), four start dates (Feb, May,
Aug, Nov), two lead times (1 month, 3 month), and four
events (anomaly above/below 0.43 standard deviation,
anomaly above/below 0).
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ensemble was generated us-
ing additional wind and SST
perturbations in order to
have a better sampling of the
initial condition uncertainty.
As a skill measure, the Brier
skill score for tropical sum-
mer (June to August) pre-
cipitation positive anomalies
for the multimodel en-
semble (red bars) and the
ECMWF model (blue bars)
is shown in Fig. 5a. For each
ensemble size, the corre-
sponding ensemble was
constructed by randomly
selecting the members from
the 63 available in the
multimodel ensemble and
the 54 in the single-model
ensemble. Results show that
the skill score grows faster
with ensemble size for en-
sembles with less than about
30 members, although this
threshold changes with the
region, variable, and event
considered (not shown).
The skill saturates for large
ensembles, as expected
from the conceptual model
described in Kumar and
Hoerling (2000), though a slight increase with size is
still found. Based on a decomposition of the Brier
score (Murphy 1973), results show that the largest
contribution to the multimodel ensemble skill im-
provement is due to increased reliability (smaller val-
ues of the reliability term in the Murphy decomposi-
tion imply greater reliability of the ensemble), as
shown in Fig. 5b. The multimodel ensemble performs
better than the single-model ensemble for every en-
semble size, despite the ECMWF model having par-
ticularly good behavior over the Tropics. The increase
in Brier skill score and reliability is similar for both
the single-model and the multimodel ensembles, so
that their difference remains approximately constant
as the ensemble size increases. This implies that the
multimodel ensemble advantage over a given single-
model ensemble, as shown in Figs. 2–4, is not an ar-
tifact of the usually large ensemble size of the
multimodel, but rather is due to the multimodel ap-
proach itself. Similar results are found for other vari-
ables and regions. This suggests that the multimodel

ensemble provides a better sampling of forecast un-
certainty in the sense that it contains the verification
more often than a given single-model ensemble.

SEASONAL FORECAST APPLICATIONS.
One of the main objectives of DEMETER is a dem-
onstration of the utility of seasonal climate forecasts
through the coupling of quantitative application mod-
els, such as crop yield models, to the global climate
prediction models. However, existing application mod-
els typically require weather input (precipitation, tem-
perature, wind, radiation, etc.) at a substantially higher
spatial resolution than is available from the global mod-
els. We therefore begin this section with a brief discus-
sion of the downscaling techniques used in DEMETER.

Downscaling. In DEMETER, both statistical/empirical
methods and dynamical regional climate models have
been tested and applied for downscaling purposes.
The methods used and some illustrative results are de-
scribed in the following.

FIG. 5. (a) Brier skill score and (b) reliability component of Brier score for the
1-month lead tropical summer (JJA) precipitation 1987–99 for the single
ECMWF control model (blue) and the DEMETER multimodel (red). The event
is “precipitation anomalies above zero.” Results are shown for different en-
semble sizes from 9 to 54 members. Note that lower values of the reliability
term mean better reliability.
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In the statistical/empirical methods, a mapping
(e.g., based on regression methods, analogue tech-
niques, or neural networks; Wilby and Wigley 1997,
2000) is derived from one or more large-scale fields
to the fine scale required by the application models.
The statistical methods are relatively straightforward
to apply and are computationally cheap.

As an illustrative example, Fig. 6 displays total pre-
cipitation over Spain for the February to April sea-
sonal average. The raw multimodel ensemble output
for the hindcast started in November 1986 (Fig. 6a,
showing a multimodel ensemble mean field from the
ECMWF and Met Office coupled models), and the
downscaled precipitation based on three different
downscaling methods are shown in the figure. The
observed precipitation is displayed in Fig. 6b, while
Fig. 6c shows the network used to create this database.
The first downscaling method (Fig. 6d) is based on
the search for analogues of 1000- and 500-hPa
geopotential and low-level relative humidity fields of
the ECMWF and Met Office models. This method is
currently used operationally for short-range precipi-
tation forecasts (Fernández et al. 2001) at the Span-
ish Instituto Nacional de Meteorologia. The second
method (Fig. 6e) uses a stochastic weather generator
(Richardson 1981) and is based on a regression of the
leading modes of a maximum covariance analysis
(MCA; Feddersen et al. 1999) between model predic-
tions of seasonal precipitation and gridded observa-
tions of precipitation on a 50 km × 50 km grid com-

piled by the European
Commission Joint Research
Centre (EC-JRC) (van der
Voet et al. 1994; Terres
1999). Both downscaling
methods emphasize the
anomalously wet area over
northwestern Spain (of
which there is only a slight
indication in the raw model
output).

As a second type of
downscaling method, dy-
namical models have also
been used in DEMETER.
Dynamical downscaling
has the potential to outper-
form statistical/empirical
methods, particularly in the
prediction of extreme
events or in areas where
observed data needed to
train the statistical/empiri-

cal models, are not available. However, there are out-
standing problems, including propagation of system-
atic biases from the global to the regional model
(Giorgi and Mearns 1999). In addition, the compu-
tational expense of running a high-resolution regional
climate model can be comparable to that of running
a global seasonal prediction model.

Regional climate models have been applied to
study local effects of global climate change resulting
from increasing concentration of greenhouse gases in
the atmosphere (e.g., Christensen et al. 2001). By
comparison, little has been done for the seasonal time
scale (Misra et al. 2003).

The dynamical downscaling method tested in
DEMETER is based on the Rossby Centre Atmo-
sphere (RCA) model, which is a climate version of the
High-Resolution Limited-Area Model (HIRLAM;
Rummukainen et al. 2001) regional weather predic-
tion model. The RCA model has been nested to the
ECMWF model output and run in climate mode for
6 months. To demonstrate the feasibility of the ap-
proach, a set of runs was started the first of Novem-
ber for 1986, 1987, and 1988 and the first of May for
1987, 1988, and 1989. The area covered by the RCA
integration was 15.5∞–65.0∞N and 67.5∞W–31.0∞E
(Atlantic–European region). The horizontal resolu-
tion was 0.5∞ with 31 levels in the vertical.

Figure 6f shows the hindcast for February to April
1987 average precipitation (November 1986 start date,
three-member ensemble) over Spain. The precipita-

FIG. 6. (a) Three-month (Feb–Apr) average precipitation over Spain for the
ensemble mean of the multimodel hindcasts (ECMWF and Met Office mod-
els) initialized in Nov 1986. Panel (b) shows the corresponding observed pre-
cipitation, which has been computed using the stations of the Spanish synop-
tic network shown in (c). The downscaled precipitation with the (d) analog-
based, (e) MCA-based, and (f) dynamical methods is shown in the lower row.
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tion pattern is more realistic than that of the global
model ensemble, especially over northwestern Spain,
although for this case the statistical/empirical
downscaling methods appear to perform as well or
better. The RCA model has also been run for a region
covering Africa to test the ability to provide
downscaled climate forecast information for the ma-
laria prediction application described below.

Crop yield prediction. The total value of European
Union (EU) agriculture is around 200 billion euro,
while EU countries are collectively the largest import-
ers of agricultural products in the world, and the sec-
ond largest exporters (European Commission 2000).
Moreover, the EU production of wheat is around 100
million tons, setting the EU as the second largest pro-
ducer in the world after Asia (FAOSTAT 2001). West-
ern European agriculture is highly intensive and
weather is a principal source of uncertainty for crop
yield assessment and for crop management (Vossen
1995). As such, seasonal weather forecasts have high
potential value for European agriculture.

Crop simulation models that estimate crop growth
and crop yield, as a function of environmental con-
ditions and management practices, are important
tools for decision makers (Boote et al. 1996;
Hoogenboom 1997). These models can be used for
simulating and forecasting crop yields, and in addi-
tion for computing the effects of management prac-
tices (such as irrigation, sowing time, or nitrogen fer-
tilization; Hoogenboom 2000), and assessing the
pressures of these practices on the environment (e.g.,
through nitrate leaching or crop water requirement;
Singh and Thornton 1992). They can also be applied
for the assessment of climatic change risk in agricul-
ture (Harrison et al. 1995).

The EC-JRC Crop Growth Monitoring System
uses a crop model called the World Food Studies
Model (WOFOST), and performs crop yield forecast-
ing through a regression analysis comparing simu-
lated crop indicators and historical yield series for the
main crops at the national/European level (van
Diepen and van der Wal 1995). To estimate the yield
at the end of the season, the regression analysis mod-
ule computes the best predictor equation from (a) the
technological time trend and (b) a number of simu-
lated crop indicators. However, in the current system,
at the time when a crop yield forecast is issued, the
weather conditions leading up to harvest time are
unknown and are therefore a major source of uncer-
tainty. The provision of seasonal predictions brings
additional information for the remaining crop season.
At the local level, the Regional Meteorological Service

of the Emilia-Romagna environmental agency
(ARPA-SMR, Italy) also uses WOFOST as part of a
geographical soil water flow and transport simulation
system called CRITERIA (Marletto et al. 2001).

The potential importance of seasonal predictions
for crop yield estimation was demonstrated by forc-
ing the crop model with ERA-15 reanalysis used as a
“perfect forecast” and comparing with the current
operational system in crop yield forecasting at EC-
JRC (Terres and Cantelaube 2003). Results showed
that simulated crop indicators had a higher contribu-
tion in the estimated yield, as one of them was selected
as the best predictor (compared with the technologi-
cal time trend factor) in a greater number of cases
than the current operational system, and moreover
yield estimates were closer to the reference crop yield
based on the Eurostat value (Eurostat is the Statisti-
cal Office of the European Union with the Eurostat
value being the official yield used as a reference for
yield comparison) in nearly twice as many cases.

As stated above, given the low spatial resolution of
the coupled models, a need to downscale the global
model output is evident. For example, in terms of the
perfect forecast experiment described above, the
downscaled precipitation over the Iberian Peninsula
improved substantially the simulated plant biomass,
compared with the result obtained using raw model
output. This resulted in a 10% reduction in root-
mean-square error and an increase of regression co-
efficient from 0.63 to 0.71.

Based on the system described above, an innova-
tive method to supply seasonal forecast information
to crop simulation models has been developed in
DEMETER. It consists of running the crop model on
each individual member of the ensemble to derive a
PDF of the crop yield. Based on this PDF, the end user
can directly quantify the benefits and risks of specific
weather-sensitive decisions.

Wheat yield hindcasts for European countries
were carried out over a 4-yr period (1995–98) using
DEMETER multimodel ensemble downscaled data.
Figure 7 shows the predictions for Germany and
France, the largest wheat producers in Europe, along
with those for Denmark and Greece. For the sake of
comparison, a set of runs were also carried out with
the crop model using downscaled ERA-40 data, these
results being depicted with red dots. This reference
differs in some cases from the official Eurostat fig-
ures (depicted with horizontal black lines) for sev-
eral reasons not only related to the quality of ERA-
40 data, but also related to the uncertainty associated
with the crop yield recorded by the member states
and the lack of impact from pests and conditions at
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harvest. Substantial interannual variations are found
for the ERA-40 estimates in every country. They are
satisfactorily matched by the multimodel ensemble
prediction. In fact, the ERA-40 yield estimate, in ev-
ery single case, lies within the multimodel ensemble
range. Quantitative forecast quality estimates are not
available given the short length of the time series, al-
though these preliminary results are promising and
have led the European Commission to consider the
possibility of including multimodel seasonal forecasts
as part of its routine monitoring and forecast system.

As an illustration of the potential for probability fore-
casts of the yield anomaly, Fig. 8 shows the cumulative
probability function of wheat yield obtained with the
downscaled multimodel ensemble hindcasts. For ex-
ample, the official yield (Eurostat) was 0.5 tons ha-1

a) b)

c) d)

FIG. 7. Time series of the wheat yield predictions from downscaled data for (a) Germany, (b) France, (c) Den-
mark, and (d) Greece over the period 1995–1998. The multimodel ensemble spread is depicted by the box-and-
whisker representation, with the whiskers containing the lower and upper quartile of the ensemble. The blue
dots represent the ensemble mean, the yield obtained by forcing the crop model with ERA-40 data being dis-
played by slightly bigger red bullets. The black horizontal line corresponds to the reference value (Eurostat).

above the trend (positive anomaly) in 1988, while the
system using the DEMETER hindcasts predicted the
yield to be greater than 0.4 tons ha-1 above the trend
with a probability of 60%.

Malaria prediction. Malaria kills 1 million to 2.7 mil-
lion people per year, the vast majority of these deaths
occurring in children in sub-Saharan Africa (Breman
et al. 2001). Malaria endemicity in Africa varies along
a continuum. In areas of intense transmission, adults
are generally immune (unless in their first pregnancy)
and children are vulnerable to severe disease and
death. In areas of moderate endemicity, transmission
is often highly seasonal with the number of cases in-
creasing each year following the seasonal rains. A typi-
cal lag in the peak case numbers compared with the
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peak in the rainfall of between 2 and 4 months is ob-
served. In semiarid or high-altitude areas, transmis-
sion is highly unstable with the disease normally ab-
sent, although  epidemics with high death rates in all
age groups may occur in climatically anomalous years,
controlled by wetter and/or warmer-than-average
conditions. In such areas, malaria epidemics result
from the interplay of the vector (Anopheline mosqui-
toes), parasite (Plasmodium spp. with P. falciparum
being the most dangerous and the cause of African
epidemics), and human host. The ambient tempera-
ture drives the nonhuman stage of the disease, in both
the vector and parasite, provided sufficient water or
rainfall is present to provide pools for mosquito
breeding sites and high humidity levels that are essen-
tial for the survivorship of adult mosquitoes.

It has been proposed that malaria early warning
systems, which incorporate vulnerability assessment,
seasonal climate forecasts, weather monitoring, and
case surveillance, be developed for unstable areas in
Africa (WHO 2001). However, since seasonal climate
forecasts are inherently probabilistic, it is important
to develop models that represent the associated PDF
of epidemic risk in order to give decision makers con-
fidence in the use of such forecasts (Thomson et al.
2000).

Models for use in epidemic malaria prediction may
be either statistical (Hay et al. 1998) or mathemati-
cal–biological. The biological processes may be in-
cluded in the model as a series of interlinked
submodels, each represented as coupled differential
equations with a probabilistic transition between

model stages. The equations’ parameters are deduced
from empirical data (when available) or by fitting the
model to data. The biological model permits the im-
pact of malaria control interventions (such as insec-
ticide spraying of houses) to be analyzed directly in
the model. It can also be used to assess the potential
impact of future climate change on malaria transmis-
sion (McCarthy et al. 2001). Furthermore, the tim-
ing of interventions in relation to their impact on the
seasonal transmission of infection can be assessed, and
thereby the cost effectiveness of early intervention is
established.

In this context, a numerical dynamic biological
model that predicts the onset of potential epidemics
and is driven by temperature and precipitation daily
time series has been developed (Hoshen et al. 2004).
The meteorological data used in the model may come
from station observations, ERA-40, or seasonal
hindcasts. The model simulates the population dy-
namics of cohorts of mosquitoes, and thus predicts the
behavior of the total mosquito population. The lag
that is seen between extreme climatic conditions and
the actual peak in any malaria epidemic is a result of
three processes: the time taken for mosquitoes to
breed and develop, the time required for the parasite
to develop in the mosquito, and the time it takes for a
human to become infectious.

The model was first tested using either station or
ERA-40 data. For example, the model has been run
on continental ERA-40 data to assess its value in terms
of depicting the normal seasonality of the disease
across Africa, and showed the known patterns of the
epidemiology of malaria. It has also been compared
with a short time series of hospital malaria case data
using local meteorological station data. However, bias
correction and downscaling techniques need to be
applied to the ensemble outputs to maximize their
potential in a malaria forecast model. Unfortunately,
statistical/empirical downscaling will be harder to
perform in Africa than in other regions due to the
paucity of long-term local observations. Therefore,
alternative modeling-based downscaling methods are
required. As an initial step, a simple bias correction
scheme has been used. An estimate of the seasonal
cycle using daily data has been constructed for both
ERA-40 and the different models. A seasonal cycle
estimate has been obtained separately for each
hindcast initial date and for each model. The differ-
ence between these seasonal cycles has been added to
each member of an ensemble hindcast. Figure 9 shows
an example for the grid point 20.0∞S–27.5∞E (the clos-
est to Hwange, an area with high malaria incidence
in Botswana) using data corrected for the daily bias

FIG. 8. Cumulative distribution function of the wheat
yield anomalies for Spain predicted for 1987 (blue),
1988 (red), and 1989 (green) with the multimodel en-
semble downscaled data. The black solid line corresponds
to the historical cumulative distribution function.
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of precipitation and temperature as described above.
The 3-month average of monthly incidence, as simu-
lated by the biological model using ERA-40 data for
the period 1987–2001, is shown in red. Incidence is
defined as the percentage of people in a population
who are infected over a given period (a month in this
particular case) by the malaria parasite. Values ob-
tained by forcing the model with ERA-40 data have
been considered as “truth” given the scarcity of clini-
cal case reports. The hypothesis that an ensemble of
multimodel seasonal hindcasts could predict
probabilistically the temporal structure of malaria
prevalence has been assessed. For this purpose, the
biological model was run using temperature and pre-
cipitation from each of the 63 bias-corrected mem-
bers of the multimodel ensemble. The resulting
monthly incidence was then averaged over months
2–4 and displayed in Fig. 9 using a box-and-whisker
representation, with the whiskers containing the
lower and upper terciles of the ensemble and the en-
semble mean as a blue dot. The multimodel predic-
tions represent the seasonal cycle with the maximum
of incidence in boreal spring (March to May). In ad-
dition, the multimodel ensemble hindcasts match the
interannual evolution of the ERA-40 estimates. As a
measure of skill, the RPSS of the malaria prevalence
time series is 0.24 for the DJF major epidemic season,
which has a confidence level of 0.95. Hence, the
interannual variability of the reference malaria inci-
dence is predicted with some
success, the reference value
being always within the mul-
timodel ensemble range for
the MAM period. These
promising results have led
to further research in which
the malaria model will be
forced with downscaled
seasonal prediction data.

SENSITIVITY EXPERI-
MENTS. Various sensitiv-
ity studies have been car-
ried out, falling into four
categories. In the first,
methods for generating en-
semble spread (i.e., use of
perturbed SST and wind
stress patterns and stochas-
tic physics) are assessed. In
the second category, the
impact of ocean initial data
and model resolution on

the hindcasts is investigated. In the third, experiments
to determine the nature of equatorial SST biases are
performed. Finally, the benefits of the coupled system
over a prediction system using an atmosphere-only
model forced by persisted SST anomalies are exam-
ined. In the interests of brevity, only this last sensi-
tivity study is discussed in more detail. Further details
on the other experiments will be published elsewhere.

Given the biases that are present in coupled mod-
els, it is important to assess the benefits of using a fully
coupled system. The Met Office has performed a par-
allel set of hindcasts using the HadAM3 atmospheric
model (the atmospheric component of the coupled
GloSea model, see Table 1) forced by persisted SST
anomalies. The initial conditions for individual en-
semble members are taken from ERA-40 at 6-hourly
intervals starting 2 days before the hindcast date. Full
results can be viewed on the DEMETER Web site
(www.ecmwf.int/research/demeter/verification/
index.html).

Although the advantages of a coupled model over
an atmosphere-only integration with persisted SST
anomalies are likely to vary between El Niño and
non–El Niño conditions (Graham et al. 2000), the
sample of years available is not sufficiently large to
make such a distinction. Here instead, an overall
comparison based on 1987–99 hindcast is given,
based on ROC scores obtained with the GloSea and
HadAM3 models for probabilistic predictions of

FIG. 9. Three-month average of relative monthly malaria incidence for the 1-
month lead hindcasts at the grid point 20.0∞∞∞∞∞S–27.5∞∞∞∞∞E (Botswana). The red
bullets correspond to the incidence obtained forcing the malaria model with
bias-corrected ERA-40 data. The multimodel ensemble results calculated us-
ing all start dates for the period 1987–2001 are depicted using a box-and-whis-
ker representation, with the whiskers containing the lower and upper terciles
of the ensemble, and the ensemble mean as a blue dot.
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above-normal seasonal mean 2-m temperature
(Fig. 10). Scores are calculated for 3-month mean
values corresponding to early and conventional sea-
sonal periods (i.e., for boreal spring the early season
is defined as February to April and the conventional
season as March to May). The prediction for the early
season is at 3-month lead (i.e., a long-lead outlook),
while the prediction for the conventional season is
at 1-month lead (i.e., corresponding to an “update”
on the long-lead prediction). Scores for six geo-
graphical regions are shown. The number of times
each model is more skillful than the other is indicated
next to the appropriate axis. In counting the “wins”
for each model, only cases where the difference in
scores exceeds 2%, and the winning model has a score
exceeding 0.5 are considered.

Comparisons for 2-m temperature show a degree
of scatter about the diagonal in most seasons.
Nevertheless (as indicated by the number of wins) the
overall performance of GloSea and HadAM3 is simi-
lar in spring, summer, and autumn, while for the
winter season GloSea appears notably more success-
ful, with seven wins versus one. Scores are highest for
the tropical region in all seasons with GloSea achiev-
ing the best scores in all cases and, as expected, the
update scoring better than the long-lead hindcast.
Notable successes for GloSea at 3-month lead include
forecasts of February-to-April temperature over
North America (Fig. 10a), and November-to-January
temperature in the Tropics, West Africa, and north-
ern extratropics (Fig. 10d). In contrast, HadAM3
currently appears to perform better at both lead times

over Europe in summer
and autumn. In winter,
scores for Europe are simi-
lar with both models, while
in spring GloSea has better
1-month lead forecasts,
while HadAM3 is notably
better at 3-month lead
(Fig. 10a).

CONCLUSIONS.  As
part of a European Union–
funded DEMETER project,
a multimodel ensemble sys-
tem based on seven Euro-
pean global coupled ocean–
atmosphere models has been
described and validated in
hindcast mode using ERA-
40 data and GPCP for pre-
cipitation. Output from the
DEMETER multimodel sys-
tem, suitably downscaled,
has been applied to crop
yield and malaria prediction
models. Results indicate that
the multimodel ensemble is
a viable pragmatic approach
to the problem of represent-
ing model uncertainty in
seasonal-to-interannual pre-
diction, and will lead to a
more reliable forecasting
system than that based on
any one single model. An
additional outcome of the
project is the production of

FIG. 10. Comparison of ROC scores for probabilistic predictions of the event
“2-m temperature above the climate normal” obtained with the GloSea and
HadAM3 models for six geographical regions [northern extratropics (N);
Tropics (T); southern extratropics (S); Europe (E); North America (A); West
Africa (W)]. Scores for two lead times are shown, a 3-month lead (long lead)
forecast for the “early” season (early spring/summer/autumn/winter = FMA/
MJJ/ASO/NDJ) in red, and a 1-month lead “update” forecast for the conven-
tional season (MAM/JJA/SON/DJF) in blue. The number of times the score
obtained with each model exceeds that of the other model is provided next
to the appropriate axis. Only cases when the winning model achieves a ROC
score that exceeds 0.5 (the “no skill” threshold), and exceeds that of the other
model by 2% or more are counted. Scores are calculated over the period 1987–
99. Forecasts are verified against anomalies from ERA-40.
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a unique seasonal hindcast dataset. This dataset offers
the potential to improve our understanding of the
mechanisms of intraseasonal and interannual climate
variations.

In the limited space available in this paper, a few
illustrative examples of results from the DEMETER
project have been given. However, we invite readers
to visit the DEMETER Web site (www.ecmwf.int/re-
search/demeter/verification), where an extensive
range of diagnostics and skill scores used to evaluate
the DEMETER system are presented.

In addition to these specific diagnostics and skill
scores, visitors to the DEMETER Web site can down-
load (in GRIB or NetCDF format) gridded data from
a large dataset comprising monthly mean fields for a
large number of variables from the DEMETER
hindcasts, including ERA-40 verification. We thus
encourage scientists and potential users of seasonal
forecasts to perform their own analysis of the
DEMETER data (perhaps to assess skill for specific
regions and variables of interest not covered in our
standard analysis). More generally, we offer this
DEMETER dataset for education and training
purposes, both in the developed and developing
worlds.

As a result of the success of DEMETER, real-time
multimodel ensemble forecasting is now being estab-
lished as part of the operational seasonal forecast suite
at ECMWF. At the time of writing, plans are well es-
tablished for the ECMWF, Met Office, and Météo-
France coupled systems to be included in this
multimodel mix. It is possible that other DEMETER
models may be included at a later stage.

In future research it is hoped to use a successor
system to DEMETER to explore the use of multi-
model ensembles not only for seasonal-to-
interannual time scales, but also for decadal time
scales for which scientific evidence of predictability
has emerged in recent years (Grötzner et al. 1999).
For this purpose, it is planned to ensure that the
model components used for seasonal-to-decadal en-
semble prediction, are, as far as practicable, identi-
cal to those used for century time scale anthropogenic
climate change. In this way, the reliability of century
time-scale climate change projections can be assessed
by running essentially the same ensemble systems on
time scales for which verification data exists. A uni-
fication and rationalization of research and develop-
ment across these time scales will enhance enor-
mously the credibility of climate science.

Finally, while the results shown in this paper
clearly indicate the need to represent model uncer-
tainty when forecasting climate, the multimodel ap-

proach cannot be considered the final solution. For
example, there is manifestly no representation of
common model deficiencies in a multimodel en-
semble. Rather, the DEMETER results have motivated
a more theoretical approach to the representation of
model uncertainty using stochastic-dynamic subgrid
models (Palmer 2001; Khonider et al. 2003). Practical
schemes based on cellular automaton stochastic dy-
namics subgrid models are currently in development,
and it is hoped to assess these against the multimodel
approach in coming years.
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