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The aim of this study is to provide combined new insights into the geochronological framework, isotope
geochemical signatures and structural observations of methane related authigenic carbonate settings and
associated cold-water corals from offshore New Zealand. The analysed samples are obtained from calcified
sediments of three different cold seep areas at the Hikurangi Margin: Opouawe Bank, Uruti and Omakere
Ridge. We focused the sub-sampling on aragonitic precipitates in vein like structures, partly still open fluid
channel systems and related chemoherm structures in order to identify the timing and signature of focused
marine methane emanation. The presented initial U/Th age data set indicates different generations of
intensified seep activity and related carbonate precipitation between 12,400±160 and 2090±850 years BP.
The youngest stage so far, was identified as contemporaneous cold seep activity at the southernmost (North
Tower, Opouawe Bank) and northernmost (Bear's Paw, Omakere Ridge) sampling sites around 2300 years
BP. Sharing the same water depth (1050 to 1100 m) these sites imply regional margin-wide tectonic or
hydrological changes as controlling process.
An intermediate phase of vein and channel structures within the sediment was detected for a time interval
between approximately 5000 and 4000 years BP with contemporaneous settings of focused seep activity
around 4300 years BP at Uruti Ridge (LM-10) and Opouawe Bank.
δ13CPDB data reflect site and carbonate type specific signatures, clustering around−52‰ (Uruti and Omakere
Ridge) and −47‰ for the fluid pathway system and the uppermost surface at North Tower site (Opouawe
Bank). Late stage precipitates in chemoherm cavities of the latter reflect significantly heavier values of
about −38‰. Porous precipitates within open fluid channel systems are characterized by decreased δ234U(T)

values, exceptional high Th and U concentrations and slightly lighter δ13CPDB signatures when compared to
adjacent rim-like and dense cements. This specific kind of precipitate is interpreted as indicator for phases of
less vigorous fluid seepage.
The observed occurrence of cold-water corals seems to be mostly depending on the abundance of authigenic
carbonates as a substrate exposed to erosive bottom water currents. But, seafloor observations combined
with preliminary age data indicate a significant time gap between the inferred end of cold seep activity and
coral colonization. U–Th analyses of recent reef-forming coral provided an initial δ234U(0) value of 146.3±
3.9‰ and 0.0013±0.0002 as starting 230Th/234U activity ratio for coral growth in the bottom water.
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1. Introduction

Authigenic carbonates from cold seeps are potential high-
resolution recorder of changes in venting activity and fluid compo-
sition through time (e.g. Teichert et al., 2003; Campbell, 2006; Judd
and Hovland, 2007); they may or may not be associated with gas
hydrates (Teichert et al., 2005). Various examples from modern and
ancient cold seeps have been described from continental margins
worldwide (e.g. Kulm and Suess, 1990; Campbell et al., 2002, Nymann
et al., this issue). After a decade of microbiological and geochemical
studies, we know that in marine cold seep environments, methane
and other hydrocarbon compounds contained in the ascending fluids
are oxidized to bicarbonate (HCO3−) by a microbial consortium of
sulphate-reducing bacteria and methanotrophic archaea (Boetius
et al., 2000). Anaerobic oxidation of methane is the main microbial
process driving the precipitation of authigenic carbonate build-ups
within subsurface anoxic sediments and the bottom water. This
process explains why the seafloor is often cemented by carbonate at
sites of active methane seepage, either as chemoherm structures
associated to focussed fluid venting that grow into the water column,
ater corals at the Hikurangi Margin, New Zealand:
10.01.003
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or as carbonate cementations/concretions in the sediment. The lateral
and vertical extents of these methane-derived authigenic carbonates
are controlled by the balance between the intensity of the fluid flux
and the ability of microbes to oxidize methane and reduce sulphate
(Luff and Wallman, 2003). The efficiency of this process (Sommer
et al., 2006) might not be sufficient enough for high methane flux
(in dissolved and especially gaseous phase), so that methane can
escape into the water column and may eventually reach the atmo-
sphere (e.g. Sauter et al., 2006). Numerical modelling of carbonate
crust formation has shown that bioturbation and sedimentation rates
are additional important factors in controlling the flow of water and
methane, and thus carbonate precipitation at cold seep sites (Luff
et al., 2004).

The carbonate build-ups observed at the seafloor exhibit various
morphologies: massive to porous crusts centimeter to meters thick
that form large pavements or fragmented slabs, circular chimneys,
and irregular concretions corresponding to cemented bioturbation
traces. These hard substrates are often inhabited by an abundant
motile fauna (bivalves, gastropods, crustaceans, fishes etc.) and
colonized by fixed organisms such as tubeworms and cold-water
corals, which may become entombed as biotic elements in the seep
carbonates (e.g. Campbell et al., this issue).

Mineralogy, geochemical and isotopic signatures of authigenic
carbonates depend on the composition of the ascending fluids and the
environmental conditions during formation. These studies together
with U–Th age constraints on paleo-seepage activity are crucial tools
for the identification and understanding of the driving processes,
mechanisms and sources of marine methane emanation (Teichert
et al., 2003; Kutterolf et al., 2008; Watanabe et al., 2008; Bayon et al.,
2009). Cold seep carbonates are in particular suitable for the
reconstruction of marine methane emanation and estimates of their
contribution to the marine and global carbon cycle (Aloisi et al., 2002;
Judd et al., 2002; Judd, 2003).

Cold-water coral habitats occur in a wide range of geological
settings and different ecosystems, a compilation is presented by
Roberts et al. (2009). With respect to cold seep environments, the
investigation of associated cold-water corals may provide important
constraints on the impact of fluid emanation on the bottom water
chemistry, supporting quantification and reconstruction attempts.
Furthermore, a combination of contemporaneous cold-water coral
and cold seep carbonate archives would be especially useful for the
calibration of isotope proxies for carbonate precipitation conditions of
cold seep environments in the past.

According to a hypothesized relationship between the occurrence
of cold-water corals and hydrocarbon seepage (Hovland and
Thomsen, 1997) and contradictory findings (Becker et al., 2009) our
approach is focused on the geochronology of cold-water coral
occurrence and cold seep activity. Additionally, the detection of
age gaps between coral growth and formation of the underlying
hard substrate could provide information about the time interval
required for coral settlement and potentially related changes of
hydrodynamic controls (Mienis et al., 2007; Roberts et al., 2006;
White et al., 2005).

RV SONNE cruise SO191 to the Hikurangi Margin (Bialas et al.,
2007) provided ideal samples of seafloor carbonate pavements and
cold-water corals, which were recovered with a large video-guided
grab (TVG). Cross-cuts through these large (up to 1.8×1.2×1 m)
Fig. 1. Compilation of bathymetry, site distribution and seafloor observation during the de
bathymetry of the Hikurangi Margin at the east coast of New Zealand's North Island. The squa
part of the island. B: Typical seafloor observation of cold seep faunal community and blocks
marks the recovered sample at station # 165 (each picture width: approx. 2 m). D: Sampled
Moa site of Omakere Ridge (picture width approx. 2 m). Insertion shows enlargement of a r
mature calcified pavement-like seafloor at the top of Uruti Ridge close to the LM-10 site (st
2 m). F: Characteristic high relief seafloor with large separated blocks and chemoherm structu
of Opouawe Bank. The white square marks the sampled block at station # 138 (pict. width: ap
seep carbonate sample recovered since (station # 138, picture width approx. 2.5 m).
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blocks from three different sampling areas (Fig. 1A, Table 1) provide a
geochronological, geochemical, mineralogical and structural view into
carbonate precipitation processes at the seafloor and the development
of the fluid ‘plumbing’ system through time.

The detailed investigation of cold seep carbonates from the
tectonically highly active Hikurangi Margin fills a gap in the over-
regional view on circum-Pacific cold seep areas of different geological
settings like Hydrate Ridge (mature accretionary system), offshore
Costa Rica (erosive subduction) and the South China Sea (passive
continental margin).

On regional scale the investigation of fluid pathway structures and
the timing of intensified fluid emanation contributes to the assess-
ment of direct fluid flux measurements at active seep sites (Linke
et al., this issue), when compared to the past. Furthermore, it supports
interpretation and understanding of cold seep structures recovered on
land on the North Island of New Zealand (Nymann et al., this issue).

2. Regional setting and sampling sites

The Hikurangi Margin at the east coast of New Zealand's North
Island is characterized by the oblique subduction of the Pacific plate
beneath the Australian plate (Fig. 1). The convergence rate varies from
45 mm yr−1 in the North Island region to 38 mm yr−1 in the northern
South Island region forming a large accretionary prismwith a series of
accretionary ridges with active cold seeps offshore and fossil ones
onshore (Barnes et al., this issue; Campbell et al., 2008; Lewis and
Marshall, 1996).

Fossil cold seeps are described for northern Wairarapa (Lederset
et al., 2003) and large tubular carbonate concretions (50–85%
carbonate) with near-central conduits are interpreted as part of a
subsurface plumbing network of a paleo cold seep system in coastal
cliffs north of Cape Turnagin (Nymann et al., this issue). These findings
demonstrate that fluid venting at the Hikurangi Margin is a long
lasting phenomenon.

In this study we focus on the analyses of carbonate samples
obtained from three study areas during SONNE cruise SO191 —

Opouawe Bank, Uruti and Omakere Ridge (Fig. 1) in order to cover
different settings along the Hikurangi Margin. All seep sites lie on
separate crests of thrust-faulted ridges at mid-slope depths (Barnes
et al., this issue). They are positioned near the seaward edge of the
Cretaceous and Paleogene basement rocks, which constitute a
relatively impermeable backstop that focuses fluid migration offshore
today along low-angle thrust faults and the décollement (c.f. Lewis
and Marshall, 1996; Barnes et al., this issue). Fault fracture networks
are visible in seismic images beneath the seeps, and bottom
simulating reflectors (BSR) are disturbed at these locations by upward
fluid and gas migration to the seafloor seep sites (Barnes et al., this
issue; Netzeband et al., this issue).

2.1. Opouawe Bank

The Opouawe Bank is one of the accretionary ridges culminating
in about 900 m water depth and well separated from the continen-
tal slope by erosive canyons (c.f. Klaucke et al., this issue). High-
resolution side-scan sonar data collected over Opouawe Bank
indicated thirteen different cold seeps (Greinert et al., this issue),
which Klaucke et al. (this issue) divide into two types: high acoustic
ployment of TV-guided grabs, RV SONNE cruise SO191. A: Overview map showing the
res mark the sampling areas of this study. Lake Taupo appears in light grey in the central
of less mature calcified sediments at Bear's Paw (Omakere Ridge). C: The white square
cold-water coral reef structures (station # 227) on top of authigenic carbonates at the

ecovered fragment (white square) of a living reef-forming colony. E: Flat, fractured and
ation # 316). The white square marks the recovered solid block (picture width approx.
res indicating pronounced exposure due to erosional conditions at the North Tower site
prox. 4 m). G: Enlarged documentation of the upright in-situ position of the largest cold

associated cold-water corals at the Hikurangi Margin, New Zealand:
016/j.margeo.2010.01.003
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Table 1
List of stations and samples relevant for this paper.

Area site Position Water
depth

Habitat Number of
sub-samples

RV Sonne,
cruise 191,
station #

Latitude (S),
longitude (E)

(m) Description based on TV-guided
grab

Opouawe Bank North Tower
138 41°46.908 1047 Cold seep, large carbonate

blocks, chemoherm structures,
cold-water corals associated

11
175°24.092

Uruti Ridge LM-10
316 41°17.530 756 Cold seep, flat pavement-like

seafloor, dense sediment
3

176°32.870

Omakere Ridge Bear's Paw
165 40°03.185 1102 Cold seep, small blocks, less

dense porous sediment, rich
in cold seep fauna remnants

2
177°49.264

Omakere Ridge Moa
218 40°03.270 1107 Cold-water coral reef on

inactive seep site, reef
formation terminated

2
177°48.770

227 40°03.280 1120 Cold-water coral reef, reef
colony alive

1
177°48.75
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backscatter intensity patches with apparent relief, and patches with
moderate backscatter and smooth to no relief. The North Tower seep
site sampled in this study (1056 mwater depth, Fig. 1F) belongs to the
first type with a distinct clustering of individual carbonate blocks
surrounded by some scattered blocks (c.f. Klaucke et al., this issue).
The seep is located at the base of a 30 m-high normal fault scarp (Law
et al., this issue). Visual site descriptions for the Opouawe Bank can be
found in Baco et al., this issue, Law et al., this issue, and Klaucke et al.,
this issue. Almost vertical polygonal faults are assumed to represent
the main structural control on the focused fluid flow at the Opouawe
Bank.

2.2. Uruti Ridge

Uruti Ridge lies on themiddle slope off theWairarapa coast, where
the offshore part of the imbricate wedge is about 90 km wide (Barnes
et al., this issue). Three seep sites, including LM-10, are located at
small mounds or knolls on the anticlinal crest of the thrust-faulted
ridge in about 800 m water depth and in close proximity to the
eastern end of amajor strike slip fault. The seep sites are characterized
by strong back scatter in side-scan sonar images and acoustic flares in
the water column (Greinert et al., this issue). Visual site inspection
revealed that the knolls are similar in form and consist of a summit
with moderate-relief. The summits consist of authigenic carbonate
rocks, often in the form of a relatively flat and wide pavement. The
flanks show isolated carbonate blocks as talus before the background
soft sediment habitat becomes dominant at the feet of the knolls (c.f.
Baco et al., this issue). The TV-guided grab was successfully deployed
at the fractured rim of the flat summit of the LM-10 site at Uruti Ridge
(756 m water depth, Fig. 1E).

2.3. Omakere Ridge

Multibeam bathymetry offshore Napier at the east coast of North
Island revealed a series of prominent, northeast trending ridges, one
of which is Omakere Ridge. Here, a flare was observed during
echosounder surveys of local fishermen in 1994 (Lewis and Marshall
1996, vent site number LM-9); dredging at this site failed to retrieve
any seep-associated fauna. On side-scan sonar images obtained during
SO191, five seep sites and one cold-water coral reef were found (Jones
et al., this issue) based on their high backscatter intensity and
Please cite this article as: Liebetrau, V., et al., Cold seep carbonates and
New insights into fluid pathways, growth..., Mar. Geol. (2010), doi:10.1
irregular form. The seep site Bear's Paw, and the cold-water reef Moa
were visually studied andmapped by TV sled surveys (Jones et al., this
issue). Sampling by TV-guided grab and coring recovered carbonate
crusts, seep-associated fauna and gas hydrate at Bear's Paw (Jones
et al., this issue) in 1100 m water depth (Fig. 1B). The carbonates as
well as the transition zones between carbonates and sediments were
densely populated by seep fauna like vestimentiferan polychaetes
(Lamellibrachia sp.) and bivalve mollusk species (Thurber et al., this
issue). In contrast to this almost exclusive chemoherm, the high relief
carbonate outcrop at the Moa site was colonized in many places by
cold-water corals (sampled with TV-grab at 1120 m water depth,
Fig. 1D). Due to the absence of live chemosynthetic fauna, the main
part of Moa is regarded as a relict seep site (Jones et al., this issue).

3. Sampling and analytical methods

3.1. Sampling of authigenic carbonates and surface sediments

Samples were obtained deploying the large video-guided grab
(TVG) on board RV SONNE with a mouth opening of 1.8 m2 and over
2 t closing pressure of the hydraulic system. Once the samples were
recovered they were carefully inspected to document and sample
their colonization by biological communities and their in-situ position
at the sea floor.

The retrieved blocks, consisting of authigenic carbonates and
consolidated sediment, were cut into sections by a specialized large
scale disc saw (1.65 m in diameter). This technique provides contin-
uous and fresh sampling surfaces throughout the centre of large
blocks allowing new insights into internal structures/fabric, the
precipitation processes, and the fluid channel systems.

3.2. Sub-sampling strategy and selection criteria

The sub-sampling focussed on aragonitic carbonate precipitates
with discrete growth bands and fluid pathway structures, providing
unaltered material for reliable isotope analyses. All sub-samples were
taken with a mini-driller from freshly cut surfaces of solid precipi-
tates, after discarding first drill steps as surface cleaning procedure.
To secure the mineralogical composition as aragonitic (N98%), only
samples were accepted that showed no calcite reflections in X-ray
diffraction analyses.

Calcitic carbonates are less favoured for this kind of initial
overview approach as their U–Th geochronology is affected by two
disadvantageous facts. At first, they are potentially product of
diagenetic recrystallisation of primary aragonitic precipitates. In this
case, they do not necessarily reflect information about the original
precipitation system solely. Secondly, even if defined as primary
origin by detailed structural and mineralogical investigation, calcitic
precipitates are often accompanied by low U and high Th contents.
Both facts increase the required sample amount and complicate the
correction for the isotopic composition of initial Th. Consequently,
calcitic samples would lead to less lateral resolution in sub-sampling
and less precise geochronology. The same assumption concerning
sample amount, lateral and chronological precision is valid for
isochron approaches, usually applied to circumvent the difficulties
caused by high Th contents. Nevertheless, a good example for the
potential and scope of U–Th dating approaches on a multiphase cold
seep carbonate crust (Mg-calcite, calcite and aragonite) is presented
by Bayon et al. (2009).

3.3. U–Th geochronology

This study is based on U–Th age data (Table 2) of little sample
material in order to combine high structural resolution with the
analytical precision of MC-ICP-MS (multi-collector-inductively coupled
plasma-mass spectrometry). The U–Th isotope measurements were
associated cold-water corals at the Hikurangi Margin, New Zealand:
016/j.margeo.2010.01.003
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Table 2
U–Th geochronology and light stable isotope signatures of authigenic carbonates and cold-water corals from cold seep sites at the Hikurangi Margin.

Site sample Description Sample
weight
(mg)

238U conc.
(µg/g)

232Th conc.
(ng/g)

230Th conc.
(pg/g)

230Th/232Th
act. ratio

230Th/234U
act. ratio

δ234U(0)

(‰)
δ234U(T)

(‰)
U–Th-ingrowth
age
(ka BP)

δ13C PDB
of sample
(‰)

δ18O PDB
of sample
(‰)

Opouawe Bank/North Tower
138-1 Uppermost surface of the block 33.9 6.93±0.03 168.0±0.9 4.11±0.02 4.60±0.04 0.0264±0.0017 146.6±2.2 147.8±2.2 2.92±0.19 −46.20 3.37
138-2 Upper part of open pore system 19.0 5.78±0.03 1.77±0.01 2.64±0.02 279.4±2.9 0.0241±0.0002 152.4±2.0 153.5±2.0 2.67±0.03 −38.43 3.49
138-3 Intermediate of open pore system 17.3 7.76±0.04 5.09±0.04 3.37±0.02 124.1±1.3 0.0230±0.0002 149.3±2.5 150.4±2.5 2.53±0.02 −36.28 3.46
138-4 Lower part of open pore system 35.1 3.88±0.02 25.78±0.14 1.69±0.01 12.3±0.1 0.0217±0.0004 149.9±2.3 150.9±2.3 2.39±0.04 −39.39 3.54
138-5 Horizontal layer above sed. surface 9.5 5.66±0.04 4.83±0.04 3.81±0.03 147.6±1.7 0.0357±0.0004 147.1±1.7 148.7±1.7 3.96±0.05 −45.45 3.57
138-6 Solid rim beside sample 138-7 17.6 3.85±0.02 0.79±0.01 2.78±0.02 662.2±7.7 0.0383±0.0003 150.6±2.1 152.5±2.2 4.26±0.04 −46.47 3.50
138-7 Porous channel filling 15.7 14.5±0.08 788.8±5.0 11.42±0.08 2.7±0.03 0.0303±0.0043 147.0±2.6 148.4±2.8 3.36±0.48 −47.22 3.64
138-8 Intermediate vein system 19.0 4.12±0.02 15.96±0.11 3.04±0.02 35.6±0.4 0.0384±0.0004 148.6±2.4 150.4±2.4 4.27±0.05 −46.21 3.39
138-9 Solid rim of open pore space 17.7 3.29±0.02 2.27±0.02 2.40±0.02 198.1±2.0 0.0386±0.0004 152.3±2.1 154.2±2.1 4.29±0.04 −45.74 3.42
138-10 Vein system at base 34.5 5.13±0.02 376.9±2.0 5.77±0.03 2.90±0.02 0.0444±0.0057 143.8±2.1 145.8±2.4 4.95±0.65 −47.55 3.50
138-11 Dead solitary coral on top 138-1 2.9 2.68±0.05 2.40±0.04 0.12±0.01 9.3±0.6 0.0021±0.0002 167.3±5.1 167.4±5.1 0.23±0.02 −5.05 1.28

Uruti Ridge/LM-10
316-1 Upper part of vertical vein 17.4 6.18±0.03 2.99±0.02 4.30±0.03 269.6±2.7 0.0371±0.0003 144.0±1.8 145.7±1.8 4.12±0.04 −52.00 3.03
316-2 Lower part of vertical vein 19.5 5.64±0.03 3.04±0.02 4.10±0.03 252.3±2.3 0.0387±0.0003 143.4±2.0 145.2±2.0 4.31±0.04 −51.16 3.02
316-3 Horizontal vein 9.5 5.03±0.03 58.02±0.43 10.31±0.08 33.3±0.4 0.1076±0.0013 138.7±2.2 143.6±2.2 12.40±0.16 −52.63 3.81

Omakere Ridge/Bear's Paw
165-1 Rim of open pore space 38.2 2.34±0.01 22.10±0.12 1.03±0.01 8.8±0.1 0.0214±0.0006 150.6±2.4 151.6±2.5 2.36±0.07 −51.06 3.59
165-2 Porous channel filling 17.1 13.64±0.07 1007.6±5.9 8.90±0.06 1.7±0.0 0.0190±0.0077 147.4±2.1 148.3±2.5 2.09±0.85 −51.59 3.62

Omakere Ridge/Moa
218-1 Coralline reef substrate 5.5 2.91±0.06 39.94±4.75 2.29±0.03 10.8±1.3 0.0395±0.0012 134.3±3.3 136.0±3.4 4.39±0.13 −7.14 −0.27
218-3 Dead solitary coral on 218-1 4.0 4.32±0.02 5.73±6.51 0.87±0.02 28.4±32.3 0.0105±0.0004 134.5±4.0 134.9±4.0 1.16±0.05 −3.89 1.51
227-1 Recent reef-forming coral 8.5 3.80±0.03 – 0.095±0.005 – 0.0013±0.0002 146.3±3.9 146.3±3.9 0.15±0.02 – –

230Th/234U ratios and subsequently the calculated ages are corrected for potential detrital contribution applying a 230Th/232Th activity ratio of 0.75±0.2, according toWedepohl (1995). Note, in most cases this correction is negligible due
to sufficiently high 230Th/232Th activity ratios in the carbonates. Nevertheless, despite precise isotope measurements, for some samples enlarged age uncertainty must be deduced. Lacking or in italics given Th data correspond to
measurements on 232Th amounts below or close to the detection limit. The age of sample 227-1 displays the theoretical equivalent of the primary 230Th/234U activity ratio in this recent coral. The δ234U(0) value represents the originally
todaymeasured (234U/238U) activity ratio, given in delta notation (δ234U(0)=((234Uact/238Uact)−1) ·1000). Displayed δ234U(T) values reflect age corrected (234U/238U) activity ratios by recalculating the decay of 234U for the time interval
T (δ234U(T)=δ234U(0) ·exp (λ234 ·T)), determined from 230Th/234U age of each individual sample. Note, due to young ages of this sample set, the impact of age correction on the interpretation of δ234U values is almost negligible. All errors
are deduced on 2 σ level. δ13C and δ18O values are referred in ‰ to the PDB scale. Counting statistics of each sample measurement was below the representative standard deviation of 17 accompanying standard measurements (0.028‰
for δ13C, 0.039‰ for δ18O).
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performed on a VG Elemental AXIOM MC-ICP-MS at IFM-GEOMAR
applying the multi-static MIC (multi-ion-counting)-ICP-MS approach
after Fietzke et al. (2005). For isotope dilution measurements a
combined 233/236U/229Th-spikewasused,with stock solutions calibrated
for concentration usingNIST-SRM 3164 (U) and NIST-SRM 3159 (Th) as
combi-spike calibrated against CRM-145 uranium standard solution
(also known as NBL-112A) for U-isotope composition, and against a
secular equilibrium standard (HU-1, uranium ore solution) for deter-
mination of 230Th/234U activity ratio. Whole procedure blank values of
this sample set were measured around 0.1 fg for 230Th, around 2 pg
for 232Th and between 2 and 5 pg for U, which are in the typical range of
this method and laboratory. Element separation procedure was based
on Eichrom-UTEVA resin. Calculation of geochronological data and
activity ratios is based on the decay constants given by Cheng et al.
(2000).

Each set of element separation was accompanied by runs of
aliquots of the HU-1 equilibrium standard solution to verify procedure
reproducibility. A methodology depending uncertainty of less than
0.5% on 230Th/234U activity ratios was reached; the geochronological
uncertainties given in Table 2 are dominated by the analytical error of
individual sample measurement. The applied data reduction includes
a correction for isotopic composition of incorporated Th of detrital
origin, according to continental crust values (Wedepohl, 1995) as
approximation for involved shelf sediments (details given in Table 2).
Due to the selection strategy for the majority of the sub-samples this
correction is almost negligible. An additional, more exact determina-
tion of potentially deviating isotope signatures of dissolved Th in the
precipitation feeding cold seep fluid is hampered by the lack of
adequate fluid sample material. An alternative, analytically sophisti-
cated and site-specific approach for Th corrections is presented by
Bayon et al. (2009) that also works for cold seep carbonates with high
Th content. According to published cold seep U–Th data (e.g. Teichert
et al., 2003) the 234U/238U ratios are presented in δ234U notation
(details given in Table 2).

3.4. C and O isotope analyses

In order to identify the methane seep relation of carbonates
detailed δ13C and δ18O analyses are crucial requirements. A correlation
of light stable isotope signatures with age constrains (Fig. 3) and local
habitat characteristics may reflect the impact of varying vent activity
through time and contributes to over-regional comparison of seep
settings. Stable oxygen and carbon isotope measurements were
carried out at the isotope laboratory at IFM-GEOMAR with a CARBO
KIEL automated carbonate preparation devices linked on-line to a
FINNIGAN MAT 252 mass spectrometer. External reproducibility was
0.028‰ for δ13C and 0.039‰ for δ18O (1-sigma values), as calculated
from 17 replicate analyses of the internal carbonate standard
(Solnhofen Limestone) performed before and after the analyses of
our carbonate samples. The isotope data are referred to the PDB scale.

4. Sample description and site-specific results

During various tracks using the video sled OFOS (Ocean Floor
Observation System) different types of cold seep carbonates were
Fig. 2. Internal precipitation structures and sub-sampling spots on surfaces of large cross-c
guided grab during cruise SO191(U–Th ages given in ka BP). For scale please refer to displaye
samples are marked with arrows and succession of single numbers on each cross-cut for ide
Bank (station # 138). A: In full extension during surface sampling by biologists on deck of R
vertical cross-cut showing upward widening vein and channel system with still open pore
C: Enlargement documents the structural change of carbonate type from vein structures ov
dense calcified sediment sample of this study from the top of Uruti Ridge close to the LM-10
with a fine distributed vein system, white squares mark positions of enlargements E and F. E
widening vein system in lower right part. G and H: Least mature calcified sediment, rich
G: Overview reflecting typical block size, low density and pronounced content of shell fragm
volume structures within a rather diffuse calcifiedmatrix, displaying challenging sample situ
references to colour in this figure legend, the reader is referred to the web version of this a
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observed during cruise SO191.Most abundantwere carbonates forming
flat pavements at the sediment seawater interface. These carbonates
were different from large brownish to blackishblocks characterized by a
smooth and even surface not showing any remarkable biological
colonization. Another type of light brown to white carbonate reached
upward into the bottomwater column andwasmarked by a porous and
brecciated surface structure (chemoherm).

In an attempt to characterize different cold seep settings, results
combined from structural, mineralogical, and isotope geochemical
analysis (Table 2, Fig. 3) are presented in geographical order from
South to North, facilitating their comparison along the Hikurangi
Margin.

4.1. Opouawe Bank

On the Opouawe Bank the largest carbonate sample (weight
approx. 2.5 t) was obtained from the North Tower site (Table 1 #138,
Fig. 1F, G). Visual inspection revealed sessile seep fauna like vesti-
mentiferan polychaetes (Lamellibrachia sp.) with tubes extending in
the fluid channel system of the large carbonate block (Fig. 2A). Those
parts of the block, which were exposed to the bottom water current
regime, were colonized by solitary cold-water corals (Caryophyllia sp.,
Desmophyllum dianthus).

The large vertical cross-cut (Fig. 2B) provides insight into the fine
structured, upwards branching fluid channel system within, and a
porous layer of carbonate precipitate on top of the consolidated
sediment. Within the fluid channel system, open pore space (e.g. sub-
sampling spot 138-9, Fig. 2B) can beobserved and thewider the channel
system the thicker andmore porous are the stable and rim-like cements
on the sediment/channel-interface. The U–Th age profile through the
fluidpathwayandvein systemof theblock revealed twomajor phases of
vent activity according to distinct δ13C signatures (Fig. 3).

Following the fluid path from the bottom (Fig. 2B, spot 138-10) to a
rather thin, but solid layer on top of the sediment surface (Fig. 2C, spot
138-5) our analyses reveal a succession from 4950±650 to 3960±
50 years BP. The prior reflects the influence of increased Th concentra-
tion on U–Th age precision, but gives a first estimate for the timing of
initial precipitation. This phase is characterized by a δ234U(T) value of
145.8±2.4‰, which is according to Henderson and Anderson (2003)
identical with the modern seawater signature (146±2‰). More
precisely dated intermediated profile steps represent ages of 4290±
40 (Fig. 2B, spot 138-9) and4270±50(Fig. 2B, spot 138-8) years BP and
pointwith δ234U(T) values of 154.2±2.1 and 150.4±2.4‰, respectively,
to an increasing and varying impact of a more reducing fluid
environment (Teichert et al., 2003). The porous and structurally weak
fluid channel filling at spot 138-7 (Fig. 2C) shows an age of 3360 years
BP, with increased uncertainty of ±480 years due to incorporation of
higher Th levels. Remarkable is the combination of the highest observed
U concentration (14.5 ppm) with a δ234U(T) value (148.4±2.8‰) again
close to modern seawater. In contrast, the massive rim at spot 138-6
directly aside (Fig. 2C, 4260±40 years BP) represents the fluid channel
stabilizing pre-cursor precipitate with only 3.85 ppm U at slightly
elevated δ234U(T) signature of 152.5±2.2‰. Note, all these vein and
fluid channel precipitates are very similar in δ13C signature, covering a
narrow range between −47.55 and −45.45‰ (Fig. 3).
uts through blocks of calcified sediments from Hikurangi Margin, recovered with TV-
d cruise participants and 20 cm length for each section of the folding rule. Spots of sub-
ntification in Table 2. A–C: Largest recovered block from North Tower site of Opouawe
V SONNE, displaying brown to whitish layers on top of solid sediment. B: Overview of
volume, surrounded by densely calcified sediment (white square corresponds to C).

er stable open channels and their filling to precipitates above the sediment. D–F: Most
site (station # 316). D: Overview displaying massive and closed structure of the block

: Details of the uppermost left part with dominant horizontal veins. F: Details of upward
in remnants of cold seep fauna, from Bear's Paw of Omakere Ridge (station # 165).
ents. Solid vein structures are hardly identifiable. H: Close-up of open channel and pore
ation for recovery of distinct growth of aragonitic composition. (For interpretation of the
rticle.)

associated cold-water corals at the Hikurangi Margin, New Zealand:
016/j.margeo.2010.01.003
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Fig. 3. δ13CPDB (‰) and U–Th ages in thousand years before present (ka BP) from three
different cold seep areas of the Hikurangi Margin (Opouawe Bank = diamonds, Uruti
Ridge = dots, Omakere Ridge = triangles).
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Comparable with the channel filling sample (Fig. 2C, spot 138-7)
the data of the uppermost surface of the block (Fig. 2C, spot 138-1)
revealed an age of 2920±190 years BP. The increased Th content
introduced an enlarged age uncertainty, related to the precipitation of
this layer at ongoing exposure to the particle fall-out of the bottom
water column. Characteristically, this precipitation is accompanied by
a δ234U(T) signature (147.8±2.2‰) close to modern seawater and a
clear methane influence as shown by a δ13C signature of −46.2‰.

Another group of sub-samples shows distinctively heavier δ13C
signatures of−39.39 to−36.28‰. The related age data cover a rather
narrow range from 2670±30 (Fig. 2C, spot 138-2) to 2530±20
(Fig. 2C, spot 138-3) and 2390±40 (Fig. 2C, spot 138-4) years BP. The
sample positions reflect a downward succession of the precipitation
within the open pore space, from the uppermost chemoherm surface
towards the sediment body at slightly elevated δ234U(T) values
between 153.5±2 and 150.4±2.5‰. The δ18O signatures of all sub-
samples cluster between 3.37 and 3.64‰ without clear correlation to
the observed δ13C systematic.

U–Th dating of a dead solitary cold-water coral on top of the block
revealed an age of 230±20 years BP (Fig. 2A, spot 138-11) for a late
stage of coral settling. The coral has a δ13C signature of −5.05‰ and
an unexpected high δ234U(T) value (167.4±5.1‰).

4.2. Uruti Ridge

The long video survey during the search for a sampling oppor-
tunity with the TVG on top of LM-10 at Uruti Ridge showed a solid
carbonate pavement of the sea floor with large lateral extend (Fig. 1E).
Fractures in the carbonate platform were colonized by vestimenti-
feran tubeworms (Lamellibrachia sp.). Finally, a representative sample
was recovered from this pavement in 756 m water depth (Table 1,
#316) close to the original LM-10 position (Lewis and Marshall,
1996). The compact brownish block can be described as a dense and
solid calcified sediment with a disperse vein system representing a
mature calcification stage (Fig. 2D). U–Th age dating of sub-samples
from the cross-cut represents at least two generations of vent activity
and related precipitation of the fluid vein system. A horizontal vein in
the upper left part of the cross-cut (Fig. 2E, spot 316-3) showed the
oldest U–Th age (12,400±160 years BP), the lightest δ13C (−52.63±
3.81‰) and heaviest δ18O signatures (3.81‰) in this study. A
significant younger phase could be detected by dating the lower
(Fig. 2F, spot 316-2) and upper part (Fig. 2F, spot 316-1) of a vein,
tending oblique vertical to the first. The age data of 4310±40 (spot
316-2) and 4120±40 years BP (spot 316-1) are very close but not
overlapping within error, therefore, reflecting a successive upward
precipitation trend and closing of the vein system. Note, the growth
Please cite this article as: Liebetrau, V., et al., Cold seep carbonates and
New insights into fluid pathways, growth..., Mar. Geol. (2010), doi:10.1
systematic and age range of this generation is similar to observations
on the vein and channel system at the North Tower site of Opouawe
Bank. Despite the rather large time gap, both observed phases of the
Uruti sample cover only a very narrow range of less than 2‰ in δ13C
from −52.63 to −51.16‰, which is distinctively different to the
North Tower site. Their δ234U(T) values are within error overlapping
between 143.6±2.2‰ (spot 316-3) and 145.7±1.8‰ (spot 316-1),
the latter is almost identical to modern seawater. Inverse to the early
phase (spot 316-3) the younger generation shows (Fig. 3) the lightest
δ18O signatures of this study (3.02‰).

4.3. Omakere Ridge

4.3.1. Bear's Paw
The video transects with OFOS and the TVG showed remnants of

cold seep fauna associated to rounded boulder structures with vesti-
mentiferan tubeworms (Lamellibrachia sp.) extending from fractures
and channels into the bottom water (Fig. 1B). Carbonate samples
(Table 1, #165) obtained from the Omakere Ridge (Fig. 1C) represent
calcified sediment of low maturity and a less pronounced to rare
aragonite precipitation (Fig. 2G). U–Th age data reflect the youngest
phase of authigenic carbonate precipitation determined for Hikurangi
Margin cold seep sites in this study. In the cross-cut sub-samples a
solid, almost transparent coating inside an open pore space (Fig. 2H,
spot 165-1) revealed an age of 2360±70 years BP. Only one other
spot could be sampled fulfilling the aragonite requirement and
representing less dense pore volume precipitation processes (Fig. 2H,
spot 165-2). The deduced age of 2090 years BP points to an expected
slightly younger phase of precipitation within the fluid channel, but,
due to typically increased Th content (highest in this study, second
highest content in U) an uncertainty of ±850 years does not allow a
geochronological separation. Regardless this uncertainty, a general
young age range is indicated which is identical to the late stage
precipitation at the Opouawe Bank.

δ13C signatures of −51.06‰ (rim, spot 165-1) and −51.59‰
(channel, spot 165-2) are similar to the findings at Uruti Ridge,
whereas the δ18O values of 3.59‰ and 3.62‰ correspond to the
Opouawe Bank data. In contrast to the narrow range in δ13C and δ18O
for both structurally quiet different precipitation types (Fig. 2H, spot
165-1 and -2), the δ234U(T) and δ13C value tends to be higher in the
solid vein- or rim-like precipitate (151.6±2.5‰, spot 165-1), when
compared to the porous channel filling precipitate (148.3±2.5‰,
spot 165-2). Although these δ234U(T) values are showing some overlap
in error the correlation trend with δ13C fits to observations in the
Opouawe Ridge data set between rim (Fig. 2C, spot 138-6) and
channel filling precipitate (Fig. 2C, spot 138-7).

4.3.2. Moa
The Moa site was selected in order to recover reef-forming corals

together with the cold seep related hard substrate underneath
(Table 1, # 218). In contrast to the other sampling sites of this
study, the high relief carbonate outcrop at Moawas colonized inmany
spots by reef-forming and solitary cold-water corals. Deploying the
TV-grab in 1107 to 1120 mwater depth (Fig. 1D) fossil and living coral
specimens (Table 1, # 227) were sampled. Unfortunately, the seafloor
underneath the coral reef could not be penetrated successfully for
recovering underlying authigenic cold seep carbonates. This would
have been useful to study the temporal relation of seep activity and
coral reef formation. Nevertheless, due to its prominent structure and
obvious multi-phase colonization this cold-water coral reef provides
an isotope geochemical and geochronological reference site for coral
colonisation of cold seep carbonate along the Hikurangi Margin.

This initial U–Th geochronology approach at Moa addresses the
timing of solitary cold-water coral settling on fossil coralline reef
substrate. U–Th data of the fossil reef (Table 2, 218-1) lead to an age of
4390±130 years BP, resulting in a δ234U(T) value (136.0±3.4‰)
associated cold-water corals at the Hikurangi Margin, New Zealand:
016/j.margeo.2010.01.003
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slightly lower than modern seawater. This is accompanied by a rather
light δ13C signature of −7.14‰. In contrast, one solitary coral
(Desmophyllum dianthus; Table 2, 218-3), settled directly on sample
218-1, gives an age of 1160±50 years BP. This sample reveals a
similar δ234U(T) value (134.9±3.4‰) and a heavier δ13C signature
of −3.89‰.

In order to obtain the initial isotope composition, the uppermost
part of a living reef-forming coral (Solenosmilia variabilis; Table 2,
227-1) from the second Moa site was analysed (Table 1, #227,
Fig. 1D). This juvenile fragment revealed amodern seawatermatching
δ234U(0) value of 146.3±3.9‰ and an initial 230Th/234U activity ratio
of 0.0013±0.0002, corresponding to a theoretical age of 150 years BP.
Due to high growth rates of reef-forming corals (Roberts et al., 2009)
the integration of some years of precipitation within the mini-drill
based sub-sampling is negligible for any age correction.

5. Discussion

5.1. Timing of cold seep activity and potential driving processes

The obtained age data set reflects very close similarities between
the southernmost (Opouawe Bank/North Tower) and the northern-
most (Omakere Ridge/Bear's Paw) site of this study. They represent
the latest stage of cold seep related carbonate precipitation at around
2390±40, 2360±70 and 2090±850 years BP. Both sites are in the
same water depth between 1050 and 1100 m. In contrast, the oldest
age of near surface vein precipitates was analysed to be 12,400±
160 years BP at Uruti Ridge which is the shallowest sampling site
of the study (750 m water depth). This site was at least active up to
4120±40 years BP. This implies a short time interval of contempo-
raneous activity around 4300 years (s. Table 2) during the late stages
of seepage at Uruti Ridge and the beginning at Opouawe Bank (oldest
age determined: 4950±650 years BP). The significance of the
detected age succession and site-specific age range is supported by
a strong correlation with gradual changes of sediment solidification
due to cold seep related calcification processes. This impact of cold
seep activity seems to be least pronounced at Omakere Ridge (Bear's
Paw, youngest age and shortest activity period, Fig. 2G–H) when
compared to samples from the Uruti Ridge (longest time interval of
activity, Fig. 2D–F) and Opouawe Bank (Fig. 2B–C).

As a first approximation, these findings imply younger seep
activity towards larger water depth. On the other hand, sites which
have been active in earlier phases may have been shifted and
influenced by pro-grading uplift and the compressional tectonic
regime of the accretionary margin. Depending on the position within
the ridge structure, compression might block existing fluid pathways
and creates new seep sites on the ridge flanks. However, the data base
needs to be extended significantly for more robust interpretations of
systematic changes in distribution of active vent sites at the Hikurangi
Margin.

In comparison to other age data of cold seep paleoactivity within
the circum-Pacific framework, e.g. published by Teichert et al. (2003;
accretionary prism, Hydrate Ridge, Cascadia Margin, off Oregon) and
Kutterolf et al. (2008; erosive subduction system, Central American
forearc, off Nicaragua and Costa Rica), the presented Hikurangi
Margin data reflect a rather short interval from the Younger Dryas on
only. This time span does not allow a direct contribution to the on-
going discussion concerning long-term correlation of major cold seep
activity phases with periods of fast sea-level changes and low stands.
The latter scenario suggests hydraulic pressure influenced intensifi-
cation of fluid flow at cold seeps. On much shorter time scales this
process has been observed for tidally controlled fluctuations. High
rates of fluid flow were measured at low tides whereas high tides
were characterized by low rates of fluid flow (LaBonte et al., 2007;
Linke et al., this issue). This principle of tidal pumping is driven by
changes of the balance between static hydraulic head of the water
Please cite this article as: Liebetrau, V., et al., Cold seep carbonates and
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column and the dynamic hydraulic pressure of the fluid emanating
pore water and cold seep system (Liebetrau et al., 2008). Applied on
geological time scales the hydraulic head is mainly depending on the
global influences of major sea-level changes, whereas the fluid
pressure and availability as well as the emplacement of fluid
pathways is rather controlled by local to regional tectonic changes
(Kutterolf et al., 2008). Additionally, sea floor hydrologic systems
respond to episodic events such as tsunamis, gas discharge, and
seismic and aseismic strain (e.g. Brown et al., 2005; Ge and Screaton,
2005; Mau et al., 2007; Tryon et al., 2002).

Seismic strain may be of great importance for cold seep settings at
the tectonically highly active Hikurangi Margin, which is character-
ized by an active oblique subduction and build-up of accretionary
ridges. Within the central part of the Northern Island of New Zealand
the Taupo Volcanic Zone (TVZ) represents an active back arc
extension area (Peltier et al., 2009) parallel to the Hikurangi Margin.
The most recent major eruption took place about 1830 years ago on a
NE–SW-trending fissure at Lake Taupo (Wilson et al., 1995), close to
the investigated cold seep sites of this study. Therefore, the youngest
phase of carbonate precipitating cold seep activity identified at
Omakere Ridge (Bear's Paw, Table 2) could be a late stage marine
precursor of major changes within the regional tectonic framework.

5.2. Varying cold seep activity monitored by precipitates within the fluid
pathway

Age data of the sample profile from Opouawe Bank start around
5000 years BP with a primary upward progressing precipitation that
implies a potential drop in intensity of fluid flux in a time interval
from around 4000 to 3000 years BP. This drop in flux activity is
characterized by lowering δ234U(T) values close to modern seawater
within the open fluid channel system, indicating decreased fluid
advection rates.

In our study, the related less dense to porous precipitates within
the open channel systems at Omakere Ridge and Opouawe Bank are
characterized by lighter δ13C signatures and significant enrichment in
U and Th, relative to themore solid vein- or rim-like precipitates. Such
a significant increase of Th in the carbonate phase is generally related
to enhanced incorporation of particles during precipitation. Due to its
preferential uptake of U organic matter can be assumed as important
particle source. The trend to lighter δ13C values points to a stronger
impact of methane related instead of water column derived matter.
These observations suggest precipitation of the porous carbonates
during times of less vigorous methane emanation. Such phases may
have been accompanied by an increased incorporation of organic
particles that partly derived from AOM consortia, according to
observations of heterogeneous biomarker distributions in carbonate
phases at Hydrate Ridge (Leefmann et al., 2008). The data and
observed structures indicate a later stage for the channel filling
precipitation.

5.3. Comparison of C and O isotope signatures

The comparison of the light stable isotope values in this study
shows rather similar δ13C signatures of around −52‰ at Uruti and
Omakere Ridge, almost age independent. The North Tower sample
(Opouawe Bank) reflects site-specific heavier signatures in two
distinct clusters at around −47‰ and −38‰. The first cluster
signature is restricted on vein filling precipitates within the
sediment, the layer directly above the sediment body (Fig. 1C,
spot 138-5) and the uppermost chemoherm layer on top of the
sampled block (Fig. 1C, spot 138-1). This similarity implies a
comparable fluid flux and source signature, despite obvious
differences in growth structure, precipitation process and timing
of emplacement. The second cluster of δ13C values (−38‰) is
restricted to the youngest precipitates, filling the open pore space of
associated cold-water corals at the Hikurangi Margin, New Zealand:
016/j.margeo.2010.01.003
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chemoherm build-ups above the sediment surface. This indicates a
relative decrease in fluid flux in the late stage of seep activity. In
contrast to δ13C, the δ18O data (Table 2) of cold seep carbonates
from Opouawe Bank and Omakere Ridge cluster in a very narrow
range between 3.35 and 3.65‰ only. Whereas the widest range in
δ18O is covered within the sample from Uruti Ridge (3 to 3.8‰),
accompanied by the largest time span of seep activity at rather
constant δ13C values. The trend of heavier δ18O at the oldest age
(around 12,400 years BP) and lighter values at younger ages
correlates to the seawater evolution described for this region by
Elderfield et al. (2009). Accordingly, our data set implies rather
decoupled trends, with δ13C values dominated by site-specific
influences of methane sources and δ18O values appearing to be
sensitive for changes in bottom water temperatures (Han et al.,
2008).

5.4. Relation of cold-water coral colonization and cold seep activity

Seafloor observations during SO191 indicated massive authigenic
carbonates as the pre-dominant substrate for cold-water coral
colonization and reef formation. The first coral age constrain from
Opouawe Bank (230±20 years BP) represents a late stage of solitary
coral settling, reflecting a time gap to the formation of underlying cold
seep carbonates of at least 2000 years. No direct coupling with cold
seep activity is implied. Due to the detected time gap no direct
comparison of the two potential archives for enhanced fluid flux (cold
seep carbonates) and its impact on the bottom water chemistry
(corals) is provided. Accordingly, the rather heavy δ13C signature
(−5.05‰, 138-11) of this young coral seems to be not monitoring a
significant enrichment of lighter methane related carbon in the
bottom water column. In contrast, the accompanying unexpected
high δ234U(T) value (167.4±5.1‰) could be interpreted as incorpo-
ration of fluid or pore water signatures. This coral value is even higher
than all findings in this study for precipitates directly within the fluid
pathway, although these fluid pathways were exposed to the highest
potential impact of elevated δ234U fluid signatures. Combined with
the age data and δ13C evidences against contemporaneous enhance-
ment of fluid flux, this high δ234U(T) coral value is most probably
related to a secondary impact of early diagenesis as discussed by
Ponse-Branchu et al. (2005). The calculated age is regarded as a
minimum age and is topic of ongoing coral specific analyses at this
site. In any case the result implies a passive support of coral settling by
cold seep activity, just providing hard substrate and exposure to a
high current regime with low to negative sedimentation rate.

In contrast, first results on reef geochronology at Omakere Ridge
(Moa site) suggest a major reef formation around 4400 years BP,
accompanied by a rather light δ13C signature of −7.14‰. Most
probably, this phase of coral settling is closely related to a regional
phase of intensified cold seep carbonate precipitation and sediment
solidification between 5000 and 4000 years BP that occurred along
the entire Hikurangi Margin. Taking into account that carbonates
affected by cold seep fluid flux would rather deviate from modern
seawater towards elevated δ234U(T) values (Teichert et al., 2003), the
observed lower δ234U(T) of the fossil coral material at Moa implies a
secondary relative loss of 234U. Thus the related coral age data should
be regarded as maximum estimates.

Due to the general absence of live chemosynthetic cold seep fauna,
the main part of Moa is regarded as a relict seep site (Jones et al., this
issue). This assumption is supported by rather heavy δ13C signature
(−3.89‰) of a solitary coral grown in a later stage (1160±50 years
BP) on the fossil reef. Additionally, a minimum time gap of
approximately 2000 years between the latest known stage of pre-
dominant authigenic carbonate precipitation (Table 2) and the
observed living reef-forming colonies exists (Fig. 1D, Table 2).
Therefore, the findings at Moa support the assumption that cold
seep activity is a major pre-requisite for providing suitable, long
Please cite this article as: Liebetrau, V., et al., Cold seep carbonates and
New insights into fluid pathways, growth..., Mar. Geol. (2010), doi:10.1
lasting and exposed hard substrate; active seepage is not required for
successful coral growth.

In this context of an inactive seep site, the U–Th data of a recent
reef-forming cold-water coral (Solenosmilia variabilis, Moa, 227-1)
provided approximative values for the initial 230Th/234U activity ratio
(0.0013±0.0002) and δ234U(0) signature (146.3±3.9‰). Contribut-
ing to the isotope geochemical comparison of cold-water coral
environments, these data reflect growth conditions and seawater
values within the bottom water (1120 m depth) at low to not
detectable cold seep activity.

6. Conclusion and perspective

In this study we focused on the geochemical, mineralogical and
structural analyses of authigenic carbonate samples recovered from
Opouawe Bank, Uruti and Omakere Ridge. Aragonite precipitates from
these three cold seep areas at Hikurangi Margin reflect different
generations of seep activity between 12,400±160 and 2090±
850 years BP.

The youngest stage was identified as contemporaneous intensified
cold seep activity at the southernmost and northernmost sampling
sites, sharing the same water depth (1050 to 1100 m), implying
margin-wide tectonic or hydrological changes as driving process.

An intermediate phase of carbonate precipitation, establishing
vein and channel structures within the sediment body, can be
deduced for a time interval between 4950±650 and 3960±
50 years BP. Within this period a stage of intensified focused seep
activity was detected at Uruti Ridge and Opouawe Bank at around
4300 years BP.

δ13CPDB data reflect site and carbonate type specific signatures,
clustering around −52‰ (Uruti and Omakere Ridge) and −47‰ for
the fluid pathway system and the uppermost part of the block
recovered at North Tower site (Opouawe Bank). The latter site also
shows a cluster around −38‰ for late stage precipitates in the
chemoherm cavities above the sediment.

Porous aragonites within the open fluid channel system reflect a
trend of decreasing δ234U(T) values down to signatures close to
modern seawater, accompanied by increasing concentrations of Th
and U and a trend towards lighter δ13CPDB signatures. Combining
these observations, assigns those precipitates to phases of less
vigorous fluid seepage and increased incorporation of particles that
may partly derived from AOM consortia. The latter working
hypothesis requires further verification by biomarker studies.

The observed cold-water corals seem to depend on the occurrence
of authigenic carbonates like chemoherms or calcified sediments and
their long-term exposure to strong bottom currents. Seafloor
observations combined with preliminary age data indicate a signif-
icant time gap of up to 2000 years between cold seep activity and first
colonization. In order to contribute to the reconstruction of long-term
variation of seep activity and the potential influences of glacial and
interglacial cycles an additional sampling campaign is required,
providing deeper carbonate units that can only be recovered by
submarine rock drill tools.
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