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[1] Very rare, halogen-rich andesite melt inclusions (HRA) in bytownitic plagioclase phenocrysts (Angg_
90) from tephra fallout of the Izu arc volcanic front (Izu VF) provide new insights into the processes of
fluid release from slab trenchward to the volcanic front in a cool subduction zone. These HRA are
markedly enriched in Cl, F and Li - by factors of up to 8 (Cl, F) and 1.5 (Li) - but indistinguishable with
respect to the fluid-mobile large-ion lithophile elements (LILE; K, Sr, Rb, Cs, Ba, Pb, U), rare earths (REE)
or high field strength elements (HFSE) from the low-K tholeiitic magmas of the Izu VF. We suggest that
the chemical signature of the HRA reflects the presence of a fluid in the mantle source that originated from
the serpentinized mantle peridotite above the metacrust. This “wedge serpentinite” presumably formed by
fluid infiltration beneath the forearc and was subsequently down-dragged with the slab to arc front depths.
The combined evidence from the Izu VF (~110 km above slab) and the outer forearc serpentinite
seamounts (~25 to 30 km above slab) suggests that the slab flux of B and Cl is highest beneath the forearc,
and decreases with increasing slab depths. In contrast, the slab flux of Li is minor beneath the forearc, but
increases with depth. Fluorine may behave similarly to Li, whereas the fluid-mobile LILE appear to be
largely retained in the slab trenchward from the Izu VF. Consequently, the chemical signatures of both Izu
trench sediments and basaltic rocks appear preserved until arc front depths.
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1. Introduction

[2] During shallow subduction (trenchward from
the volcanic front), the descending lithosphere
releases large amounts of water and carbon dioxide
[e.g., Kerrick and Connolly, 1998; Wallmann,
2001]. Since water is a primary transport agent
for many fluid-mobile elements (e.g.,, Li, B, Cl,
Cs, Pb), these elements might be lost from slab
during early subduction as well, implying that the
composition of the subducted material changes
significantly prior to reaching arc front depths
[e.g., Bebout et al., 1999; Class et al., 2000].
Unfortunately, the critical region for early slab
devolatilization (<110 km depth) cannot be directly
observed at active convergent margins since there
is no concomitant volcanism. To date, the most
comprehensive information on the early chemical
evolution of the subducting slab derives from
studies of uplifted, metamorphosed slab fragments
[e.g., Bebout et al., 1999; Scambelluri et al., 2001].
In active settings, however, information on the
composition of the shallow fluids can only be
obtained from serpentinite seamounts, located
~20-25 km above slab on the outer trench slope
[Fryer et al., 1999; Benton et al., 2001], or from
the volcanic arc, located ~110 km above slab [e.g.,
Taylor and Nesbitt, 1998; Hochstaedter et al.,
2001].

[3] In this study, we present data on the CI, F and Li
contents of both matrix glasses and plagioclase melt
inclusions from fallout tephra of the Izu arc volca-
nic front (Izu VF). These tephra glasses are an
excellent proxy to Izu VF magma compositions
(e.g., S. M. Straub, G. D. Layne, A. Schmidt and
C. H. Langmuir, The recycling of fluids and sedi-
ment melts in volcanic arcs, manuscript submitted
to Geochemisty Geophysics Geosystems, 2003,
hereinafter referred to as Straub et al., submitted
manuscript, 2003). CI, F and Li are enriched in the
subducting slab, owing to contributions from sea-
water, sediments, and basaltic oceanic crust [e.g.,
Ryan and Langmuir, 1987; Decitre et al., 2002].
Since CI, F and Li are also highly mobile in
hydrothermal fluids [e.g., Schilling et al., 1978;
Ryan and Langmuir, 1987; Seyfried and Ding,
1995], they should become readily entrained in

fluids during early subduction. The data show that
Cl, F and Li display a much wider range in
composition than the other recycled, fluid-mobile
large-ion lithophile elements (LILE; K, Sr, Rb, Cs,
Ba, Pb, U) in the Izu VF magmas. In combination
with existing data from the outer forearc seamounts,
our results provide new insights into the sequential
release of fluid-mobile elements during shallow
subduction.

2. Geological Setting

[4] The evolution and structure of the intraoceanic
Izu Bonin Mariana arc/backarc system (IBM; NW
Pacific) has been described in detail elsewhere
[Taylor, 1992; Hochstaedter et al., 2001]. In
summary, volcanism in the Izu and Mariana arcs
began at ~49 Ma (middle Eocene), following the
westerly subduction of the Mesozoic (~130 Ma)
Pacific plate beneath the Philippine plate. In the
Oligocene (~31 Ma) the Izu arc split along-strike.
During the Miocene (~24 to 15 Ma), the Shikoku
backarc basin formed. Volcanism at the Izu VF
waned during backarc spreading, but rejuvenated
~15 Ma ago, and has since been vigorous. A new
period of intraarc rifting was initiated at ~2.8 Ma
immediately west of the Izu VF (Figure 1). The
Quaternary Izu VF is constructed on ~20 km thick
crust [Suheyiro et al., 1996], and located about
~100-110 km above a well-defined Wadati-Beni-
off zone [Katsumata and Sykes, 1969; Wicks and
Richards, 1993]. The subducting crust is Creta-
ceous in age, with the basaltic basement being
similar in composition to the mid-ocean ridge
basalts of the East Pacific Rise [Fisk and Kelley,
2002]. The sediment cover consists of ~400 m
thick Mesozoic and Cenozoic pelagic clays
(~39%), arc-derived ash (~5%) and chert, nanno-
fossil chalk and marls (~56%) [Plank et al.,
2000].

[s] The Izu VF is an informative setting to study,
since it has a highly depleted subarc mantle wedge
[Taylor and Nesbitt, 1998; Langmuir et al., 2003]
with no evidence of partial slab melts in the mantle
source [Taylor and Nesbitt, 1998; Hochstaedter et
al., 2000, 2001]. Against this background, the
chemistry of slab-derived fluids is clearly recog-
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Figure 1.

Geological setting of the Izu-Bonin arc/backarc system with DSDP and ODP drill sites. ODP Site 782A is

indicated. From East to West: Pacific Plate, Izu Trench, Izu Forearc, Izu Volcanic Front (stippled line), rift (grabens),
rear arc (hatched) and the inactive Shikoku Backarc Basin. Depth contours are in meters. ZR, Zenisu Ridge (subaerial
volcanoes Nijiima and Kozushima are not shown); Subaerial volcanoes (black triangles) unless labeled are My,
Miyakejima; Mk, Mikurajima; A, Aogashima; Nis, Nishinoshima. BI, Bonin islands (uplifted Eocene forearc
basement). Diagonal solid lines in rear arc region denote rear-arc volcanic chains. Stratigraphy of ODP Site 782A

after Xu and Wise [1992].

nizable. Moreover, the Izu Bonin is a classic
example of a cool subduction zone, in which most
of the fluid-mobile elements may be retained in the
slab until arc front depths [e.g., Bebout et al., 1999].
Comprehensive studies of major and trace ele-
ments, and radiogenic isotopes (Sr, Nd, Pb), have
shown that (1) the composition of the mantle and
slab sources have been homogenous during the last
15 million years and that (2) the Neogene Izu VF
magma source is infiltrated by fluid components
from both the subducting sediment (~3.5% of total
fluid) and the subducting basaltic crust (~96.5% of
total fluid) [e.g., Taylor and Nesbitt, 1998; Hoch-
staedter et al., 2001; Straub et al., submitted
manuscript, 2003]. Hydrated serpentinized perido-
tite, that provides additional fluid sources, is con-
sidered to be present either above [Straub and

Layne, 2002], or below, the slab [Peacock, 2001]
(Figure 1). For these reasons, the [zu VF volcanics
are ideally suited for an investigation of the prov-
enance and pathways of slab-derived fluids.

3. Samples and Methods

[¢] Halogen and Li abundances of Izu VF magmas
were determined from matrix shards and melt
inclusions from fallout tephra. The tephra was
recovered from sediments at ODP site 782A, locat-
ed ~120 km trenchward of the Quaternary Izu VF
(Figure 1). Site 782A contains numerous fallout
tephras, which provide a highly resolved temporal
record (one event per 0.12 Ma on average) of Izu
VF volcanism. Most of the fallout tephra investi-
gated is of Neogene age (0.55-14.2 Ma); only a
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single Oligocene fallout tephra (29.6 Ma) was
included. A comprehensive data set exists for the
782A fallout tephra. This includes bulk analyses of
Sr, Nd and Pb isotopes [Schmidt, 2001], as well as
major and trace elements, and B isotopes, by
microanalytical methods on single glass shards
[Straub and Layne, 2002, 2003; Straub et al.,
submitted manuscript, 2003]. A representative
sub-set of the glasses has been analyzed for trace
elements by laser ablation-ICP-MS (Straub et al.,
submitted manuscript, 2003). The Cl, F and Li
determinations were performed, by electron micro-
probe (Cl) and ion microprobe (F, Li), on the same
suite of matrix glasses and melt inclusions previ-
ously analyzed for major elements (electron micro-
probe) and B isotopes (ion microprobe). The data
relevant to this paper, and a short summary of the
analytical procedures, is provided in Tables 1-4
for easy reference. A detailed description of the
analytical procedures is given in Straub et al.
(submitted manuscript, 2003) (major elements, B,
Li), Straub and Layne [2002] (B isotopes) and
Straub and Layne [2003] (Cl, F). None of these
previous studies, however, addresses in detail the
question of the origin of the halogen-rich andesite
inclusions, and the potential implications for shal-
low slab devolatilization, which are the focus of
this paper.

[7] The glasses from the Site 782A fallout tephras
are mostly low-K basalts to rhyolites that are very
similar in major element, trace element and isotope
composition to the Quaternary Izu VF lavas. The
single Oligocene tephra studied (sample 108),
which was heavily disturbed by the drilling, has a
subordinate population of medium-K glasses,
which is not further considered here. With the
exception of a single high-MgO Izu lava from the
island of Hachijojima (MgO = 8.23 wt%; Mg# =
62), the tephra glasses and Izu arc front lavas have
similar maximum MgO (~6 wt%) and Mg# numb-
ers [~60; where Mg# = molar ratio Mg/(Mg +
Fe?")]. Basaltic through rhyolite lava and tephra
series are indistinguishable in their Sr-, Nd-, Pb- and
B isotope ratios, demonstrating that the series are
co-genetic and originate from the same sources as
the Izu VF lavas [Straub et al., submitted manu-
script, 2002; Straub and Layne, 2002]. Further, no

evidence for post-eruptive alteration has been
found. The glasses investigated are all clear, color-
less to brown glass shards, or melt inclusions,
without any telltale signs of birefringence under
crossed polarizers or cloudiness indicative of incip-
ient alteration. The consistency of glass and melt
inclusion compositions, the apparently magmatic
systematics of alteration-sensitive elements like Li
and B (Figure 2), and the combination of high B
(~10—40 ppm) with §''B of +5%o to +12%o in the
Izu glasses, all militate against the presence of any
syn- or post-eruptive seawater alteration [Straub
and Layne, 2002, 2003]. Thus the high B contents
and high-6''B values of the normal-group glasses
and the HRA demonstrate the presence of a slab
component in the [zu VF magma source and imply a
slab origin for other fluid-mobile elements as well.

4. Results

4.1. Two Component Melts:
Normal-Group Glasses and HRA

[s] Onthe basis oftheir Cl, F and Li contents, the Izu
glasses can be divided into two groups (Figure 2).
The majority of glasses and melt inclusions (termed
“normal-group” glasses), contain 0.05-0.40 wt%
Cl, 70—400 ppm F and 4—10 ppm Li. The normal-
group glasses comprise matrix glasses, and melt
inclusions in plagioclase, that range from basalt to
rhyolite in composition. In this group, CI, F and Li
behave similarly to the fluid-mobile LILE. This
means that Cl, F and Li vary by about a factor of
two at a given MgO, and increase by a factor of three
with decreasing MgO (Figure 2; in the context of
this paper the term “fluid-mobile LILE” refers to
Cs, Rb, Ba, U, K, B, Sr and Pb). In contrast, the
second group of glasses (“‘halogen-rich inclusions;
= HRA) consists of rare andesite melt inclusions in
plagioclase (Figures 2—4). The HRA are selectively
enriched in the halogens C1(0.70—0.86 wt%), and F
(700-900 ppm) by about a factor of 8. The abun-
dance of Li (~15 ppm) is increased by about a factor
of 1.5, excepting a single HRA melt inclusion that
has a ‘normal’ Li content (Figure 2). The HRA were
found in only three out of forty of the 782A tephras
investigated. In these three tephras, the HRA are
readily identified by their characteristic Cl enrich-
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Figure 2. Variations of F, Cl, Li, K,O and B versus MgO in the Izu VF glasses. The normal-group glasses (melt
inclusions are filled circles; matrix glasses are open circles; grey field denoted “matrix” indicated matrix shards in
sample 3) display a general enrichment in these elements with decreasing MgO. The halogen-rich andesite (HRA)
inclusions (bold green crosses) are selectively enriched in Cl, F and Li. Mixed rhyolite inclusions (green crosses) lie
along apparent mixing trends between the HRA and normal-group rhyolite glasses. The fields for N-MORB are from
Ryan and Langmuir [1987] and Ryan and Langmuir [1993] (B, Li), and Michael and Cornell [1998] (Cl, K). The Cl1
reference field is for depleted MORB with CI/K < 0.08. Izu VF after Ryan and Langmuir [1993], Taylor and Nesbitt

[1998] and Langmuir et al. [2003].

ments and high CI/K,O ratios. However, only one
fallout tephra (layer 3 at 0.55 Ma) contained melt
inclusions that are large enough (up to 100 mi-
crometer diameter) for the analysis of trace ele-
ments and B isotopes by laser ablation-ICPMS
and ion microprobe, respectively. These latter
analyses show that the normal-group glasses and
the HRA are indistinguishable in all other incom-
patible trace elements, and in the B isotopes
[Straub and Layne, 2002, 2003]. In each fallout

tephra layer, the HRA always constitute a minor
portion (<1 vol.%) of the entire melt inclusion
population in the plagioclases. The HRA are
always included within bytownitic (Angg_og) pla-
gioclase cores, the most calcic plagioclase compo-
sitions present in any given fallout tephra (Figures
4a and 4b). The bytownitic cores are always
mantled by labradoritic (~Ansg_go) rims. These
rims commonly contain “mixed” dacitic and rhy-
olitic melt inclusions, that lie on apparent mixing
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Figure 3. CI/K and F/K versus MgO of the Izu VF glasses. Symbols as in Figure 2. Horizontal stippled lines are the
minimum CI/K and F/K ratios of the normal-group glasses. No decrease in CI/K and F/K with decreasing MgO is
apparent, implying that only a single, Cl- and F-poor, aqueous vapor phase was exsolved, resulting in no significant
loss of halogens. Only the most siliceous normal-group glasses fall below this perceived minimum for CI/K (white
arrow), which is attributed to the incipient exsolution of hypersaline brine, producing substantial depletion of melt CL.

trends between the lowest MgO normal-group
rhyolite glasses and the HRA (Figures 4a and 4b).

4.2. The Effects of Fractionation

[o] In the low-K Izu VF magmas, Li, Be, B, F, CI,
and K all have bulk partition coefficients <1 with

respect to the observed mineral assemblage, which
is dominated by plagioclase and pyroxene. The D’s
are, in decreasing order; Dg ~ 0.8, D¢y ~ 0.54, Dg,
~ 0.27, Dg ~ 0.09 and Dx ~ 0.09, based on a
compilation of the most recent partitioning data
from Bindeman et al. [1998], Brenan et al. [1998]
and Dunn and Sen [1994] (see Straub and Layne
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Figure 4. Photomicrographs of plagioclase phenocrysts with HRA and mixed rhyolite inclusions in fallout tephra
125-782A-2H-4-113-114 (= tephra sample 3 at 0.55 Ma). Each fragment is approximately one millimeter across. (a)
A broad core (~Angg_o9) contains several brown, translucent HRA melt inclusions. Bubbles indicate fluid
exsolution. The rim is a sodium-rich labradorite of ~Anss_gy, containing several colorless inclusions of mixed
rhyolite (B with arrows). Note abrupt transition from core to rim with a drop of ~30 mole% An. (b) A broad, mesh-
textured transition zone with mixed rhyolite inclusions separates a typically calcic core (Angg g9 but without HRA)

from a labradoritic rim (~Anss).

[2003] for more details). Thus these elements are
not perceptibly fractionated from each other during
melt crystallization as the degree of crystallization
at the Izu VF is likely less than 70% [e.g.,
Langmuir et al., 2003; Straub and Layne, 2003].
Olivine, which is present in the Izu VF lavas, but
not in the tephras, does not appreciably fractionate
these elements either. Apatite can take up Cl and F,
but it occurs in small quantities (<1 vol.%) in high-
silica glasses only, and has no perceptible effect on
the halogen content of the melt [Straub and Layne,
2003]. Further, the halogens are not fractionated by
degassing, although the Izu melts do lose up to
several wt.% magmatic H,O at upper crustal levels
[Straub and Layne, 2003]. This can be shown by
ratioing CI and F to K, an incompatible, non-
volatile trace element (Figure 3). Note that the
vesicular, dacitic (<2 wt% MgO) matrix shards of
the normal-group have the same minimum CI/K,
F/K and Li/K (not shown) ratios as undegassed
basaltic melt inclusions, which effectively pre-
cludes substantiative halogen loss by degassing.
Consequently, the wide range of CI/K, F/K and
Li/K observed in the glasses should reflect mantle
source heterogeneity.

[10] It is not clear whether the parental melts of the
HRA are basaltic or andesitic as both are primary
melts in subduction zones [e.g., Hirose, 1997;
Carmichael, 2002; Tamura and Tatsumi, 2002].
As to the CI/K, F/K and Li/K ratios considered, this
question is not relevant, since the effects of frac-
tional crystallization on these ratios are negligible
at any rate. We note, however, that Kohut et al.
[2002] report high Cl contents (~0.8 wt%) in
basaltic melt inclusions in olivine phenocrysts from
the submarine Southern Mariana arc, demonstrat-
ing that such Cl enrichments can exist in basaltic
melts as well.

4.3. Sources of Cl, F and Li at the Izu VF

[11] In Figure 5, Cl, F and Li are compared to the
other incompatible elements. As the recycled fluid-
mobile LILE (Cs, Ba, Rb, B, U, Th, K, Pb, Sr), the
halogens, and Li, are substantially enriched relative
to non-fluid-mobile incompatible elements (Nb,
Ta, Zr, Hf, middle and heavy REE). Given the
high degree of melting beneath the Izu VF (~20—
25% [Plank and Langmuir, 1988; Hochstaedter et
al., 2000], significant fractionation of the incom-
patible elements during mantle melting can be
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Incompatible elements in Izu VF glasses measured by LA-ICPMS. Thick green line denotes halogen-rich

andesite inclusions (Ta below detection limit), thin lines are normal-group glasses (black) and mixed rhyolites
(green), respectively. Izu VF after Taylor and Nesbitt [1998] and Langmuir et al. [2003].

excluded. Therefore assuming that the excess
enrichments relative to similarly incompatible,
but non-recycled elements (e.g., Nb, Ta, middle
and heavy REE) are due to slab additions, the
percentages of Cl, F and Li added from slab can
be calculated using a simple mass balance model:

cvr = cpm * 0.975 + cgp * 0.025 (1)

whereby cyr = concentration of an element in Izu
VF mantle source, cgy = concentration in the Izu
background mantle, cgp = concentration in the slab
fluid (Straub et al., submitted manuscript, 2003). In
this simplified model, the slab fluid is considered
as single component, although it might gain
elements from several slab sources (e.g., metasedi-
ment, metabasalt, wedge and serpentinite). The
“Izu VF mantle” source is the subarc mantle that is
metasomatized by the fluid from the slab. The “Izu
background mantle” is the Izu VF source minus
the additions from the slab. The mixing ratio of
background wedge (~97.5%) and slab fluid
(~2.5%) has been inferred previously from Pb
and Pb isotope modeling (Straub et al., submitted
manuscript, 2003). The details of the calculations,
including the determination of Izu VF source and
background mantle compositions, can be found in
Straub et al. (submitted manuscript, 2003), and are

not reiterated here. The end-member compositions
needed, however, are listed in Table 5 for easy
reference. In summary, these calculations show that
>99% of Cl, ~60% of F and ~34% of Li in the
normal-group glasses are derived from slab; the
remainders derive from the subarc mantle wedge.
In the HRA component melt, the percentages of
slab-derived Cl, F and Li are higher, being ~99.9%
Cl, ~92% F and ~76% Li, respectively.

4.4. Mixing Systematics of Normal-Group
Glasses and HRA

[12] Ratioing CI, F and Li to similarly incompati-
ble elements, that derive either from the slab or the
subarc wedge, highlights source characteristics
(Figures 6 and 7). The most important information
gained from these diagrams, is that - in terms of Cl,
F and Li - a compositional spectrum of fluids exists
that is derived from at least two subarc mantle
sources (Figure 6). The element Be was chosen as
incompatible wedge-derived element, since it has
been analyzed in all glasses investigated by ion
microprobe, in contrast to the other wedge-derived
elements (e.g., Nb, middle and heavy REE). Two
observations show that Be has no significant slab
addition at the Izu VF: (1) the Be content of Izu VF
glasses and lavas are both significantly lower than
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Figure 6. Cl/Be and K/Be versus B/Be of Izu VF
glasses to demonstrate the selective enrichment of the
halogens as exemplified by CI (F and Li are not shown),
and normalizing abundance to a wedge-derived element
(Be). W, Wedge, SCI1 and SC2 are the two different slab
components identified. Error for Cl/Be is within symbol
size. For other symbols see Figure 2.

MORB, a characteristic of depleted island arc lavas
[Ryan and Langmuir, 1987], and (2) the Izu glasses
have Be/Nd (0.07 £ 0.02; n = 28) within the range
of the global average of N-MORB (0.05).

[13] Normalizing CI, F and Li to Be identifies two
slab components: Slab component 1 (SC1) that is
present in the source of all normal-group glasses,
and slab component 2 (SC2), an additional fluid
component in the source that is selectively
enriched in Cl, F and Li (Figure 6b). Interestingly,
in Figure 6b, the linear mixing trend from SC2
(represented by the HRA) does not trend toward
the depleted mantle wedge (W), but toward the
rhyolite melts of the normal-group glasses. This

argues against the two fluids infiltrating separate
subarc mantle domains at different times. Rather,
the two fluids must infiltrate the Izu VF more or
less simultaneously becoming mixed until at
crustal levels the melts are nearly homogenized.
This is consistent with the petrographic features,
which strongly suggest that the HRA are relicts of
the pre-aggregated andesitic component melts, that
subsequently mixed with the far more numerous
normal-group melt batches. In most cases the

a
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Figure 7. CI/K and Li/K versus F/K of Izu VF glasses
to illustrate the compositional variability of the two slab
components. The slab component infiltrating the mantle
source of the normal-group glasses (SC1) has an
inherent variability (large circle); m, matrix shards.
For other symbols see Figure 2. Note the clearly
manifested mixing line of HRA (bold green crosses) and
mixed rhyolite inclusion (thin green crosses). However,
not all trends emanating from this end-member trend
toward the HRA, indicating that the selectively enriched
second slab component (SC2) is much more variable
than indicated by the HRA of fallout tephra 3.
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subordinate HRA component melt apparently did
not survive the mixing process, and faded into the
normal-group melt. If so, the significant range in
Cl/Be (Figure 6) (as well as in F/Be and Li/Be, not
shown) of the normal-group glasses can be inter-
preted as a “remnant signal,” produced by the pre-
eruptive mixing of these multiple component
melts.

[14] Normalizing CI, F and Li to another slab-
derived element (e.g., K) further highlights the
compositional variability of these slab fluids. In
the F/K versus CI/K diagram (Figure 7a), the data
plot in a broad band, extending from the normal-
group glasses (SC1 with low CI/K and F/K)
toward SC2 (HRA), which has high CI/K and
F/K (Figure 7). The array is roughly linear, con-
firming the existence of two, partially mixed, end-
member components. However, having a rather
limited range, the mixed rhyolites and HRA appear
to represent an example of this array only, implying
that the CI/F of SC2 (HRA) could be even lower.
The heterogeneity of the HRA fluid (SC2) is more
evident in F/K versus Li/K space (Figure 7b).
Apparently, halogen-rich fluids can have very
variable Li contents, showing that the Li enrich-
ment is not strictly coupled to the halogen flux.
Because of its high CI and F contents, SC2 (HRA)
must affect the halogen contents of the entire
spectrum of fluids, even if present in much smaller
quantity than the SC1 component. This would also
explain why, in the normal-group Izu glasses, the
paired correlations of Cl and F with the other fluid-
mobile LILE are substantially poorer than the
correlations of the fluid-mobile LILE with each
other.

5. Discussion

5.1. Origin by Assimilation at Upper
Crustal Levels?

[15] In the preceding section, we implied that the
CL, F and Li variations in the Izu VF tephras reflect
mantle source signatures. However, similarly ele-
vated Cl contents are found in basaltic glasses and
melt inclusions from intraplate and backarc envi-
ronments [Michael and Schilling, 1989; Kent et al.,
2002; Lassiter et al., 2002], where they have been

attributed to the assimilation of seawater, or sea-
water-altered crust, at upper crustal levels. None-
theless, the more extensive data set collected for
the Izu glasses, including B, F and Li concentra-
tions, does not support an assimilation model.

[16] Assimilation of a seawater-derived brine must
be ruled out, since the chemical signatures of the
Izu glasses (both normal-group glasses and HRA)
differ so strongly from seawater. Seawater has high
CI (19500 ppm), versus relatively low abundances
of F (1.3 ppm), Li (0.18 ppm), and B (4.4 ppm). In
contrast, the F (~100-800 ppm) and Li (~5-
15 ppm) abundances of the Izu glasses are much
higher relative to their Cl contents (~1000—
8000 ppm). Current data indicate that seawater
processing within the oceanic crust does not pro-
duce fluids with the appropriate chemical signature
either. For example, Cl-rich hydrothermal fluids
become progressively enriched in Li (as well as the
other alkalis, like Rb and Cs), but their B and F
abundances remain close to those of seawater [e.g.,
Von Damm, 1995]. Thus if such a fluid impregnat-
ed the crust, from which HRA component melt was
subsequently produced by partial fusion, consider-
able fractionation during melting would be re-
quired, the details of which are not clear [e.g.,
Lassiter et al., 2002].

[17] Another apparent problem concerns the
amount of Cl, F, Li and B that can be assimilated.
The normal-group glasses have Cl, F, Li and B
abundances that are common in arc magmas world-
wide [Ryan and Langmuir, 1993; Sisson and
Layne, 1993; Cervantes and Wallace, 2003]. As-
similation of several hundred ppm CI, or several
tens of ppm F, as reported in several studies
[Sigvaldason and Oskarsson, 1986; Kent et al.,
1999; Nielsen et al., 2000; Hauri, 2002], might add
to the variability, but are insufficient to create the
enrichment observed in the Izu HRA. Other stud-
ies, however, suggest an increase in Cl by 1 to
2 wt.%; i.e., the amount of CI presumed to be
assimilated is higher than the total Cl of the HRA
(~0.8 wWt%) [Michael and Schilling, 1989; Kent et
al., 2002; Lassiter et al., 2002]. If this amount of
Cl was added to the normal-group glasses melt by
means of a partial crustal melt, then the absence of
any variation in the alkaline and alkaline earth
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elements (e.g., Na, K, Rb) that are also enriched in
seawater-derived fluids, is suspicious. Unfortunate-
ly, existing models of seawater assimilation in the
intraplate and backarc basin environments are
based primarily on CI variability. The other light
elements (F, Li, B) are not considered. Without this
additional information, a direct comparison to the
genetic processes in the Izu arc volcanic front
remains unsatisfactory. We note, however, that in
a single case of contaminated intraplate basalts,
where F was analyzed [Hauri, 2002], it appears
that the Cl and F enrichments of the glasses are
unrelated. Thus if assimilation creates diversity,
how could it then produce the systematic, long-
lasting enrichments of Cl, F and Li observed in the
Izu VF glasses? Furthermore, the subducting slab
is a known source of the elements CI, Li and B in
arc magmas [/fo et al., 1983; Ryan and Langmuir,
1993; Cervantes and Wallace, 2003], and slab
processing at the relevant temperatures and pres-
sures should be capable of providing the systematic
excess Cl, F and Li observed both in the normal-
group glasses and the HRA.

5.2. Mantle Sources of the Halogens and Li

[18] According to current theory, several fluid
sources are present in shallow subduction zones
(Figure 8).

[19] 1. The “classic slab fluid source is the
metacrust, which consists of the metamorphosed
subducting sediment (metasediment) and basaltic
crust (metabasalt). Metacrust fluids are generated
by the decay of hydrous phases (e.g., chlorite,
serpentine, amphibole) during progressive slab
metamorphism [e.g., Tatsumi and Eggins, 1995;
Schmidt and Poli, 1998; Bebout et al., 1999]. The
capacity of these fluids to extract nominally ““fluid-
mobile” elements from the metacrust, however, is
contested. Even if extraction appears to be efficient
for some elements (e.g., B [Ryan and Langmuir,
1993; Ryan et al., 1995, 1996; Benton et al.,
2001]), there is increasing evidence, from experi-
ments and from field studies in metamorphic
terrains, that larger amounts of both subducted
H,0 and potentially fluid-mobile LILE are buried
in the slab itself by incorporation into the hydrous
phases that appear at higher pressures, e.g., phen-

VF
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Figure 8. Cartoon illustrating the fluid sources and
fluid distribution in shallow subduction zones, as
discussed in the text. The hydrated wedge peridotite
(light green) apparently forms beneath the forearc, and
becomes down-dragged with the slab to arc front depth
[e.g., Straub and Layne, 2002]. The serpentinized
lithosphere (estimated thickness of 20 km; darker green)
forms outboard of the arc, in the oceanic basin, prior to
subduction into the trench [Ranero et al., 2001].

gite, paragonite, lawsonite and epidote-group min-
erals [Schmidt, 1996; Schmidt and Poli, 1998;
Bebout et al., 1999; Becker et al., 1999; Hermann
and Green, 2001]. Only beyond arc front depths
will the gradual destruction of these phases slowly
release the elements that then control the chemistry
of the slab components [Schmidt, 1996; Melzer and
Wunder, 2000; Hermann and Green, 2001].

[20] 2. An alternative fluid source is the hydrated
peridotite mantle above the metacrust (7atsumi
and Eggins [1995] and “wedge serpentinite” in
Figure 8). The peridotite is hydrated trenchward
from the VF by infiltration of slab fluids, and
subsequently becomes down-dragged together with
the metacrust. Tatsumi and coworkers [e.g., Tatsumi
and Eggins, 1995; Kogiso et al., 1997; Tatsumi and
Kosigo, 1997] suggest that the decay of amphibole
at ~75 km depth triggers substantial loss of fluid-
mobile LILE. The LILE are then trapped in new
phases in the hydrated mantle above (e.g., phlogo-
pite, pargasitic amphibole), and transported to arc
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front depths and beyond. This redistribution of the
LILE, coupled with fractionation, is considered to
control the trace element chemistry of the slab
fluids [e.g., Kogiso et al., 1997]. A variant of this
model suggests that the shallow slab fluids carry
only a few, extremely fluid-mobile elements, such
as B or Cl [Ryan et al., 2001; Straub and Layne,
2002], with the fluid-mobile LILE being largely
retained in the slab. The extensively serpentinized
mantle wedge was still down dragged with the
metacrust to arc front depths, becoming the prime
source of the isotopically heavy B that is observed
in many arc lavas [Straub and Layne, 2002].

[21] 3. Irrespective of the presence of these first
two fluid sources, the largest fluid volume might
actually originate from the serpentinized litho-
spheric mantle of the subducting slab, below the
metacrust (Ranero et al. [2001], Riipke et al.
[2002], “lithospheric serpentinite” in Figure 8).
This serpentinized lithosphere, which may reach
20 km or more in thickness, forms prior to sub-
duction by (1) the infiltration of seawater during
deep hydrothermal circulation, at spreading centers
and in the oceanic basins [e.g., Seyfiied et al.,
1984; Agrinier et al., 1988; Nielsen et al., 2000], or
(2) along deep faults cutting through the oceanic
crust during flexural up bending as the crust
approaches the trenches [Peacock, 2001; Ranero
et al., 2001]. Potentially, this process is very
efficient in recycling elements that are readily
dissolved in hydrothermal fluids and seawater
(e.g., Cl, B, rare gases) back into the mantle [Riipke
et al., 2002; Scambelluri et al., 2001].

[22] In short, the fluid sources present beneath the
Izu VF fall into two categories: (1) the metacrust,
and (2) serpentinized (hydrated) upper mantle,
located either above or below the metacrust
(Figure 8). In contrast to the metacrust, which is
highly enriched in all LILE, the serpentinized
mantle is highly depleted, except for those ele-
ments that are added by the fluids. Apparently, the
metacrust is then the most likely source of the
LILE-rich fluids that infiltrated the mantle source
of the normal-group glasses. However, the serpen-
tinized mantle could produce the additional fluid
component whose signal is preserved in the HRA.
To date, there is no evidence to suggest wholesale

transport of LILE from the oceanic crust or sea-
water into the mantle peridotite, which could in
turn serve as the major source for the LILE-rich
fluids. Field studies from the Mariana forearc
serpentinites, from exhumed segments of the meta-
crust, and from the serpentinized upper mantle, all
indicate that these contain only minor quantities of
the fluid-mobile LILE relative to the metacrust
[Ryan et al., 2001; Scambelluri et al., 2001]. For
example, hydrated upper mantle exposed in the
Alps usually has <10 ppm Sr (and a maximum of
34 ppm Sr) [Scambelluri et al., 2001], well below
the average of the metacrust (~100 ppm Sr). On
the other hand, the serpentinized peridotite provides
an excellent sink for a few highly fluid-mobile
elements, such as Cl, F and Li [Rucklidge and
Patterson, 1977; Agrinier et al., 1988; Puga et al.,
1999; Anselmi et al., 2000]. The Cl and F replace the
(OH™)-groups in hydrous Mg-silicates (e.g., ser-
pentine and chlorite, or amphibole and phlogopite at
greater depths), whereas the Li ion (Li") substitutes
for Mg®". Studies show that modern and ancient
oceanic serpentinites can contain several 1000 ppm
of Cl and F, with maxima of 9000 ppm Cl and 3000
ppm F, respectively [Rucklidge and Patterson,
1977; Agrinier et al., 1988; Puga et al., 1999;
Anselmi et al., 2000]. In contrast, the average
metacrust contains only ~113 ppm Cl and ~241
ppm F [e.g., Straub and Layne, 2003]. The serpen-
tinite of the outer Mariana forearc contains 2—19
ppm Li [Benton et al., 1999] compared to an
average upper mantle value of ~1 ppm Li (Table 5).

5.2.1. Lithospheric or Wedge Serpentinite

as Fluid Source?

[23] Of the two serpentinite reservoirs (lithospheric
serpentinite and wedge serpentinite), the wedge
serpentinite appears to be the most likely source
of the HRA fluid component, for several reasons.

[24] First, the volumetric dominance of the normal-
group glasses relative to the HRA suggests that
most of the total fluid volume that infiltrates the Izu
VF mantle originates from the metacrust. The
serpentinite must be a subsidiary fluid source. This
characteristic appears to be more consistent with
the wedge serpentinite, as the lithospheric serpen-
tinite may produce an even larger fluid volume
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Figure 9. K,O/Nb, Li/Nb, F/Nb and CI/Nb versus &''B of Izu glasses. For symbols see Figure 2. K,O/Nb
exemplifies the trends of LILE/Nb and B/Nb in normal-group glasses (open circles; see Straub and Layne [2002,
Figure 5]). HRA (bold green cross) and the mixed rhyolite inclusions (smaller green crosses) have slightly higher §''B
values (indicated by black arrows) than the normal-group glasses (note that the K,O contents of HRA and normal-
group glasses are identical; see Figure 2), consistent with their origin from a high-6''B source (i.e., wedge serpentinite
with "B ~+15%o [Straub and Layne, 2002]). Numbers within arrows give abundances (in ppm) of Li, F and Cl in
HRA, which plot outside the diagram. Note linear mixing trends defined by the HRA and the mixed rhyolites.

than the metacrust [Ranero et al., 2001; Riipke et
al., 2002].

[25] Second, any fluid from the lithospheric ser-
pentinite must pass through the ~6.4 km thick
metacrust, from which it is very likely to scavenge
additional elements [e.g., Riipke et al., 2002].
Therefore if the lithospheric serpentinite was a
significant fluid source, the fluid-mobile LILE
and the halogens should be correlated, rather than
the observed decoupling. If the lithospheric ser-
pentinite was the HRA fluid source, then the
decoupling is particularly difficult to explain for
Li, an element that is more abundant in the meta-
crust than in the serpentinite [e.g., Ryan and
Langmuir, 1987]. A scenario in which the fluid
from the lithospheric serpentinite passed through
the metacrust along continuous cracks, or even
through a slab window, is not consistent with the
co-existence of the HRA and the normal-group
glasses in crustal chambers, an observation that
implies that the two fluid components must infil-
trate the mantle source more or less simultaneously.

[26] Third, the normal-group Izu glasses display
inverse correlations of §''B and LILE/Nb ratios
[Straub and Layne, 2002, Figure 5]. These inverse
correlations provide a strong argument against both
heavy B and the LILE being derived from the same
fluid source. If the metacrust (or perhaps the
lithospheric serpentinite) was the major source of
heavy B, as suggested by several workers [e.g.,
Ishikawa et al., 2001; Tonarini et al., 2001; Riipke

et al., 2002], then &''B and LILE/Nb should be
positively correlated. Moreover, at arc front depths,
the metacrust apparently has §''B < 0, after having
lost heavy B during shallow devolatilization [Pea-
cock and Hervig, 1990; Straub and Layne, 2002].
If this is the case, then it appears likely that the
lithospheric serpentinite is similarly depleted in
heavy B at arc front depths. Therefore the most
likely source of heavy B is, in fact, the wedge
serpentinite, which became impregnated with ''B-
rich fluids trenchward of the Izu VF during shallow
dewatering of the slab.

[27] In summary, the wedge serpentinite is the most
likely source of the HRA fluid. Although this
model does not preclude some lesser contribution
of fluids from the lithospheric serpentinite, these
“lithospheric” fluids are likely to completely mix
with the metacrust fluids, forming a single, com-
posite fluid of minor compositional variability.

5.2.2. Relative Contributions of Cl, F and
Li From the Two Fluid Sources

[28] Correlating Cl, F and Li with &''B allows a
first order estimate of the relative importance of the
wedge serpentinite versus metacrust fluid sources
for these elements at the Izu VF. This can be done
because the Izu VF B originates in approximately
equal amounts from the serpentinite wedge (~53%
of B) and the metacrust (~47% of B) that have
very different 6''B values (+14%o and +1%o, re-
spectively [Straub and Layne, 2002]). Figure 9
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shows that the normal-group glasses are inversely
correlated only in the Li/Nb versus §''B space,
suggesting that the fluid-transported Li - as B - was
contributed both from the metacrust and the wedge
serpentinite in about equal amounts. In contrast,
CI/Nb and F/Nb are uncorrelated with §!'B, even if
some loss of Cl by degassing is taken into account
(Figure 9). This lack of clear correlation with §''B
suggests that Cl and F are supplied predominantly
from only one of the two fluid sources, which
should be the wedge serpentinite according to our
model. This interpretation is supported by the
elevated §''B values the HRA and the mixed
rhyolite inclusions display relative to the normal-
group glasses, given the fact that both groups have
similar K,O at a given MgO (Figure 9).

[29] Therefore if the wedge serpentinite is the dom-
inant source of the fluid-transported CI and F at the
Izu VF, the contributions of B and Li from this
reservoir must be less. A weaker relative fluid flux
of Li from the wedge serpentinite is supported by
the more moderate Li enrichment of the HRA
compared to the halogens, and the lack of selective
Lienrichment in a single HRA inclusion (Figure 2c¢).
Further, the lack of a selective B enrichment in the
HRA implies that the relative B flux from the wedge
serpentinite is even somewhat less than the relative
flux of Li. Thus the B contribution from the serpen-
tinite wedge is entirely concealed in the abundance
data (but not in the B isotopes). Since ~53% of the
total B at the Izu VF is wedge-derived [Straub and
Layne, 2002], more than 53% of the Cl, F and Li
must originate from the wedge serpentinite at the [zu
VF, with only the remainder being contributed from
the metacrust fluids.

5.2.3. Formation of the Wedge Serpentinite

[30] The CI-, F- and Li-bearing wedge serpentinite
is likely to form by fluid infiltration trenchward to
the arc volcanic front. However, the joint infiltra-
tion of Cl, F, Li and heavy B, beneath the outer
forearc is not supported by the data from the
Mariana serpentinite seamounts. These data show
that only B and possibly Cl are removed substan-
tially at these depths (~20-25 km). Note that -
despite being less saline than seawater (19500 ppm
Cl) - the fluids upwelling beneath the outer

Mariana forearc are still rich in Cl, with abundan-
ces ranging from 9900 to 18550 ppm CI [Fryer et
al., 1999; Benton et al., 2001], which could be due
to Cl addition from slab. On the other hand, and
despite the elevated Li of the Mariana serpentinites
(~2—19 ppm [Benton et al., 1999]), the Mariana
forearc fluids carry only minor Li (~1-2 ppm
[Ryan et al., 2001]) relative to the amounts present
in the metacrust (several tens of ppm [Ryan and
Langmuir, 1987]). This observation is consistent
with the lower mobility of Li relative to B in
hydrothermal experiments at 150° to 375°C [Sey-
fried at al., 1984]. Nothing yet is known about the
F contents of these shallow fluids, but F is
expected in slab fluids, since it becomes highly
fluid-mobile at temperatures >250°C [Seyfiied and
Ding, 1995]. A simple explanation to reconcile
these disparities was that the mobilities of Cl, F
and Li in fluids increase with increasing slab depth,
in order to account for their abundance in the
wedge peridotite. In this context, the joint enrich-
ment of Cl, F and Li might be significant, given the
fact that these elements are all hosted in amphibole,
which is the major metamorphic phase in the
subducting crust [e.g., Tatsumi and Eggins,
1995]. In the metacrust, amphibole becomes un-
stable at ~70 to 80 km [Schmidt and Poli, 1998],
still trenchward to the arc volcanic front. Hence
amphibole should be an excellent source of Cl, F
and Li in slab fluids. However, the other phases,
such as phengite, might release one or more of
these elements as well, as they gradually release
elements with depth [e.g., Bebout et al., 1999].

[31] Figure 10 attempts to summarize the above
discussion in terms of “fluid release curves.” Note
that the lithospheric serpentinite is shown as an
additional source of fluids to the wedge. We
suggest that the release curves of B and Cl peak
early, but then decline with increasing depth to-
ward the rear arc. This is in agreement with models
that propose that B and Cl become rapidly scav-
enged from the subducting slab during early sub-
duction, which in turn prevents these elements
from being recycled back into mantle [/fo et al.,
1983; Ryan and Langmuir, 1993; Ryan et al., 1995,
1996; Bebout et al., 1999; Straub and Layne,
2003]. In contrast to B and CI, the fluid release
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Figure 10. Cartoon to illustrate the ‘fluid release
curves’ discussed in the text. WS = wedge serpentinite.
The lithospheric serpentinite is shown as an additional
fluid source next to the metacrust. Three successive
fluid release curves are suggested; for B and Cl (red),
Li and possibly F (blue), and the fluid-mobile LILE
(lilac). Water is implied to be released continuously
from slab.

curves of Li and F, the latter being very specula-
tive, are shown to increase with increasing slab
depth, and, at least in the case of Li, may extend
beyond arc front depth [Paquin and Altherr, 2002].
Despite the evidence for fluid removal of Li and F
from the slab, however, it is important to keep in
mind that the relative amount removed from the
slab is probably minor (<10% of slab Li and F), as
indicated by mass balance models [Ryan et al.,
2001; Straub and Layne, 2003], and the study of
metamorphic complexes [Bebout et al., 1999]. This
might reflect the fact that most of F and Li are
stored in anhydrous phases, replacing Mg" and
0" [e.g., Paquin and Altherr, 2002]. Their incor-
poration into the mineral structure should protect
these elements from entrainment into fluids, and
they may only become substantially mobilized in
partial slab melts that form well beyond arc front
depths [e.g., Bebout et al., 1999; Plank and Kelley,
2001]. Finally, the release of the fluid-mobile
LILE, the curve is drawn as single line for sim-
plicity, appears to be negligible trenchward from

the Izu VF as well, and increases only significantly
at arc front depths.

6. Some Implications of the

Model Proposed

[32] The fluid release model proposed here has
several implications. Importantly, it supports the
studies of Bebout et al. [1999] and Ryan et al.
[2001] in proposing that the loss of many fluid-
mobile LILE is insignificant during early slab
devolatilization. In the case of the ‘“cool” Izu
Bonin subduction zone, this apparently includes
Cs as well, whereby Cs might be mobilized to a
larger extent in subduction zones with higher
thermal gradients [Bebout et al., 1999]. The flu-
id-mobile LILE are largely sequestered in the
hydrous minerals, such as phengite, lawsonite,
epidote, clinozoisite and zoisite, that sequentially
stabilize with progressive metamorphism [Schmidt,
1996; Becker et al., 1999; Melzer and Wunder,
2000]. Consequently, the elemental and isotopic
signatures of even highly fluid-mobile elements
like Cs, Pb or Sr should be largely preserved in
the subducted materials until arc front depths. This
validates many earlier studies on elemental recy-
cling in arcs, in which this assumption is implicit
[e.g., Elliott et al., 1997; Patino et al., 2000;
Hochstaedter et al., 2001].

[33] Another aspect concerns the experimental
studies of Keppler and Wyllie [1990] and Keppler
[1996] that predict a critical role for the Cl and F
of slab fluids. These studies suggest that, owing to
their capacity for complexing, Cl- and F-bearing
fluids are capable of fractionating the fluid-mobile
LILE from Nb and Ta. They may also fractionate
U from Th, generating a typical “arc signature”
[Keppler and Wyllie, 1990; Keppler and Wyllie,
1991; Keppler, 1996]. At first glance, this hypoth-
esis appears to be supported since the Cl- and F-
rich slab fluids beneath the Izu VF have exactly
the chemical characteristics (elevated LILE/Nb
and U/Th) predicted by this model [Hochstaedter
et al., 2001; Straub et al., submitted manuscript,
2003]. However, the selective mobilization of
halogens and Li documented by the HRA clearly
does not support a key role for the halogens in
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elemental fractionation. Rather, it suggests that
slab devolatilization was a multistep process,
during which fluid release was controlled by the
fluid-mobility of the individual elements, resulting
in the depth-dependent, en echelon fluid release
curves depicted in Figure 10, and in the fraction-
ation of Cl, F, Li and B from the other fluid-
mobile LILE. If the Cl flux indeed decreases, as
indicated in Figure 10, the role of CI in control-
ling the fractionation of the elements mobilized in
the deeper fluids is even more doubtful. Thus
without ruling out halogen-complexing complete-
ly, it appears that the sequential formation and
decay of metamorphic mineral phases exerts a
stronger role as to fractionating elements during
slab devolatilization.

7. Conclusions

[34] Four primary conclusions may be drawn from
this study.

[35] 1. The Izu VF volcanics contain a subordinate
component melt that is selectively enriched in Cl, F
and Li. Despite being preserved only in very rare
melt inclusions this halogen-rich andesite
(“HRA”) component melt appears to be a common
constituent of the Izu VF magmas.

[36] 2. The HRA component melt is interpreted to
reflect the presence of a subordinate fluid compo-
nent in the Izu VF magma source that is derived, at
arc front depths, from the “wedge serpentinite”
above the metacrust. The major portion of this
fluid, which transports the fluid-mobile LILE (K,
Sr, Rb, Cs, Ba, Pb, U), originates from the meta-
crust, with a possible contribution from the litho-
spheric serpentinite below the metacrust.

[37] 3. This interpretation implies that slab fluids
entrain only a few elements (Cl, B, and minor
amounts of F and Li) during shallow subduction,
trenchward from the VF of the “cool” Izu subduc-
tion zone. Most of the fluid-mobile LILE (K, Sr,
Rb, Cs, Ba, Pb, U) appear to be retained in the slab
until arc front depths.

[33] 4. Elemental fractionation by halogen-com-
plexing appears to play a minor role compared to
the sequential formation and decay of metamor-

phic mineral phases during progressive slab meta-
morphism.
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