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Abstract. The standard geometric optics (GO) technique predicts that the phase 
function for large nonspherical particles with parallel plane facets (e.g., hexagonal 
ice crystals) should have an infinitesimally narrow 15-function transmission peak caused 
by rays twice transmitted (refracted) in exactly the forward scattering direction. 
However, exact T-matrix computations and physical considerations based on the 
Kirchhoff approximation suggest that this peak is an artifact of GO completely 
ignoring physical optics effects and must be convolved with the Fraunhofer pattern, 
thereby producing a phase function component with an angular profile similar 
to the standard diffraction component. This convolution can be performed with 
a simple procedure which supplements the standard ray-tracing code and makes 
the computation of the phase function and its Legendre expansion both more 
physically realistic and more accurate. 

1. Introduction 

It is well known that a convenient way of representing the 
scattering phase function P(©) for aerosol and cloud particles 
is expanding it in Legendre polynomials as 

t/ma x 

?(o) = x. ?.(cosO) . x o = . ( ) 
n=0 

where © is the scattering angle, P,(cosO) are Legendre 
polynomials, and the value of the upper summation limit nma x 
depends on the desired numerical accuracy of the expansion 
[van de Hulst, 1980; Lenoble, 1985; Stephens, 1994; 
Yanovitsko', 1997]. Since the number of numerically 
significant terms in the Legendre expansion is finite and 
often relatively small, this expansion can be used for 
efficiently computing the phase function for essentially any 
number of scattering angles with a small consumption of 
CPU time. Furthermore, the Legendre expansion coefficients 
x, can be used to directly compute the Fourier components 
of the phase function via simple and exact analytical 
formulas, which is the first step in radiative transfer 
computations using numerical techniques such as the 
adding/doubling method [Hansen and Travis, 1974; 
Wiscombe, 1976; van de Hulst, 1980], the discrete ordinates 
method [Stamnes et al., 1988; Nakajima and King, 1992], 
and the spherical harmonics method [Benassi et al., 1984]. 
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The Legendre expansion coefficients for the widely used 
Henyey-Greenstein phase function are given by the simple 
analytical expression [van de Hulst, 1980] 

x, = (2n + 1)g " (2) 
where g is the asymmetry parameter. Efficient exact 
methods based on solving Maxwell's equations exist for 
computing the expansion coefficients for spherical particles 
[e.g., de Rooij and van der Stap, 1984, and references 
therein], randomly oriented, rotationally symmetric 
nonspherical particles [Mishchenko, 1991], and randomly 
oriented clusters of spheres [Mackowski and Mishchenko, 
1996]. For irregular particles with sizes much larger than the 
wavelength of the incident radiation, such as cirrus cloud 
particles in the visible, direct numerical solutions of 
Maxwell's equations do not currently exist. Therefore the 
expansion coefficients have to be computed by using an 
approximate technique such as the geometric optics (GO) 
approximation. Using the orthogonality property of 
Legendre polynomials, we easily derive from equation (1) 

2n+l I x = d©P(©)P,(cos©)sin©. (3) "2 
0 

The integral in equation (3) can be calculated numerically by 
using a quadrature formula provided that the phase function 
values at the quadrature division points are known. This 
numerical approach works well if the phase function is rather 
smooth but becomes problematic for particles having parallel 
planes such as hexagonal columns and plates, cubes, or finite 
circular cylinders. In this case, the standard GO predicts a 
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strong, infinitesimally narrow peak in the exact forward 
scattering direction which is caused by rays that undergo two 
refractions through parallel plane facets and is superimposed 
on the diffraction component of the phase function. This 
effect was called by Takano and Liou [1989] the b-function 
transmission. 

It is obvious, however, that GO predicts the infinitesimally 
narrow b-function transmission peak only because it 
completely ignores physical optics effects. Simple physical 
optics considerations similar to those of Muinonen [1989] 
and Muinonen et al. [1989] cause us to conclude that 
although a strong nondiffraction forward scattering peak does 
exist and can be qualitatively explained in GO terms as a 
manifestation of the b-function transmission, it nonetheless 
has an appreciable angular width comparable to that of the 
Fraunhofer diffraction peak and a diffraction-like angular 
profile. In the following sections we use exact T-matrix 
computations to substantiate this conclusion and describe a 
simple modification of the standard ray-tracing procedure 
which makes GO computations more physically realistic and 
accurate. Furthermore, we show that this modified procedure 
significantly simplifies and makes more accurate the 
numerical computation of the Legendre expansion 
coefficients for particles with parallel plane facets. 

2. Definitions 

The ray-tracing technique assumes the representation of an 
incident plane electromagnetic wave as a sufficiently large 
number of incoherent parallel rays. Each individual ray is 
independently traced for a given particle geometry and 
orientation using Snell's law and Fresnel's equations 
[Jackson, 1975]. All escaping rays are sampled into 
incremental solid angle elements (bins) centered at predefined 
discrete scattering angles from 0 ø to 180 ø. This procedure 
yields the angular distribution of the scattered intensity and 
is repeated for a sufficiently large number of particle 
orientations with respect to the incident beam in order to 
simulate the three-dimensional (3-D) random orientation. 
The geometric optics scattering phase function Poo(©) is 
finally given by 

1 poo(Oi ) A• i = Ei 
4rr M (4) 

i=1 

where ©i (i = 1, 2 .... , M) are discrete scattering angles 
covering the entire interval [0 ø, 180ø], Af/i = 2rr sin©; 
are the corresponding incremental solid angle elements such 
that 

M 

• A•, : 4x, (5) 
i=l 

and E• is the energy accumulated in the ith solid angle 
element. Thus Poo(©) satisfies the normalization condition 

1 I driPøø(©) = 1 (6) 4x 
4x 

and (1/4x)Poo(©)dF2 describes the probability for an incident 
ray to be scattered into the solid angle element dC2 centered 
at the scattering angle ©. The final step in computing the 

full scattering phase function is supplementing the ray-tracing 
computation by the computation of the Fraunhofer diffraction 
component which significantly deviates from zero only in the 
vicinity of the forward scattering direction [van de Hulst, 
1957]. We thus have 

WGoPGo(O) + PD(O) 
P(©) = , (7) 

wGO + 1 

where Woo is the geometric optics single-scattering albedo, 
and PD(©) is the diffraction phase function, Assuming for 
simplicity the circular particle projection, we have for the 
diffraction phase function in the limit x --> oo [van de Hulst, 
1957] 

PD(O) :4X 2 

?i:,(o) o, 

[ J•(xsin©) xsin© 

O e [90 ø, 180ø]. 

O e [0% 90ø], (8) 

In equation (8), J•(y) is the Bessel function of the first kind, 
and x is the size parameter. Note that the truncation of the 
diffraction phase function in equation (8) at © = 90 ø can 
induce a step function like singularity in the phase function 
for smaller size parameter particles. The magnitude of this 
singularity can be used as an additional criterion in 
determining the smallest size parameter to which the ray- 
tracing approximation can be applied. For large x, 

j j(2x) 1 dF2PD(O ) = 1- - 1+0(x-3/2), 
4x x 

4x 

(9) 

so that the diffraction phase function is asymptotically 
normalized to unity. 

We have from equation (4) 

E i 
Poo(O•) : 4x lim . , 

m, •o • (10) 

j=l 

which means that a numerically accurate computation of the 
GO phase function at a scattering angle ©i may, in principle, 
require choosing a rather small solid angle element ACli and 
thus tracing a large number of rays and averaging over many 
orientations. Quite often Poo is a rather smooth function of 
the scattering angle, and the numerical evaluation of the limit 
of equation (10) encounters no difficulties because its right- 
hand side converges at a relatively large A©•. For example, 
Macke et al. [1996] have found that in most cases it is 
sufficient to use solid angle bins with A© = 1 ø, trace 300 
rays for each particle orientation, and average over 30,000 
orientations. However, for crystals with parallel plane facets 
the right-hand side of equation (10) does not converge to a 
finite limit at © = 0. This is a manifestation of what Takano 

and Liou [1989] call the b-function transmission. 

3. T-Matrix Computations 

As mentioned in the introduction, the S-function 
transmission is not a real phenomenon but is rather an 
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artifact of GO completely ignoring physical optics effects. 
Muinonen et al. [1989] used the Kirchhoff approximation 
[Jackson, 1985; Muinonen, 1989; Arnott and Marston, 
1991] to show that a plane wave front emerging from a 
crystal face should spread and produce a Fraunhofer-type 
pattern in the radiation zone. The corrected size-dependent 
phase function is thus obtained through a convolution of the 
GO phase function and the Fraunhofer pattern. Muinonen et 
al. [1989] used this physical optics correction to modify the 
true and corner retroreflection peaks computed originally 
from geometric optics for large parallelepipeds and hexagonal 
crystals. It is clear that the same physical optics correction 
must also be applied to the b-function transmission. 

Recently, Mishchenko et al. [1997] have used the 
improved version of the exact T-matrix method [Waterman, 
1971; Mishchenko et al., 1996a, b; Wielaard et al., 1997] 
to compute the scattering of light by large nonspherical ice 
particles. Computations for circular disks with size 
parameters up to 50 and aspect ratios up to 3 have shown 
that the physical optics correction based on the Kirchhoff 
approximation produces excellent results when applied to 
light externally reflected by large plane facets of ice crystals. 
In this paper, we perform similar T-matrix computations in 
order to verify the applicability of the physical optics 
correction to the (5-function transmission component of the 
phase function. Specifically, we compute the exact phase 
function for a monodisperse oblate spheroid with the aspect 
ratio 3 and size parameter x = 2rca/L = 50, where a is the 
spheroid major semiaxis and L is the wavelength of the 
incident light, and a circular disk with the diameter-to-height 
ratio 3 and the same size parameter x = 2zr/L - 50, where r 
is the disk radius. The refractive index is 1.3082 + i0.1328 

x 10 -7 and is typical of water ice at visible wavelengths 
[Warren, 1984]. Although the size parameter 50 does not 
necessarily put the particles in the geometric optics domain 
[Macke et al., 1995' Wielaard et al., 1997], it nonetheless 
is big enough to make relevant an interpretation of the exact 
T-matrix computations in terms of the geometric optics and 
Kirchhoff approximations. 

We assume that the external light is unpolarized and is 
incident along the rotational axes of the particles so that both 
particles have exactly the same circular projections 
perpendicular to the incident light and thus exactly the same 
diffraction contributions to the total phase function. The T- 
matrix computations show that the phase function value at © 
= 0 for the circular disk is greater than that for the spheroid 
by as large a factor as 2.7. However, despite the large 
difference in the amplitudes of the forward scattering peaks 
for the two phase functions, their angular profiles, defined as 
P(©)/P(Oø), are almost the same (Figure 1), so the half 
widths at half maximum of the two peaks differ by only 
10%. 

These results can be explained as follows' The circular 
disk gives two strong contributions to the phase function at 
zero scattering angle, one due to diffraction and another due 
to rays twice refracted in the forward direction by the large 
parallel plane facets. Because of the optical physics effect 
[Muinonen et al., 1989] the angular profiles of both 
contributions are similar. On the other hand, the spheroid 
produces only the strong diffraction component. As a result, 
the total phase function value at © - 0 ø for the disk is much 
greater, whereas the angular profiles of the phase functions 

for the disk and the spheroid are nearly the same. This 
explanation shows that the angular profile of the b-function 
transmission peak for the disk is not a true/5 function but is 
rather described by the same Fraunhofer pattern as the 
standard diffraction peak. Importantly, diffraction contributes 
71% of the total phase function value at © = 0 for the 
spheroid and only 26% for the disk, thus demonstrating that 
the b-function transmission can be the dominant contributor 

to the forward scattering phase function for transparent 
particles with large parallel planes. 

To verify this interpretation of the T-matrix calculations, 
we have computed the scattering of light by the same 
particles and with the same real part of the refractive index, 
but with a much larger imaginary part equal to 0.1. Figure 
2 shows that the angular profiles of the phase functions for 
the strongly absorbing particles in the vicinity of the forward 
scattering direction are essentially the same. Even the 
secondary intensity maxima at about 5.5 ø almost coincide. 
Also, the ratio of the forward scattering phase function values 
for the disk and the spheroid is now only 1.23. These results 
can be easily explained by the effect of absorption which 
strongly suppresses the b-function transmission contribution 
for the disk and makes diffraction the dominant contributor 

to the forward scattering part of both phase functions. 
Indeed, diffraction now contributes more than 93% of the 
total phase function value at © = 0 ø for the spheroid and 
more than 75% for the disk. 

Comparison of Figures 1 and 2 shows that the two solid 
curves computed for the nonabsorbing and strongly absorbing 
disks, respectively, are almost identical. In fact, plotting the 
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Figure 1. Normalized phase function P(©)/P(O ø) versus 
scattering angle for a circular disk with the diameter-to- 
height ratio 3 and size parameter x = 2•r/•, = 50, where r is 
the disk radius, and an oblate spheroid with the aspect ratio 
3 and the same size parameter x = 2•a/•, = 50, where a is the 
spheroid major semiaxis. The external unpolarized light is 
incident along the rotational axes of the particles. The 
refractive index is 1.3082 + i0.1328 x 10 -7. 
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Figure 2. As in Figure 1 but for the refractive index 1.3082 
+ i0.1. 

curves in the same diagram makes them hardly 
distinguishable (Figure 3). In view of the quite different 
relative contributions of the diffraction and b-function 

transmission components in these two cases, Figure 3 
unequivocally demonstrates that the angular profiles of the 
diffraction and b-function transmission peaks for a disk are 
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Normalized phase function P(©)/P(O ø) versus Figure 3. 
scattering angle for circular disks with the diameter-to-height 
ratio 3 and size parameter x = 2•r/X = 50. The refractive 
indices are 1.3082 + i0.1328 x 10 -7 (solid curve) and 1.3082 
+ i0.1 (dotted curve). The external unpolarized light is 
incident along the rotational axes of the particles. 

indeed the same. Also, increasing absorption has brought the 
dotted curve in Figure 2 to a closer agreement with the 
respective curve for the disk than in Figure 1. This suggests 
that the small discrepancies between the solid and dotted 
curves in Figure 1 are caused by the ray tracing component 
of the forward-scattering phase function for the transparent 
spheroid which is not fully described by the Fraunhofer 
angular profile. 

The final check is provided by computing the scattering of 
an obliquely incident beam. In this case the scattering 
problem is not rotationally symmetric, and the existence of 
a 15-function transmission component with the same angular 
profile as the diffraction component could not be 
misinterpreted as specific to axially symmetric configurations 
only. Figure 4 is computed for the same nonabsorbing ice 
particles as Figure 1, but now the incident light is directed at 
an angle of 20 ø with the particle axis. The scattering plane 
is the plane through the particle axis and the incident beam, 
and the normalized phase function is plotted versus the angle 
between the particle axis and the scattered beam. Both 
particles produce strong intensity peaks centered at exactly 
the forward scattering direction and having essentially the 
same angular profiles. However, the forward scattering 
phase function value for the disk is greater than that for the 
spheroid by a factor of 1.9. This large factor can only be 
explained by a strong •5-function transmission contribution 
for the disk. This contribution is smaller than in the 

symmetric case because fewer incident rays can now be 
transmitted in the exact forward scattering direction and also 
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Figure 4. Normalized phase function P(,9)/P(20 ø) versus the 
angle between the particle axis and the scattered beam, 8, for 
a circular disk with the diameter-to-height ratio 3 and size 
parameter x = 2xr/)• = 50 (solid curve) and an oblate 
spheroid with the aspect ratio 3 and the same size parameter 
x = 2xa/)• = 50 (dotted curve). The angle between the 
particle axis and the unpolarized incident beam is 20 ø. The 
scattering plane is the plane through the particle axis and the 
incident beam. The refractive index is 1.3082 + i0.1328 x 
10 -7 ' 
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because of an increased contribution of the side surface of 

the disk to the forward scattered light. However, the 8- 
function transmission component still dominates the total 
phase function value at the exact forward scattering direction 
and has the same angular profile as the diffraction 
component. 

4. Modified Ray-Tracing Procedure 

Thus the exact T-matrix computations show that the GO 
phase function for crystals with parallel plane facets must 
indeed be corrected by convolving the GO 8-function 
transmission peak with the Fraunhofer angular pattern. This 
convolution can be accomplished with the following simple 
procedure. The ray-tracing code described by Macke et al. 
[ 1996] uses 181 solid angle bins centered at scattering angles 
©i = 0.25ø, 1 o, 2 o, ..., 178 ø, 179 ø and 179.75 ø. For the first 
and the last bins, A©• : AO•8 • = 0.5 ø, while for all other 
bins, A© i = 10. By definition the ray-tracing phase function 
satisfies the normalization condition 

181 

1 • PGo(Ot)A•.•t = 1. (11) 
All energy resulting from the b-function transmission is 
accumulated in the first bin, thereby causing PGO(©i) >> 
PGo(©,), i = 2, ..., 181. Since our goal is to replace the 
artificial 15-function transmission peak with a diffraction-like 
component, we need to know the amount of energy contained 
in the peak. Therefore we replace the large Pao(©l) value 
with the much smaller PGO(©2) value and denote the 
truncated ray-tracing phase function by P/•o. This modified 
phase function is a rather slowly varying function of the 
scattering angle, so phase function values at scattering angles 
not coinciding with ©i can be accurately computed by using 
linear interpolation/extrapolation. We then compute the 
quantity 

181 

15 = 1- 1 t•l P /Go(Oi)A•-•t (12) 471: = 

which determines the fractional contribution of the 
diffraction-like forward scattering component to the ray- 
tracing phase function. The new ray-tracing phase function 
is thus given by 

PGo(O) = P/GO(O ) + 15PD(O), (13) 

where PD(©) is given by equation (8). Inserting equation 
(13) into equation (7), we finally derive the total phase 
function as 

P(O) : WGøP /Go(O) + (1 +WGoS)PD(O ) (14) 
WGO + 1 

The corresponding total single-scattering albedo is given by 

w = WGø + 1 (15) 
2 

It is easy to verify that the phase function of equation (14) is 
norm. alized such that 

1 

4-• I dflP(©)= 1. (16) 
Rewriting equation (3) as 

2n+l x. : d•P(•) P.(•). •: cos© (1 7) 
2 

-1 

and using a Gaussian quadrature formula on the interval [- 1. 
1]. we have 

2n+l N• 
x = • p(•ti)p,(gt/)wi, (18) 

where g/and w/(j = 1 .... , N o ) are Gaussian division poims 
and weights, respectively. Since the dif•action phase 
•nction Pv is given by an exact analytical expression and 
the modified ray-tracing phase •nction P•o is a slowly 
va•ing •nction of the scaRering angle and can be accurately 
inte½olated/extrapolated, the total phase •nction values at 
the division points can be computed rather precisely. As a 
result, the numerical evaluation of equation (18) encounters 
no difficulties and produces accurate values of the Legendre 
expansion coefficients. The accuracy of computing the 
expansion coefficients can be checked by evaluating the 
right-hand side of equation (1) at the Gaussian division 
points and comparing the result with the original phase 
•nction values. Such checks have shown that the accuracy 
of the Legendre representation of the phase •nction can be 
made arbitrarily high by including a sufficiently large 
number nma x of the expansion coefficients. We have found 
that a reliable criterion for choosing an adequate value of 
nm= is checking that the right-hand side of equation (1) 
computed for O = 0 exactly coincides with the fo•ard 
scattering value of the original phase function. 

As an example, in Figure 5 we show the total phase 
•nction for polydisperse, randomly oriented hexagonal 
columns with len•h-to-diameter ratio 2 and distribution of 
surface-equivalent sphere radii given by the standard power 
law [Hansen and Travis, 1974]: 

2r•2r22 -3 
F F 1 < F< F2• 2 - - (19) ,(r) = r22 - F 1 

0 othe•ise. 

The parameters r 1 and r 2 are chosen such that the effective 
radius and effective variance of the distribution, as defined 
by Hansen and Travis [ 1974], are ref f = 40 gm and Veff: 0.2. 
The re,active index is 1.3082 + i0.1328x10 -7, and the 
wavelength is X = 0.645 gm. The solid cu•e shows the 
original phase •nction, while the do•ed cu•e shows the 
result of evaluating the Legendre expansion of equation (1) 
with nma x = 1000 te•s. It is seen that the original phase 
•nction and the Legendre expansion almost perfectly 
coincide (relative differences less than 10-5). The fo•ard 
sca•ering value for this phase •nction is 1.160 x 105 and the 
asymmet• parameter is 0.8209. 

5. Discussion and Conclusions 

It is clear that however large a pa•icle is compared to the 
wavelen•h, physical optics effects will preclude the 
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Figure 5. Scattering phase function for polydisperse, 
randomly oriented hexagonal ice columns with length-to- 
diameter ratio 2. The solid curve shows the original phase 
function and the dotted curve shows the result of evaluating 
the Legendre expansion of equation (1) with 1000 terms. 

appearance of perfect singularities in the scattering pattern 
like the b-function transmission peak in the phase function. 
Instead, as Muinonen e! al. [1989] have pointed out, a wave 
front emerging from a flat crystal facet should spread and 
produce an angular intensity distribution in the far-field zone 
similar to the well-known Fraunhofer diffraction pattern. In 
the theoretical limit of an infinite size parameter the b- 
function transmission peak becomes a true b function. 
However, the angular width of the b-function transmission 
peak is always comparable to that of the Kirchhoff 
diffraction component, and as long as the latter is computed 
explicitly by using formulas analogous to equation (8), so 
should be the b-function transmission component. 

In this paper, we first used exact T-matrix computations 
for rather large nonspherical particles to demonstrate that the 
effect that can be interpreted in geometric optics terms as b- 
function transmission through parallel planes indeed results 
in a quasi-Fraunhofer forward scattering peak rather than in 
a true b-function peak. We then described a very simple 
numerical procedure which incorporates this physical optics 
effect in the standard ray-tracing computation of the phase 
function for large particles with parallel plane facets. This 
procedure not only makes ray-tracing computations more 
physically relevant but also simplifies and makes more 
accurate the computation of the phase function and its 
Legendre expansion. It should be noted that our specific 
procedure may not be the only practical way of incorporating 

the b-function transmission component using the physical 
optics approximation [cf. Yang and Liou, 1996]. Also, its 
accuracy for very large particles cannot be assessed directly 
due to the lack of exact theoretical methods based on solving 
Maxwell's equations and applicable to size parameters 
exceeding a few hundred. However, our approach is 
physically based and appears to be very simple and well 
justified since it consists of directly computing the amount of 
energy contained in the b-function transmission peak and 
convolving it with the Fraunhofer angular pattern. 

As one of the reviewers of this paper has characterized our 
procedure, it is yet another patch for the ray-tracing approach 
to scattering problems. The ray-tracing technique has many 
disadvantages like the ignorance of the crossing of caustics 
or the interference of waves and dealing immediately with 
irradiance rather than with electric fields. These factors can 

degrade significantly the accuracy of ray-tracing 
computations, often in an unpredictable way. However, the 
lack of exact methods applicable to large ice crystals may 
make patches like this one useful, at least for the near future. 

In addition to the b-function transmission component the 
phase function shown in Figure 5 exhibits a pronounced 
corner retroreflection peak centered at O = 180 ø and having 
an infinitesimal angular width in the framework of the 
standard ray-tracing approximation. As suggested by 
Muinonen et al. [1989], this peak should also be convolved 
with the Fraunhofer angular pattern, and this can be done in 
a way similar to that described in the previous section. 
However, the amount of energy concentrated in the corner 
retroreflection peak is small as compared to that of the b- 
function transmission peak, thus making the latter correction 
less important. 
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