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ABSTRACT

For the first time, an analytical theory and a very high-resolution, frontal numerical model, both based on the

unsteady, nonlinear, reduced-gravity shallow water equations on a b plane, have been used to investigate aspects

of the migration of homogeneous surface, frontal warm-core eddies on a b plane. Under the assumption that,

initially, such vortices are surface circular anticyclones of paraboloidal shape and having both radial and azimuthal

velocities that are linearly dependent on the radial coordinate (i.e., circular pulsons of the first order), approximate

analytical expressions are found that describe the nonstationary trajectories of their centers of mass for an initial

stage as well as for a mature stage of their westward migration. In particular, near-inertial oscillations are evident

in the initial migration stage, whose amplitude linearly increases with time, as a result of the unbalanced vortex

initial state on a b plane. Such an initial amplification of the vortex oscillations is actually found in the first stage of

the evolution of warm-core frontal eddies simulated numerically by means of a frontal numerical model initialized

using the shape and velocity fields of circular pulsons of the first order. In the numerical simulations, this stage is

followed by an adjusted, complex nonstationary state characterized by a noticeable asymmetry in the meridional

component of the vortex’s horizontal pressure gradient, which develops to compensate for the variations of the

Coriolis parameter with latitude. Accordingly, the location of the simulated vortex’s maximum depth is always

found poleward of the location of the simulated vortex’s center of mass. Moreover, during the adjusted stage,

near-inertial oscillations emerge that largely deviate from the exactly inertial ones characterizing analytical

circular pulsons: a superinertial and a subinertial oscillation in fact appear, and their frequency difference

is found to be an increasing function of latitude. A comparison between vortex westward drifts simulated

numerically at different latitudes for different vortex radii and pulsation strengths and the corresponding drifts

obtained using existing formulas shows that, initially, the simulated vortex drifts correspond to the fastest

predicted ones in many realistic cases. As time elapses, however, the development of a b-adjusted vortex

structure, together with the effects of numerical dissipation, tend to slow down the simulated vortex drift.

1. Introduction

Much work has been devoted during the past few

decades toward the understanding of the b-induced

movement of geophysical oceanic and atmospheric

vortices (see, e.g., Warren 1967; Firing and Beardsley

1976; Flierl 1977; Nof 1981; Killworth 1983; Nof 1983;

Larichev 1984; Dewar 1988; Cushman-Roisin et al.

1990; Reznik and Dewar 1994; Benilov 1996; Nycander

2001; Graef 1998; Ripa 1997; McDonald 1998; Reznik

and and Grimshaw 2001; van Leeuwen 2007). In the

ocean, on a b plane, steady frontal surface anticyclones

of the reduced-gravity equations experience a westward

translation in order to compensate for the net Coriolis

force on the vortex’s rotation velocity field (see, e.g.,

Flierl et al. 1983; Dewar 1988). The resulting migration

can be described, essentially, as a westward shift in

conjunction with inertial oscillations of the vortex’s

center of mass (see, e.g., Nof 1984; van Leeuwen 2007).
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Larga Santa Marta, Dorsoduro 2137, I-30123 Venezia, Italy.

E-mail: rubino@unive.it

1486 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39

DOI: 10.1175/2008JPO4089.1

� 2009 American Meteorological Society



Apart from the limitations inherent in the reduced-

gravity equations (they do not allow, e.g., for energy

decay due to baroclinic instabilities or internal waves

radiation), the vortices considered in the past when

obtaining such translation formulas are characterized by

a simplified dynamics, as their swirl velocities were as-

sumed to be geostrophic and/or steady (see, e.g., Nof

1984; van Leeuwen 2007). However, analytical solutions

describing the dynamics of nonlinear, surface frontal

anticyclones of the reduced-gravity equations on an f

plane indicate that the vortex velocity fields may deviate

considerably from the geostrophic equilibrium and that

the vortex’s shape and velocity structure are intrinsi-

cally unsteady. These vortices, in fact, are characterized

by inertial oscillations affecting both the radial and

tangential velocities and, hence, the vortex’s interfacial

depth: they deepen (contract) and shallow (expand)

during an exact inertial period (Cushman-Roisin 1986;

Rubino et al. 1998). In these analytical solutions

(‘‘pulson’’ solutions), the vortex’s radial velocity field is

a linear function of the vortex’s radius, while the azi-

muthal velocity field can exhibit a complex shape and

can deviate considerably from geostrophy (Rubino et al.

1998; Dotsenko and Rubino 2006). Note that the dy-

namical characteristics mentioned above have been

proven 1) to be robust features of frontal surface ho-

mogeneous anticyclones simulated numerically and pro-

duced experimentally (see Rubino et al. 2002; Rubino

and Brandt 2003) and 2) to extend also to theoretical

stratified surfaces as well as intermediate lenses (Rubino

and Dotsenko 2006; Dotsenko and Rubino 2006).

It can be thus conjectured that a similar, intrinsically

unsteady, noticeably ageostrophic behavior may also

characterize frontal surface anticyclones evolving on a

b plane. If this is true, it is conceivable that dynamics

similar to those characterizing pulsonlike vortices will

also occur on a b plane.

In the present paper, we use an analytical theory and

a very high-resolution, frontal numerical model, both

based on the unsteady nonlinear, reduced-gravity shal-

low water equations on a b plane, to explore aspects of

the migration of homogeneous surface, frontal warm-

core eddies on a b plane. The paper is organized as

follows: in section 2 the adopted models are described;

in section 3 aspects of the nonlinear, unsteady vortex

dynamics obtained analytically and simulated numeri-

cally on a b plane are discussed; and finally, in section 4,

the results are discussed and conclusions presented.

2. Analytical and the numerical model

Let us consider a homogeneous, circular surface

buoyant layer of density r1 that, at the sea surface, is

separated from the surrounding, infinitely deep, quies-

cent ocean having density r2 . r1 by a closed frontal

line (Fig. 1). Within the framework of the nonlinear,

unsteady, reduced-gravity shallow-water equations on a

b plane, the dynamics of such a water anomaly is gov-

erned by the following system of equations:

›u

›t
1 u

›u

›x
1 y

›u

›y
� f y 5�g9

›h

›x
, (1)

›y

›t
1 u

›y

›x
1 v

›y

›y
1 fu 5�g9

›h

›y
, and (2)

›h

›t
1

›(hu)

›x
1

›(hy)

›y
5 0, (3)

where x, y are the zonal and the meridional spatial co-

ordinates, respectively; t is the time; u, y the vertically

averaged zonal and meridional components, respec-

tively, of the horizontal velocity; h the vortex thickness;

f 5 f0 1 by the Coriolis parameter; and g9 5 g(12r1/r2)

the reduced gravity.

We impose the following initial conditions on Eqs.

(1)–(3):

u 5 u0(x, y), y 5 y0(x, y), h 5 h0(x, y), t 5 0. (4)

Let us now choose the initial fields (4) so that they

represent a pulson of the first order (Cushman-Roisin

1987; Rubino et al. 1998), that is, a circular frontal an-

ticyclone of paraboloidal shape with radial as well as

azimuthal velocities that are both linear functions of the

vortex radius:

u 5
1

2
gf 0 cos FCx 1

1

2
f 0 � lC

� �
y, (5)

y 5� 1

2
f 0 � lC

� �
x 1

1

2
gf 0 cos FCy, and (6)

h 5 HC 1�C
x2 1 y2

W2

� �
, (7)

FIG. 1. Initial shape of the surface vortex on a b plane (circular

pulson of the first order). Here, h is the vortex thickness, and

r1 and r2 are the vortex and the ambient density, respectively.
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where

C 5
1

1 1 g sin F
, F 5 f 0t 1 f. (8)

In the previous expressions, H and W are, respectively,

the maximum vortex thickness and the vortex radius for

F 5 0. Note that the parameter g determines the vor-

tex’s oscillation strength, while u is the initial phase of

the vortex’s oscillations, and

l 5
1

2
f 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2 � 8Ro2

q
, Ro 5

ffiffiffiffiffiffiffiffiffi
g9H

p
f 0W

, (9)

where Ro is the vortex’s Rossby number.

Note that the expressions (5)–(8) are the known, ex-

act pulson solutions as obtained for an f plane by

Cushman-Roisin (1987). They are not valid on a b

plane. For further details about the pulson solution, the

reader is referred to the excellent paper by Cushman-

Roisin (1987).

For simplicity we set in the present investigation u 5

2p/2. Note that, at the sea surface, the vortex is boun-

ded by the movable outcropping circular line with os-

cillating radius described by x2 1 y2 5 W2/C. Because of

(9), moreover, the following inequality must be satisfied:

jgj # G, G 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8Ro2

p
. (10)

The vortex’s volume (Q), potential (P), and kinetic (K)

energy are

Q 5

ð
hdS, (11)

P 5
1

2
r1g9

ð
h2dS, and (12)

K 5
1

2
r1

ð
h(u2 1 y2)dS, (13)

where the integrals extend to the area of nonnegative

vortex thickness. The total energy of the vortex, which is

conserved, as no energy loss can occur in the inviscid

reduced gravity model, is thus E 5 K 1 P. In the case

of the pulson of the first order described by (5)–(7),

we have

Q 5
1

2
pHW2, (14)

P 5
1

6
pr1g9H2W2C, K 5 E� P, and (15)

E 5
1

24
p(1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 � g2

q
)r1f 2

0HW4. (16)

The previous formula indicates that the total vortex

energy is a function also of the vortex’s oscillation

strength g [see also Eqs. (5)–(7)]. Thus, given a vortex

having a certain average shape, its total energy is a

function of g only.

Equations (1)–(3) have been solved numerically using

a frontal numerical model similar to that presented by

Rubino et al. (2002) and Rubino and Brandt (2003), to

whose works the reader is referred for further details on

the implemented numerical techniques. In this model,

based on a staggered Arakawa C grid of 1200 3 1200

nodes having a grid spacing of 500 m, a special tech-

nique for the treatment of movable lateral boundaries is

implemented, which allows for vortex expansions, con-

tractions, and translations. On an f plane, the model is

able to reproduce accurately the nonlinear, unsteady

pulson dynamics. In Fig. 2, a comparison between pul-

son characteristics obtained analytically and simulated

numerically is presented. After 90 inertial periods, the

simulated vortex is still characterized by strong inertial

pulsations, while only about 10% of its initial total

energy is numerically dissipated, mostly as a result of

unavoidable inaccuracies emerging especially at the

vortex’s frontal line.

FIG. 2. Comparison between the analytical solution and a nu-

merical simulation referring to a circular pulson of the first order

on an f plane with r1 5 103 kg m23, g9 5 0.01 m s22, H 5 500 m,

W 5 150 km, g 5 0.05, and f0 5 258. (a) The temporal evolution of

analytical and numerical vortex thicknesses, and (b) the temporal

evolution of analytical and numerical normalized vortex total,

potential and kinetic energies.
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To explore aspects of the nonlinear, unsteady pulson

dynamics on a b plane, we first used, as the initial con-

ditions, the pulson solution with the following parame-

ters: r1 5 103 kg m23; g9 5 0.01 m s22; W 5 150 km;

central latitude f0 5 208, 258, 308, 358, and 408; and

20.1 # g # 0.1. Note that in our simulations the initial

thickness of the vortex H/(1 – g) was defined to be 500 m.

Given the selected vortex radius W, the whole vortex

diameter is resolved in 600 grid cells. The chosen initial

conditions do not represent an exact solution of the

model equations. Consequently, we expect an adjust-

ment phase to take place that is not dissimilar (but

weaker) from those induced, for example, by the im-

pulsive vortex release investigated by Csanady (1979)

and Rubino and Brandt (2003).

3. Vortex dynamics on a b plane

a. Motion of the center of mass

The coordinates of the vortex’s center of mass (X, Y)

are defined as

X 5
1

Q

ð
xhdS, Y 5

1

Q

ð
yhdS. (17)

The velocity translation of the vortex’s center of mass

can be derived by a temporal differentiation of (17)

using Eqs. (1)–(3) (see Ball 1963; Cushman-Roisin 1986):

dX

dt
5

1

Q

ð
hudS,

dY

dt
5

1

Q

ð
hydS. (18)

A temporal differentiation of (18) leads to the following

system of equations:

d2X

dt2
� f 0

dY

dt
5 F1,

d2Y

dt2
1 f 0

dX

dt
5 F2, (19)

where

F1 5
b

Q

ð
yhydS, F2 5�b

Q

ð
yhudS. (20)

If we suppose that the vortex’s velocity field should be

approximately in geostrophic equilibrium, that is,

u ’�g9

f

›h

›y
, y ’

g9

f

›h

›x
, (21)

then the integrals (20) may be written as

F1 5
bg9

2Q

ð
y

f

›h2

›x
dS 5 0 and (22)

F2 5
bg9

2Q

ð
y

f

›h2

›y
dS 5�bg9

2Q

ð
›

›y

y

f

� �
h2dS

’� bg9

2Qf 0

ð
h2dS. (23)

Let us assume now that the vortex’s deformations do

not essentially modify the quantity
Ð

h2dS, which is

proportional to the vortex’s potential energy [see Eq. (15)].

Note that, within the framework of frontal geostrophy,

such a quantity is exactly conserved (see Cushman-

Roisin 1986). With such an assumption, we can consider

F2 5 f 0Cb 5 const, Cb 5� bg9

2Qf 2
0

ð
h2

0dS , 0, (24)

where Cb is the vortex’s westward drift. In this case, the

westward drift of the vortex described by (5)–(7) is

Cb 5�bg9H

3f 2
0

, (25)

which corresponds, essentially, to the formulas found by

Nof (1981) and Cushman-Roisin (1986).

The system in (19) can be solved analytically. Due to

the axial symmetry of the vortex at t 5 0, the initial

conditions for (19) are [see also (18)]

X(0) 5 Y(0) 5 dX(0)/dt 5 dY(0)/dt 5 0; (26)

that is, the initial vortex drift vanishes. The general so-

lution of (19), using the assumptions from (21), (23), and

(24) and the initial conditions in (26), corresponds to

the cycloid

X 5
Cb

f 0

(f 0t � sin f 0t), Y 5
Cb

f 0

(1� cos f 0t). (27)

This solution for the trajectory of the vortex’s center of

mass was recently found by van Leeuwen (2007), while

Nof (1984) showed that such a trajectory can be fol-

lowed by an anomaly of dense water (deep cold eddy)

propagating along a sloping bottom.

Supposing that the vortex’s paraboloidal shape and

linear velocity field remain substantially preserved on a

b plane, we can find another approximation for the

trajectory of the center of mass of the vortex evolving on

a b plane. Substituting the analytical solution (5)–(7)

into (20), in fact, leads to

F1 5 a cos F, F2 5�a sin F� b and

a 5
1

12
bgf 0W2, b 5

1

12
bf 0W2(1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 � g2

q
). (28)
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In such a case, the solution of (19), with the initial

conditions from (26), can be written as

X 5� a

f 2
0

(1� cos f 0t � f 0t sin f 0t)� b

f 2
0

(f 0t � sin f 0t),

Y 5
a

f 2
0

(f 0t cos f 0t � sin f 0t)� b

f 2
0

(1� cos f 0t).

(29)

The previous formulas in (27) and (29) show that, on a

b plane, the oscillations of the center of mass of an

initially circular pulson of the first order resonantly

increase. Also, from the previous formulas, a non-

oscillatory vortex’s westward drift can be identified:

Cb 5
b

f 0

5� 1

12
bW2(1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 � g2

q
). (30)

According to (30), the vortex’s westward drift increases

for increasing oscillation amplitudes g and central lati-

tudes f0 (Fig. 3). For g 5 0, (30) takes the form

Cb 5� 1

12
bW2(1� G) , (31)

which corresponds to the westward drift of nonlinear

steady vortices of paraboloidal shape and linear velocity

fields, as found by Nof (1981). If the vortex’s Rossby

number is small, the approximation of (31) obtained

using the Maclaurin series expansion of (10) to the first

order coincides with (25). Thus, oscillating vortices mi-

grate faster than the corresponding nonoscillating ones,

and nonlinear vortices migrate faster than linear ones.

The expressions (29) and (30) address, for the first time,

the evolution of an oscillating eddy initially not adjusted

to the unsteady nonlinear b-plane equations.

Note that the expressions (29) and (27) can be con-

sidered to be referring to the initial stage and to a ma-

ture stage of the development of a circular pulson of

the first order evolving on a b plane. In Fig. 4 we present

a comparison between the analytical expressions (29)

and (27) and their counterparts obtained numerically

by solving the complete set of the unsteady, nonlinear

reduced-gravity shallow-water equations. The first stage

of the development of an initially circular pulson on a

b plane simulated numerically is, indeed, characterized

by an increase of the inertial oscillations marking the

route of its center of mass (Fig. 4a), which is derived from

the unbalanced vortex’s initial state on a b plane. As time

elapses, however, the simulated oscillation amplitude

decreases, and the simulated trajectory closely resem-

bles that obtained analytically under the assumption

of the existence of an almost geostrophic equilibrium

(Fig. 4b).

b. Frequency structure and westward drift

The modification of the spatial structure of an initially

circular pulson induced by the presence of the b effect

is evidenced in Fig. 5, where the numerical evolution of

its maximum thickness and of its center of mass are

delineated. Due to the b effect, an asymmetry in the

FIG. 3. Dependence of the vortex’s westward drift expressed by

(30) on vortex amplitude parameter g [0 # g # G(f0)] and on

central latitude f0: line 1, f0 5 208; line 2, f0 5 258; line 3, f0 5 308;

line 4, f0 5 358; and line 5, f0 5 408.

FIG. 4. Trajectory of the vortex center of mass as simulated

numerically (line 1) and as obtained analytically using Eq. (29),

line 2, and using Eq. (27), line 3. The trajectory depicted by line 2 is

obtained by inserting into Eqs. (19) and (20), expressing the evo-

lution of the vortex center of mass on a b plane, the exact structure

of a pulson (f-plane solution) as in the initial condition. The tra-

jectory depicted by line 3 is obtained assuming geostrophic ve-

locities in Eqs. (19) and (20). We refer to the situation depicted by

line 2 as being the ‘‘initial’’ stage and to that depicted by line 3 as

being the ‘‘mature’’ stage.
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meridional component of the vortex horizontal pressure

gradient develops to compensate for the variation of the

Coriolis parameter with latitude: The vortex shape will

be steeper on its poleward side than on its equatorward

side. Accordingly, the location of the simulated vortex

maximum depth is always found poleward of the sim-

ulated vortex’s center of mass (Fig. 5b).

Most noticeably, even the intrinsic temporal oscilla-

tory structure characterizing the circular pulson on an

f-plane experiences a profound transformation when

the vortex evolves on a b plane. In Fig. 6 the evolution

of the maximum thickness of an initially circular pulson

evolving on a b plane is depicted for five different

central latitudes, f0. In all the simulated cases, the ex-

actly inertial, monochromatic pulsation mode, charac-

teristic of the circular pulson dynamics, splits into a

bimodal structure, made of a superinertial and a sub-

inertial pulsation. Accordingly, a typical beat structure

develops, with amplifications and attenuations modu-

lated by the frequency difference between the two

modes, which is found to be a monotonically decreasing

function of latitude (Fig. 7).

A comparison between the westward propagation

described by the formulas of Nof (1981) and Cushman-

Roisin (1986) and that obtained numerically using our

frontal model is depicted in Fig. 8 for five different

central latitudes, f0. In general, the simulated translation

is faster than the one predicted by Eq. (25) but it is

slower than the one predicted for steady nonlinear

vortices, which translate with velocity (31).

The difference between the vortex’s westward drift

simulated numerically and that obtained analytically

(31) decreases with latitude. In particular, for a pulsa-

tion strength g 5 0.05, the relative average difference

spans from about 3% (f0 5 408) to about 10% (f0 5

208). Note that such differences would be even smaller

in the limit of vanishing numerical dissipation (see also

Fig. 2).

However, if we focus our comparison on the initial

stage of the vortex evolution on a b plane (Fig. 8b),

we recognize that the analytical nonlinear predictions

based on (31) and the obtained numerical results are

very similar, the average numerical drift being even

larger than the corresponding analytical one during the

first 10 days in the case of large central latitude.

FIG. 6. Temporal evolution of the maximum vortex thickness

for different latitudes: f0 5 (a) 208, (b) 258, (c) 308, (d) 358,

and (e) 408. Note that for all experiments g 5 0.05 and W 5

150 km.

FIG. 5. Temporal evolution of the (a) zonal x and (b) meridional

y coordinates of the maximum vortex thickness (line 1) and of the

vortex center of mass (line 2) for g 5 0.05 and f05 258 as obtained

numerically.
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4. Discussion and conclusions

In the present paper, for the first time, aspects of the

unsteady, nonlinear dynamics of geophysical frontal

vortices of the reduced-gravity shallow-water equations

evolving on a b plane have been investigated using an-

alytical theories together with the results of a frontal

numerical model. We found that an initially circular

geophysical frontal vortex having a paraboloidal shape

and horizontal velocities that are both linear functions

of the spatial coordinates (i.e., a pulson of the first or-

der) is profoundly transformed by the presence of the

b effect. The exactly inertial pulsations characterizing

the pulson dynamics can no longer survive on a b plane.

They are replaced by a bimodal pulse, namely, a super-

inertial and a subinertial oscillation leading to a beat,

whose period is found to be an increasing function of

latitude. Under the assumption that the vortex retains

substantially its initial pulsonlike structure, we found

analytically that it must develop resonant amplifications

of the oscillating position of its center of mass as a result

of its initially unbalanced state on a b plane. Such an-

alytical initial oscillations encompass a westward drift

expression that is a function also of the vortex oscilla-

tion strength g [see Eq. (30)]. The frontal numerical

model, which solves the complete set of nonlinear, un-

steady reduced-gravity shallow-water equations and is

prone to different decay processes like, for example,

numerical dissipation and filamentation, is able to sim-

ulate this initial analytical vortex evolution. Initially, the

simulated westward drift agrees very well with that pre-

dicted by Nof (1981) for nonlinear vortices [see Eq. (31)].

In the vortex’s mature stage of drift, however, the sim-

ulated westward drift decreases noticeably, possibly due

to the unavoidable dissipative effects inherent in the

complex numerics of the frontal model and to the de-

velopment of instabilities. The increasing difference

obtained between the found analytical solution (29) and

the corresponding numerical evolution of the vortex

center of mass (see Fig. 4 for small x) accounts for the

FIG. 7. Normalized frequency difference Dv/f0 between the su-

perinertial and subinertial frequencies of the vortex oscillations (1)

and the corresponding periods of modulation, Tmod 5 2p/Dv (2)

for g 5 0.05. The frequency difference is obtained by a Fourier

analysis of the time series of the maximum vortex thickness.

FIG. 8. Comparison between the westward drift of an initially

circular pulson of the first order on a b plane simulated numeri-

cally, line I, and that calculated analytically using (25), line II, and

(31), line III, at different central latitudes: f0 5 208 (lines 1), 258

(lines 2), 308 (lines 3), 358 (lines 4), and 408 (lines 5). (a) The ev-

olution on a 90-day temporal interval, and (b) the evolution of the

first 10 days. The calculations were performed using g 5 0.05 and

W 5 150 km.
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vortex adjustment toward an asymmetric structure: the

simulated position of its deepest point, for instance, is

found to be always located poleward of the simulated

position of its center of mass (Fig. 5b), which implies

that the vortex is steeper north rather than south of

its center. Such an asymmetry can be evinced also by

comparing the simulated shapes of a vortex evolving

on an f plane with those of an initially identical one

evolving on a b plane (Fig. 9). The differences between

these two shapes, as calculated by removing the vortex

drift with respect to its center of mass, show that, in

general, the vortex evolving on a b plane is deeper than

the vortex evolving on the f plane north rather than

south of the common center. Such a mass distribution

characteristic, which emerges immediately after an ini-

tially circular pulson of the first order starts to evolve on

a b plane (see Fig. 9a), seems to be a very robust feature:

it is well recognizable throughout the simulated vortex

evolution (Fig. 9b). To this distribution, which has a

counterpart in a similar asymmetry in the vortex ve-

locity field, can be ascribed the peculiar dynamical

properties of such vortices on a b plane.

Acknowledgments. This work was supported by the

International Bureau of the German Federal Ministry

of Education and Research (BMBF) under Contract

UKR 07/001.

REFERENCES

Ball, F. K., 1963: Some general theorems concerning the finite

motion of a shallow rotating liquid lying on a paraboloid.

J. Fluid Mech., 17, 240–256.

Benilov, E. S., 1996: Beta-induced translation of strong isolated

eddies. J. Phys. Oceanogr., 26, 2223–2229.

Csanady, G. T., 1979: The birth and death of a warm core ring.

J. Geophys. Res., 84, 777–780.

Cushman-Roisin, B., 1986: Frontal geostrophic dynamics. J. Phys.

Oceanogr., 16, 132–143.

——, 1987: Exact analytical solution for elliptical vortices of the

shallow-water equations. Tellus, 39A, 235–244.

——, E. P. Chassignet, and B. Tang, 1990: Westward motion of

mesoscale eddies. J. Phys. Oceanogr., 20, 758–768.

Dewar, W. K., 1988: Ventilating beta plane lenses. J. Phys.

Oceanogr., 18, 1193–1201.

Dotsenko, S., and A. Rubino, 2006: Analytical solutions for cir-

cular stratified eddies of the reduced-gravity shallow-water

equations. J. Phys. Oceanogr., 36, 1693–1702.

Firing, E., and R. C. Beardsley, 1976: The behavior of a barotropic

eddy on a b-plane. J. Phys. Oceanogr., 6, 57–65.

Flierl, G. L., 1977: The application of linear quasigeostrophic

dynamics to Gulf Stream rings. J. Phys. Oceanogr., 7,

365–379.

——, M. E. Stern, and J. A. Whitehead Jr., 1983: The physical

significance of modons. Dyn. Atmos. Oceans, 7, 233–263.

Graef, F., 1998: On the westward translation of isolated eddies.

J. Phys. Oceanogr., 28, 740–745.

Killworth, P. D., 1983: On motion of isolated lenses on a beta–

plane. J. Phys. Oceanogr., 13, 368–376.

Larichev, V. D., 1984: Intergral properties of localized eddies on

the beta plane. Izv. Atmos. Ocean. Phys., 20, 654–658.

McDonald, N. R., 1998: The time-dependent behaviour of a

spinning disc on a rotating planet: A model for geostrophical

vortex motion. Geophys. Astrophys. Fluid Dyn., 87, 253–272.

Nycander, J., 2001: Drift velocity of radiating quasigeostrophic

vortices. J. Phys. Oceanogr., 31, 2178–2185.

Nof, D., 1981: On the b-induced movement of isolated baroclinic

eddies. J. Phys. Oceanogr., 11, 1662–1672.

——, 1983: The translation of isolated cold eddies on a sloping

bottom. Deep-Sea Res., 30, 171–182.

FIG. 9. Difference between the interface position of a vortex evolving on a b plane and an

initially identical one evolving on an f plane for (a) t 5 2 h and (b) t 5 60 days of simulation

time. Such differences have been calculated by removing the vortex drift with respect to its

center of mass for the following vortex parameters: r1 5 103 kg m23, g9 5 0.01 m s22, H 5 500 m,

W 5 150 km, g 5 0, and f05 408. Note that the difference is plotted only for regions where the

thicknesses of both vortices are larger than 100 m.

JUNE 2009 R U B I N O E T A L . 1493



——, 1984: Oscillatory drift of deep cold eddies. Deep-Sea Res., 31,

1395–1414.

Reznik, G. M., and W. K. Dewar, 1994: An analytical theory of

distributed axisymmetric barotropic vortices on the b plane.

J. Fluid Mech., 269, 301–321.

——, and R. Grimshaw, 2001: Ageostrophic dynamics of an in-

tense localized vortex on a beta plane. J. Fluid Mech., 443,

351–376.

Ripa, P., 1997: ‘‘Inertial’’ oscillations and the b-plane approxi-

mation(s). J. Phys. Oceanogr., 27, 633–647.

Rubino, A., and P. Brandt, 2003: Warm-core eddies studied by

laboratory experiments and numerical modeling. J. Phys.

Oceanogr., 33, 431–435.

——, and S. Dotsenko, 2006: The stratified pulson. J. Phys.

Oceanogr., 36, 711–719.

——, P. Brandt, and K. Hessner, 1998: Analytical solutions for

circular eddies of the reduced-gravity, shallow-water equa-

tions. J. Phys. Oceanogr., 28, 999–1002.

——, K. Hessner, and P. Brandt, 2002: Decay of stable warm-core

eddies in a layered frontal model. J. Phys. Oceanogr., 32,

188–201.

van Leeuwen, P. J., 2007: The propagation mechanism of a vortex

on the b plane. J. Phys. Oceanogr., 37, 2316–2330.

Warren, B. A., 1967: Notes on translatory movement of rings of

current with application to Gulf Stream eddies. Deep-Sea

Res., 14, 505–524.

1494 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 39


