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Along with a conventional Eulerian representation
of equations of hydrodynamics (see {1, Chapter 1]), the
Lagrangian or combined Eulerian-Lagrangian descrip-
tion is often used in studies of waves in flows (see, for
exampie, (2, 3)). In this paper, a special version of the
Eulerian-Lagrangian representation is suggested; this
results in a considerable simplification of the boundary
conditions and especially of the equations that define
both the acoustic and the acoustic—gravity internal and
surface waves of small amplitude against the
background of the three-dimensionally nonuniform
flow. A specific choice of dependent variables for the
description of the wave field was presented as a result
of an analysis of the acoustic quantitics that are invari-
ant [4—6] with respect to the interchange of the detector
and the source of sound under the condition of the
simultaneous and global reversal of the direction for the
velocity vector of the flow unperturbed by the wave. A
crucial feature of the proposed approach is the concept
of the oscillatory displacement of the fiuid particles,
which is introduced below.

1. THE OSCILLATORY DISPLACEMENT
OF PARTICLES
Let a fluid particle at the initial moment #, be located
ata point ryand at the moment ¢ > #, be located at a point
1{(?). The Lagrangian characteristic of the fluid motion, i.e.,
the displacement of the particle & (£} = r(z) — r, is treated
as a function of the Eulerian coordinates r and time 2.
We expand the displacement a and the velocity of par-

ticles
e (%‘)ro - [.aa-twv)a(r,:) (1)

in powers of a dimensionless small parameter € propor-
tional to the wave amplitude: ¥ = vg + v + O(g?), and
a =a,+a+ O(e?). Here, ayand v, are the displacement
and velocity of a'particle in the absence of the wave and
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v and a are proportional to €. We consider the flow not

disturbed by the wave as a steady-state one: % =0.

By equating the terms of the same order in £1in (1), we
obtain

day, d_23 -
Yy = —dt R E=$+ VOV, (2)
_da
v = dt-t»(vV)ao. (3)

In particular, if the fluid-particle velocity in the flow not
disturbed by the wave does not vary along the flow line,

d
., if 270 =0, then ag = vo(f — tg) and (3) takes the form

dt
v= da (1=t} (vV)v 4
dt 0 0

1t follows from (3) and (4) that the particle-displace-
ment disturbance a induced by the wave has both peri-
odic and aperiodic (the latter increases with time) com-
ponents if the flow is nonuniform and the wave features
a periodic time dependence of the oscillatory velocity v.
In particular, these components expressed as complex
quantities vary with time, according to (4), as exp{—iw¢)
and (¢ — to)exp(—ie?), respectively, for a harmonic wave
d Yo
i 0.

We represent & as the sum of the periodic (w) and
secular (W) components: a = w + W, Relationship (3)
is valid if

of frequency  under the condition that

v _(wVvy )

dr
W = (wV)a, (6)

When the state of the medium not disturbed by the
wave is specified, &y is the known function of the coor-
dinates and time, which makes it possible to separate
a(r, 1) uniquely into the components w and W at any
point r. Thus, the vector function w has a clear physical
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meaning: it is an observable quantity, and, generally
speaking, can be measured direct'y.

Equation (5) allows one to calculate easily the oscil-
latory velocity v provided the oscillatory displacement
w of the particles is known. This equation admits an
obvious interpretation, namely, the disturbances of the
fluid flow, to a first-order approximation in the wave
amplitudes, are caused by the variation of oscillatory
displacement with time and also by periodic dispiace-
ment of particles from the undisturbed trajectory into
the region with a differing magnitude of v, provided the
undisturbed flow velocity varies in the direction of w.

2. THE LINEARIZED EQUATIONS
OF HYDRODYNAMICS

We now consider the small-amplitude oscillations of
a multicomponent compressible fluid with respect to an
undisturbed steady state, which is characterized by the
flow velocity vg, pressure p,, density po, and the sound
velocity ¢;. The fluid is placed into the uniform
gravity field and is subjected to no other extraneous
forces than those related to the wave sources. We ignore
the diffusion of impurities and treat all the thermody-
namic processes in the medium (both in the undis-
turbed state and in the presence of waves) as adiabatic.
In other words, the fluid is assumed to be perfect
(see [1, § 2]). We do not impose any restrictions on the
spatial dependence of vy, pg, Po and ¢, apart from the
assumption that these functions obey the relevant non-
linear equations of hydrodynamics.

The Euler and continuity equations linearized with
respect to the wave amplitude are of the form (see [4,

§ 4.1

dv Vp . 9 F
—+(vV)vp = ——= + EVpy+ —, (7
dt ( ) 1] po pg PO po )

‘% + pdiv vy + div(peV) = PoA. ®)

Here, p and p are the wave-induced disturbances of the
pressure and density in the medium, and A and F are the
volume densities for the sources of the volume velocity
and of the extraneous wave-generating forces [formally
speaking, the quantities A and F should be considered
to have the order of O(g)]. It is noteworthy that the grav-
ity force affects equations (7} and (8) conly indirectly,
i.e., via the parameters of the undisturbed medium.

Expressing v in terms of oscillatory displacements w
and using the continuity equation

d .
—d?“"podlv"'o =0

for the undisturbed flow and the identities that follow
from (5)

divy = (%)divw—(wV)divvo, )
_(d _ dQ
wQ = (a—t)wVQ w9, (10)

where (Xr, ?) is an arbitrary smooth function, we can
easily rewrite equations (7) and (8) in the form

dw dva  Vp p F

— - (WV)— = —& + EVpy+—, 11

dr’ & T T o e, “
dar,. p+wVpo]
= di | = A. 1
dt[ vW+ o A (12)

The total pressure p =pg +p + O(¢?) in a multicom-
ponent medium is a function of the density p = pg+
p + O(€?) of the medium, the entropy density § = S, +
S + O(e?), and the impurity concentrations X = K +
K+ 0(?):

p = ®(p, 5, K), (13)

with py = ©(py, Sp, Ky). It follows from (13) that
Vpo = caVpo+aVSy+p, VK, (14)
p= c§p+aS+ B,K,, (15)

where cg = (g—gz)s . is the sound velocity squared,

_ al'*‘o) _ (aPu
*= (aSD Pm‘o, BJ - aKoj)p,S.,Ko,.:‘tj'

Hereafter, summation over the repeating indices is
implied.

By virtue of the assumption that the processes are
adiabatic, the entropy density does not vary in the fluid
particles:

3 —o)z
(m+vV)S =0 16)
and, as a result, -
dSy _ ds _
- =0 3 +vVS, = 0. an

1t follows from (17) and (10) that g—t-(wVSo +5)=0.

In what follows, we assume that ‘;—? =0,iff B=0for

any characteristic B of the field, which is linear with
respect to the wave amplitude. The physical sense of
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this assumption lies in the fact that the frequency of the
wave in the coordinate frame related to the fluid particle
does not vanish on any flow line. This assumption is
undoubtedly valid provided that there are no points of
synchronism in the medium (see [7, § 9.4]) in the vicin-
ity of which, a resonant interaction between the wave
and the flow is possible.

Thus, due to the adiabaticity condition, we can write
wVS,+5=0. (18)

According to the condition of the absence of diffusion
of impurities and using reasoning similar to that
employed in the derivation of (18), we obtain

(wY)K,+K = 0. (19)
Equalities (14), (15), (18), and (19) yield
p+wVp, = ca(p +wVpy). (20)

To a linear approximation with respect to the wave
amplitude, relationship (20) may be treated as the equa-
tion of state of the fluid. In contrast to forms of the lin-
earized equation of state for a three-dimensional inho-
mogeneous compressive moving fluid, which have
been used in previous publications (see [7, § 1; 8, § 4;
13;9, § 8.6; 10, Chapter 1]; erc.), relationship (20) does
not contain any new [as compared to the Euler and con-
tinuity equations (11) and (12)] unknown values or
additional thermodynamic characteristics of the
medium, apart from the adiabatic sound velocity.
A direct examination demonstrates that equation of
state (20) is consistent with all available published
results in special cases considered previously. These
are the plane-laminar or cylindrical-laminar fiow in a
three-dimensionally nonuniform liquid [11]; the geom-
etry-related acoustic and caustic asymptotic character-
istics of the acoustic field in an arbitrary inhomoge-
neous moving medium {4, § 5.1 and § 6.2; 12]; and
propagation of sound along a smoothly irregular
waveguide in a moving medium (see [4, § 7.3]).

When the parameters vy, ¢q, fp., and pg of the undis-
turbed state of the flow are specified, relationships (11),
(12), and (20) form a closed system of equations in p,
p and w that are the characteristics of the wave field.
This system admits further simplification. Eliminating
p by employizz (20) and the Euler equation for the
undisturbed flow, we obtain

2
d +wV
po—vz—v+Vp—p—-—'2—p°VPo+(Wv)VPD = F, (21)
dt Poc
1[divw+ N_WY_M] = A. 22)
dt P c2
[

If there is no source of volume velocity (A =0}, equa-
tion (22) makes it possible to express p in terms of w
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and to use (21) to obtain a vector wave equation in
terms of oscillatory displacement:
d'w .
po—3 +(divw + wV)Vp,
dt (23)

- V(WV py+ pocodivw) = F.

It is noteworthy that the flow velocity v, appears in
(21)—(23) only via the operator d/dt.

It should be emphasized that all the mathematical
manipulations with the linearized equations of hydro-
dynamics, which were described in this Section, remain
valid also in the case of an unsteady moving medium
only if the dependent variable w continues to be related
by formula (5) to the wave-induced disturbance of the
fluid flow.

3. LINEARIZED BOUNDARY CONDITIONS

Let the flow be bounded by a surface, which is
immovable when there is no wave, impernieable for the
fluid, and, in the general case, deformable. Let the sur-
face T" of the boundary not disturbed by the wave be
defined by the equation f(r) = 0, where fis a smooth
function. Furthermore, let £> 0 in the vicinity of I and
outside the volume occupied by the fluid. We will dem-
onstrate that the wave-induced normal displacement 1
of the boundary and the normal component of the
oscillatory displacement of fluid particles, which was
introduced in Section 1, are equal to the first-order
approximation in the wave amplitude:

n=wN, rel. (24)

Here, N=n/n is the unit outward normal to " and n = Vf.

For substantiation, we resort to the kinematic rela-
tionships (4, § 7.3.2]:

vN =0, vN= %—nN(NV)vo. reT, (25)

which express the equality of the normat (to the bound-
ary) components of the flow velocity and the boundary
velocity, respectively, in the presence of the wave and
outside of the presence. According to (5) and (25),

d = = —
[E—N(NV)vo]t—D, t=wN-1, (26)

where
D = w(vyVIN + vo(wN)(NV)N - vo(wV)N.
Taking into account that N(v,V)N = 0 and introducing
the vector q = w — N(wN), we cbtain
D = n'[q(vo¥)n - vo(qV)n] = 0.

In the general case, equation (26) with a nonzero
right-hand side has the nontrivial solutions t(r, #).
However, for T # 0, the projection of the phase retarda-
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tion of the wave on the direction v, must be equal to the
reciprocal of the flow velocity at the boundary. At the
same time, the logarithmic derivative of the amplitude
should be proportional to N(NV)v, Again, as in
Section 2, by excluding from consideration the cases of
synchronism between the wave and the flow, we use
(26) to obtain T =0, i.e. equality (24).

We will ignore the surface tension. We assume that
the boundary is of a locally responsive (impedance)
type, and, in the case of the small-amplitude oscillations,
the normal velocity is proportional to the variations of the
fluid pressure on the surface:

an _ _p(r+nN, 1) - po(r}
ot &(r)

Here, { has the meaning of the boundary impedance.
In the case of monochromatic waves, the quantity {
may be considered as a function of frequency ®. In the
case Yp,=0, which is typically considered in acoustics,
relationship (27) is reduced to a conventional definition
of the impedance boundary [4, § 7.3.2].

Linearizing (27) with respect to €, taking into
account that %—? = 0, and using (24), we obtain the

boundary condition on the locally responsive surface:

+0(@%), rel. @D

gN‘p;—‘;’af p+(WN)(NVp,) =0, rel. (28)

In the limiting cases as { — 0 and { — o, equation (28)
generates the following conditions:

p+(wN)(NVp) =0, reT; 29
wN=0, reT, (30$)

for, respectively, free and perfectly rigid boundaries.
These conditions can be easily derived directly from
the definition of such boundaries.

The linearized boundary conditions on the interface
between two moving fluids can be derived using (24)
similarly to the derivation of relationship (28). These
conditions correspond to the requirement for the func-
tions wN n p + (WN)(NVp,) to be continuous on the
surface T

In [13, 14], the boundary condition was derived
for monochromatic acoustic waves on the impedance
surface of an arbitrary shape under the assumption
that Vpy = 0. It is easy to verify using (5) that this
boundary condition, within its domain of applicability,
is consistent with a more general result (28). However,
this result does not contain any spatial derivatives of the
characteristics of the wave and, as such, is more conve-
nient in the application-oriented studies.

The above-presented new version of the mixed
Eulerian-Lagrangian description of small-amplitude
oscillations of an inhomogeneous moving flow makes

possible a marked advance in studies of the general
rroperties of waves. In particular, it presents an easy
derivation of the reciprocity relationships and of the
law of conservation of the pseudoenergy of waves
under conditions of arbitrary flow. '
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