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The role of methane in the global bio-geo-system is one of the most important issues of present-day research.
Cold seeps, where methane leaves the seafloor and enters the water column, provide valuable evidence of
subsurface methane paths. Within the New Vents project we investigate cold seeps and seep structures at the
Hikurangi Margin, east of New Zealand. In the area of Opouawe Bank, offshore the southern tip of the North
Island, numerous extremely active seeps have been discovered. High-resolution seismic sections show a
variety of seep structures. We see seismic chimneys either characterised by high-amplitude reflections or by
acoustic turbidity and faults presumably acting as fluid pathways. The bathymetric expression of the seeps
also varies: There are seeps exhibiting a flat seafloor as well as a seep located in a depression and small
mounds.
The images of the 3.5 kHz Parasound system reveal the near-surface structure of the vent sites. While high-
amplitude spots within the uppermost 50 m below the seafloor (bsf) are observed at the majority of the seep
structures, indicating gas hydrate and/or authigenic carbonate formations with an accumulation of free gas
underneath, a few seep structures are characterised by the complete absence of reflections, indicating a high
gas content without the formation of a gas trap by hydrates or carbonates. The factors controlling seep
formation have been analysed with respect to seep location, seep structure, water depth, seafloor
morphology, faults and gas hydrate distribution. The results indicate that the prevailing structural control
for seep formation at Opouawe Bank is the presence of numerous minor faults piercing the base of the gas
hydrate stability zone.
© 2009 Elsevier B.V. All rights reserved.
1. Introduction

Focused fluid flow in marine sediments is a worldwide phenom-
enon. Although it has been the subject of numerous recent studies all
over the world, it is not yet really understood (e.g. Eichhubl et al.,
2000; Berndt, 2005; Dupré et al., 2007). In particular, the impact of
methane release at the seafloor on the global carbon cycle is still under
debate (Judd et al., 2002; Etiope and Klusman, 2002; Etiope et al.,
2007). Seabed methane escape occurs at coasts (estuaries, bays,
drowned valleys, deltas, etc.), continental shelves (faults, breached
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antiforms, salt diapirs), continental slopes and rises, deep oceans and
convergent plate boundaries (Judd, 2003). Topographic expressions of
fluid expulsion at the seafloor range from build-ups (mud volcanoes,
carbonate mounds) to depressions (pockmarks) (Mazurenko and
Soloviev, 2003; Berndt, 2005). In general, the distribution of fluid
seeps is controlled by buried underlying features such as major faults,
polygonal faults, salt diapirs, erosional surfaces and palaeo-channels
(Gay et al., 2007). Fluid expulsion has been inferred as a factor in slope
instability (Collot et al., 2001; Lewis et al., 1998; Cochonat et al., 2002).
Furthermore, a link between methane seepage and gas hydrate
reservoirs has been discussed by several authors (e.g. Mazurenko and
Soloviev, 2003; Gay et al., 2007).

In this study, we focus on seep structures at the Hikurangi Margin,
offshore New Zealand. Within the New Vents project, a number of
active seeps have been discovered at Opouawe Bank (Greinert et al.,
this issue; Klaucke et al., this issue; Schwalenberg et al., this issue;
Krabbenhoeft et al., this issue). The main objectives in investigating
these seeps are the relation between seep locations and gas hydrate
deposits, indicated by a bottom simulating reflection (BSR), and to
understand their structural control on the observed seep structures,
their seafloor topography, their location and the subsurface fluid
pathways. In order to distinguish between the seeps as a seafloor
submarine methane seeps: Seismic evidence from Opouawe Bank,
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phenomenon and their subsurface signature as observed in the
seismic sections, the subsurface phenomenon will be called ‘seep
structure’. It will be indicated where a seeps structure can be un-
equivocally linked to a seep observed at the seafloor.

2. Geological setting

The authors refer to Barnes et al. (this issue) for a detailed de-
scription of the geological background and a tectonic map as well as
Greinert et al. (this issue) for an overview of the multidisciplinary
cruises undertaken in 2006 and 2007 to Opouawe Bank. The following
comprises only a brief introduction to the area. The research area is
located at the Hikurangi Margin, on the continental slope (Fig. 1). The
Hikurangi Margin, off North Island and the southern tip of South
Island, New Zealand, is the southernmost expression of the Tonga–
Kermadec subduction zone of the SW Pacific. In this part, the
subduction started at about 21 Ma (Field et al., 1997). Because of the
movement of the rotation pole of the Pacific Plate the subduction is
highly oblique (e.g. Robinson, 1986; Walcott, 1987; Collot et al., 1996).
Plate convergence decreases southwards along the margin until at
~42°S strike-slip motion dominates and subduction occurs no more
(e.g. Reading et al., 2001).

Barnes and Mercier de Lépinay (1997) identified and dated 8
sedimentary horizons in deep water in the area around the south-
Fig. 1. Map of study area. The location is shown in the inset. Annotated arrows indicate the
(after Barnes and Mercier de Lépinay, 1997). Black lines indicate multichannel seismic profi
Fig. 10) are indicated by white circles. Profile numbers and OBS numbers are annotated. Bath
are marked in the map by grey stars. Seep Structures discussed in this paper are indicated
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eastern tip of the North Island. They derived an accumulation rate of
compacted sediment of 0.65 mm/a for the Quaternary trench fill in
front of the wedge. A sedimentation rate of 0.42 mm/a is assumed for
the time between 0.8 Ma and 2 Ma and a rate of 0.3 mm/a between
2 Ma and 5 Ma.

Gas hydrate occurrences at the Hikurangi Margin have been in-
vestigated by several authors (e.g. Katz,1981,1982; Pecher et al., 2004,
Pecher et al., 2005). An extensive BSR has been observed along the
entire margin (Townend 1997). Lewis and Marshall (1996) were the
first to collate evidence of seep faunas, bubble plumes, and seabed
carbonate chimneys and mats from around New Zealand and to relate
them to tectonic setting. Pecher et al. (2004) have investigated the
coexistence of gas hydrates and gas conduits for seeps within the gas
hydrate stability zone (GHSZ) at the Hikurangi Margin and postulated
ample methane supply at these venting systems. Faure et al. (2006)
analysed seeps and BSR occurrence in Rock Garden offshore Hawke's
Bay and found that gas hydrates are probably a controlling factor for
seepage and seafloor stability along the Hikurangi Margin. Kvenvol-
den and Pettinga (1989) analysed two onshore seeps near Hawke's
Bay. They demonstrated that gas compositions of both seeps are
different from geothermal gases, proving that they are not influenced
by volcanic-related geothermal processes and thus do not originate
from great depths. By calculating thermal gradients from the BSR
depths at Rock Garden using different gas compositions, Faure et al.
direction and amount of plate motion, half arrows indicate transform/strike-slip faults
les. Black circles mark OBS locations, the five OBS stations used for migration (compare
ymetry was acquired from Simrad system during cruise SO190. Previously known seeps
by white triangles.

submarine methane seeps: Seismic evidence from Opouawe Bank,
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(2006) concluded that the gas composition of the offshore seeps is
most probably not puremethane. A composition similar to the average
of 21 onshore seeps (96% CH4, 2.6% CO2, 1.1% ethane, 0.3% propane,
3.5% NaCl) analysed by Giggenbach et al. (1993) is more likely. The
same compositionwithout propane is also possible according to Faure
et al. (2006). Pecher et al. (2005) found evidence at Rock Garden and
Ritchie Banks for the composition without the propane fraction.
However, no detailed studies have been made of the gas composition
of gas hydrates at Opouawe Bank, although hydrates were recovered
in 2007 (Schwalenberg et al., this issue).

Heat flow estimates at the central Hikurangi accretionary prism
reveal average values around 45 mW/m2 (Townend, 1997, Henrys
et al., 2003). Local anomalies are found on the crest of anticlines
(reduced heat flow values) and on steep flanks (high values). The
surface heat flow reveals anomalies of up to 10 mW/m2 where the
bathymetry exhibits steep slopes (Henrys et al., 2003).
3. Materials and methods

The data of this study were collected during cruise SO191-1 with
the German research vessel RV SONNE in 2007. Six multichannel
seismic (MCS) reflection lines between 14 and 20 km length were
recorded in the research area (Fig. 1). The profiles were recorded with
a 4-channel streamer of 36 m active length, a group distance of 12 m
and amaximum source–receiver offset of 83 m. The sampling ratewas
chosen as 1 ms. The source was a single GI-Gunwith a volume of 250/
105in3, which was operated in harmonic mode. The shot interval was
Fig. 2. Line P035 MCS profile; original above, interpretive line drawing below. The grey sh
reflection (BSR), where observed, is shown by a filled double line.

Please cite this article as: Netzeband, G.L., et al., The structures beneath
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14 s, which corresponds to an average spacing of about 22 m for a ship
speed of 3 kn.

The recordings were sorted for commonmid-points (CMPs) with a
CMP spacing of 20 m, then stacked and band pass filtered with passing
frequencies between 16 and 120 Hz. Because of the short offset, a
velocity analysis could not be performed. A time migration was
applied with a constant migration velocity of 1500 m/s. During data
acquisition, the pre-amplifier of the data recorder was temporarily not
working properly, which resulted in overamplification of the seafloor
reflection and of some other samples, especially on line P036. These
over-amplified blocks were removed where possible, leaving ‘smileys’
in the migrated section (e.g. 7.3 km, 8.5 km, 11 km, 11.3 km, 13.2 km).

Parasound data were acquired along all profiles. The onboard
Parasound system worked with a frequency of 3.5 kHz, hence the
shallow sediment sequences are better resolved than in the MCS
sections due to the higher source frequency. However, the penetration
depth is limited to a few tens of meters. Furthermore, a deep-towed
Edgetech DW-216 chirp subbottom profiler (SBP) was operated in a
frequency range of 2–8 kHz providing penetration depths of up to 50 m.

In addition to the MCS lines, 16 ocean bottom seismometers (OBS)
were deployed in the working area (Fig. 1). The OBS data were
acquired simultaneously with the MCS profiles thus having the same
source parameters. All of the ocean bottom instruments worked
flawlessly and recorded data. The sampling rate of the OBSs was 1 ms.

The OBS stations 22, 23, 26, 27 and 28 were positioned along MCS
line P035 with a spacing of 200–430 m. The hydrophone components
of these stations were used to develop a 2D velocity-depth model. The
modeling was performed with the software package rayinvr of Zelt
aded columns indicate evidence of subsurface seep plumbing. The bottom simulating
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and Smith (1992). A forward modeling technique was applied first. Its
result served as the starting model for the inversion algorithm of
rayinvr. For comparison, the MCS section was depth converted with a
1D velocity-depth function derived from the final rayinvr model near
OBS site 23. The result was then plotted together with the velocity
model.

The samewide angle datawere used for Kirchhoff depth migration
(Zillmer et al., 2005). Thedata of each stationweremigrated separately
and subsequently concatenated into one image. The velocity model,
whichwas used for themigration, consisted of 1D-sections taken from
the inversion model at OBS site 23.

4. Observations and results

The seismic profiles P035 and P036 and a number of sections
showing seep structures in detail are described in the following.

4.1. Seismic profiles P035 and P036

The seismic profiles P035 and P036 (Figs. 2 and 3) show a BSR at
about 0.6 s below the seafloor (bsf), which is interrupted at a number
of seep structures. Between these seep structures, the BSR level is
characterised by several high-amplitude reflections, which are
interpreted to coincide with the base of the gas hydrate stability
zone (BGHSZ). On P035, the BSR is visible in the SW, on the first 4 km
and also towards the NE between 13 km and 15 km. As expected, it
runs parallel to the seafloor, except for the first km of the seismic line,
where the seafloor abruptly changes its gradient, while the BSR keeps
Fig. 3. Line P036 MCS profile; original above, interpretive line drawing below. The grey sh
reflection (BSR), where observed, is shown by a filled double line.
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a constant dip angle, which indicates recent slumping. Below the BSR,
only a few weak reflections are observed at the southwestern end of
the line. Above the BSR, the reflections are subparallel to the seafloor.
At some locations, the reflections change their dip angle with depth,
e.g. from southwest of the seep structure at 4 km or near 8 km. At the
northeastern end of line P035, the reflection pattern becomes
hummocky. Significant faults are not observed, but a number of
small fractures can be found throughout the line (Fig. 2). Multiple
small fractures occur at seep structures, where they are generally
accompanied by upward bending of adjacent reflections.

On line P036 (Fig. 3), the BSR is more pronounced than on P035,
especially towards the SW, but also occurs intermittently between the
seep structures, where it may occur as several high-amplitude
reflections. Below the BSR, very few reflections are visible in the SW,
which is in striking contrast to the NE end of line P036, where
reflections up to 1.5 s bsf arewell resolved. The stratigraphic pattern in
the central part of the line is subparallel to the seafloor, as in P035. The
dip angle varies along the line and also with depth. Towards the NE,
the stratigraphy becomes more regular, while to the SW, hummocky
clinoforms dominate. Here, the seafloor is irregular and is locally
steeper than the BSR. Several seep structures are observed, with
varied appearance. In the following, seep structures with different
characteristics are described in detail.

4.2. Seep structures

At Seep Structure A (Fig. 4), which feeds seep Takahe, a seismic
chimney of approx. 100 mwidth is observed beneath a flat seafloor at
aded columns indicate evidence of subsurface seep plumbing. The bottom simulating
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Fig. 4. MCS Seismic image and interpretive line drawing of Seep Structure A on P035.
The seismic chimney with its acoustic wipe-out is marked by the area shaded in light
grey. The dark grey denotes the region of enhanced reflections above the base of gas
hydrate stability zone (BGHSZ). The BHGSZ itself is marked by the black-and-white line.
Faults and fractures are indicated.
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about 9.3 km. The reflections from beneath the seafloor down to the
BSR level are suppressed. In general, the reflections are quite even,
almost horizontal, and more or less follow the seafloor. However, in
the vicinity of the chimney, the reflections are bent upwards. At the
top of the chimney, right beneath the seafloor, a single high-amplitude
reflection appears. The BSR level is characterised by several patchy
high-amplitude reflections in a corridor between 1.9 and 2.1 s, except
for the northeastern flank of the chimney, where these reflective
patches occur as shallow as 1.7 s. There is evidence of a fault at this
seep structure, which can be traced down to at least 2.8 s, but shows
no expression at the seafloor. The Parasound image (Fig. 5a) shows a
very confined increase in reflection amplitude in the first 10 m bsf,
followed by a spot of reduced amplitude in the next 10 m. In the entire
zone of Seep Structure A (9.2–9.5 km), the reflection amplitude below
20 m bsf is strongly reduced.

At Seep Structure B a short seismic chimney of approx. 200 m
width is observed (Fig. 6), beginning at about 0.1 s bsf and terminating
in a small mound rising about 5 m above the seafloor. The chimney is
characterised by the absence of reflections. A zone of strong
reflections surrounds this chimney. A fault can be traced from about
2.0 s bsf up to the seafloor, piercing the mound at its southwestern
flank. Also a few small fractures occur. The reflections at the BSR level
(1.9–2.0 s) look patchier and more disrupted than at Seep Structure A
(Fig. 4). Southwest of the seep structure, the stratigraphy is
characterised by weak hummocky reflections, while to the northeast,
the reflections below 1.5 s appear quite irregular. The Parasound
image (Fig. 5b) shows only slightly reduced reflectivity in the upper
10 m bsf, but reflections below 10 m bsf are suppressed at the seep
site.

At Seep Structure C, there seem to be three seeps at the seafloor
(Fig. 7). One located in the center of to a depression 25 m deep and
600 mwide, one on the flank and one on top of the bathymetric high.
The latter two terminate inmounds of roughly 5 m in height. Only two
Please cite this article as: Netzeband, G.L., et al., The structures beneath
Hikurangi Margin, New Zealand, Mar. Geol. (2009), doi:10.1016/j.marge
seeps are observed on the seafloor, Tieke and Tui (Figs. 1 and 3).
Beneath the dome, two vertical seismic chimneys are indicated by
reduced reflection amplitudes, both accompanied by faults, which can
be traced below the BGHSZ. Compared to other seep structures (Figs. 4
and 8), the reflections at the BGHSZ (approx. 1.6–1.7 s TWT) appear
relatively weak, not stronger than the reflections above. Thus a BSR is
not identifiable. The stratigraphy on the upper 0.3 s bsf seems almost
undisturbed while the deeper reflections are contorted near the seep
structures. The third seep seems to be supplied by a chimney, dipping
at only ~6° to the SW (assuming a velocity of 1500 m/s). This seems to
be associated with a normal fault. In the Parasound section, bright
reflection patches appear at the seafloor at all three identified seep
locations, accompanied by reduced reflection amplitudes underneath
(Fig. 5c).

At Seep Structure D (Fig. 8) a small area of reduced amplitude is
observed beneath a small mound of about 8 m height. A typical seismic
chimney reaching down to the BGHSZ is not visible. At 7 km, the seismic
section reveals a seep structure. Reflections are shifted upwards and a
bright reflection appears rightbeneath theflat seafloor. Thepatchyhigh-
amplitude reflections at the BGHSZ appear particularly disrupted
beneath the seep location. Unlike the seismic image, there is almost
no indication of a seep structure next to the mound in the Parasound
image (Fig. 5a). Only the reflection at about 20 m bsf is slightly
enhanced. But beneath the mound, all reflections are absent and only a
single strong reflection occurs at 30 mbsf. The SBP image (Fig. 9) gives a
more detailed view of both structures. Around 6.5 km, beneath the
mound, not only blanking is observed, but a high-amplitude reflection at
approx. 25 m bsf. This high-amplitude reflection exhibits two small
summits, one at 6.4 km, the other at 6.7 km, both elevated by approx.
4 m. To the NE, two stratigraphic reflections are observed at 15 m bsf.
Beneath the seep structure at 7 km, these reflections are partly obscured
by high-amplitude reflections, rising from the reflection up to 10 m bsf.

The Kirchhoff depthmigration of 5 OBS sections at seep structure D
on P035, around profile km 7 (Fig. 10) confirms the interpretation
from the MCS section. Reflections are blurred or contorted near the
seep structure around profile km 7. A very pronounced fault becomes
evident between 7.3 and 7.4 km. Steep low-amplitude reflections can
be seen on both flanks of the seep structure. Below the mound at
6.5 km, nothing conspicuous is observed in the upper 400 m bsf, only
a vertical jump in the reflections below occurs. Further information on
the seep structure is provided by the velocity field (Fig. 11). Beneath
the mound, the velocity is reduced from 1.6 to 1.7 km/s to only
1.5 km/s. There is no significant velocity anomaly at the seep structure
at 7 km.

4.3. BSR and heat flow

A BSR appears on all profiles except P034. Where it is not
continuously observed, it has been interpolated on the assumption
that the high-amplitude reflections at the BSR level mark the BGHSZ.
This interpolation provided a continuous basis to calculate heat flow
(Fig. 12). Heat flow values have been calculated using the software
CSMHYD (Sloan, 1998) to calculate thermal gradients. The thermal
gradients were then multiplied with a thermal conductivity. The
depth-dependent thermal conductivity was estimated on the basis of
the calculations of Townend (1997) using the same parameters
(2.8 W/mK as matrix conductivity and 0.6 W/mK as the conductivity
of water) and then taking the average of the resulting conductivities,
1.2 W/m K. We assumed the gas composition determined by
Giggenbach et al. (1993) from the analysis of 21 onshore seeps and
favoured by Faure et al. (2006) for the Rock Garden area (96% CH4,
2.6% CO2, 1.1% ethane, 0.3% propane, 3.5% NaCl corresponding to
Structure-II-hydrate). However, it should be noted that the general
trend of heat flow values does not show much difference if Structure-
I-hydrate or pure methane hydrate is assumed. The calculated values
range between 40 and 55 mW/m2, increasing with decreasing water
submarine methane seeps: Seismic evidence from Opouawe Bank,
o.2009.07.005
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Fig. 5. Parasound images of seep structures. Note the vertical exaggeration (VE=24). a) Seep Structure s A and D on line P035. The image of Seep Structure A is partly disturbed by an
acquisition artefact. Note the difference of the reflection characteristics underneath both seep structures. b) Seep Structure B on line P036. Note how the reflection pattern changes
near the seep. c) Seep Structure C on line P036. Sediment layers, as observed near 13 km, are not resolved below the three prominent reflection patches.
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depth, except for the SW parts of e.g. P036, where we see evidence of
slumping.

5. Discussion

In general, seep structures as observed in the study area can be
pathways for overpressured pore fluids generated by sediment com-
paction or pathways for free gas, i.e. methane and higher hydrocarbons.
We have measured significant methane concentration at some seeps
Please cite this article as: Netzeband, G.L., et al., The structures beneath
Hikurangi Margin, New Zealand, Mar. Geol. (2009), doi:10.1016/j.marge
(Faure et al., this issue; Krabbenhoeft et al., this issue; Sommer et al., this
issue) and recordedflares in thewater column above some of the 9 seep
at Opouawe Bank studied in detail. The presence of a BSR indicates that
there is gas hydrate and thus a sufficient supply of methane to form the
hydrate. Below the BSR, and below the reflection band marking the
BGHSZ near the seep structures, we observe a noticeable signal
attenuation. E.g. in the NE of P036 (Fig. 3), where neither seeps nor
BSR occur, the seismic section shows a sediment package of more than
1.5 s TWT, while in the central parts of this line, and also in the central
submarine methane seeps: Seismic evidence from Opouawe Bank,
o.2009.07.005
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Fig. 6. MCS Seismic image and interpretive line drawing of Seep Structure B on P036.
The regions of acoustic blanking are marked by the areas shaded in light grey. The dark
grey denotes the region of enhanced reflections above the BGHSZ. The BHGSZ is marked
by the black-and-white line. Faults and fractures are indicated.

Fig. 8. MCS Seismic image and interpretive line drawing of Seep Structure D on P035.
Note the absence of a seismic chimney with acoustic wipe-out. The dark grey denotes
the chimney-like region of enhanced reflections and upward bulging above the BGHSZ.
The BHGSZ is marked by the black-and-white line. Faults and fractures are indicated.
The interpretation of a gas pocket at about 6.5 km is supported by Figs. 5a and 9.
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part of P035 (Fig. 2), the reflectivity is strongly reduced below the
BGHSZ. This suggests a large gas accumulation below the BGHSZ.

We observe shallow, patchy high-amplitude reflections at a number
of seep structure s (e.g. Seep Structures A, C, D), which could be asso-
Fig. 7.MCS Seismic image and interpretive line drawing of Seep Structure C on P036. The regio
are indicated. Note the slant chimney/fault plane, which is marked by a dashed black line.

Please cite this article as: Netzeband, G.L., et al., The structures beneath
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ciated with carbonate crusts linked with methane flow. They could also
originate from gas hydrate lenses formed in situ, from the interface
between gas hydrate and free gas beneath. We therefore suppose that
ns of acoustic blanking aremarked by the areas shaded in light grey. Faults and fractures
The BHGSZ is marked by the black-and-white line. Faults and fractures are indicated.

submarine methane seeps: Seismic evidence from Opouawe Bank,
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Fig. 9. Subbottom Profiler image of Seep D on P035. Note the same vertical resolution (24) as in the Parasound sections (Fig. 5). Besides the vertical gas migration (white arrows),
there are also indications of near-horizontal migration. The reduced reflection amplitude beneath the seafloor at about 6.5 km is interpreted as a gas pocket, while the reflection patch
in 1100 m depth is interpreted as buried carbonate. This would be impermeable to uprising fluids, which suggests that the gas transport to the shallow gas must come from the side.
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all the observed seep structures represent conduits for methane gas,
although additional pore water may also be involved.
5.1. Occurrence of seep structures in the subsurface

28 seep structures in the subsurface have been observed on all six
profiles, which cover about 150 km2. This corresponds to roughly
18seeps/100 km2. Since this is only a 2D survey, this is a minimum
value. The seepage activity of an area cannot be deduced from the seep
Fig. 10. Depth migrated seismic image of Seep Structure D based on five OBS sections.
These sections were migrated separately and subsequently combined into one image, the
individual sections aremarked bywhite numbers. A prominent fault appears in this image
at km 7.3–7.5, marked by the dashed white line. Smaller faults or fractures revealed by a
vertical offset, indicated by the solid white lines. The arrows mark reflections, interpreted
as a possible gas migration path, sloping up towards the seep structure and crossing the
BGHSZ, which is marked by the black-and-white lines.
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density alone, because the size of the seeps can vary by orders of
magnitude (Hovland et al., 2002) as well as the venting intensity (e.g.
Eichhubl et al., 2000). However, the concentration of seep structures
places Opouawe Bank among the most active methane venting fields
in the world, comparable with e.g. the Lower Congo Basin, where Gay
et al. (2007) found 20 pockmarks per 100 km2 in a 3D seismic survey.
Almost half of the seep structures detected geophysically at Opouawe
Bank have been identified by multibeam, multibeam backscatter and
sidescan (Greinert et al., this issue; Klaucke et al., this issue). Five sites
have been identified as actively releasing gas (Greinert et al., this
issue).Several more showed signs of recent seepage activity 10 m
below the mudline, which is below the seismic resolution. The dif-
ference in resolution is also the explanation for the different number
of seep structures found e.g. in the seismic sections (this paper) and in
the sidescan data (Klaucke et al., this issue) of Opouawe Bank.

The great variety of seep structures and their seafloor morphology
at Opouawe Bank requires an analysis of the possible mechanisms
controlling the structure and appearance of the seeps. Conceivable
controlling factors are water depth, fault and fold structures, gas
hydrate and free gas reservoirs and dip of stratigraphic layers.

Elsewhere, seeps occur in a great range of water depths (Rollet
et al., 2006), from a few tens of meters (e.g. Schroot et al., 2005) to
over 2000 m (e.g. Greinert et al., 2006a,b). In the Lower Congo Basin,
most seeps occur in water depths greater than 550 m, which
corresponds to the outcropping of the BGHSZ at the seafloor (Gay
et al., 2007). This indicates a link between gas hydrate occurrence and
seepage. Since the entire research area of our study lies well within a
water depth in which gas hydrates are potentially stable, a relation
between seep distribution and water depth could not be established.
Nevertheless, there seems to be a relation between BSR occurrence
and seep sites. The data of this study show a disrupted BSR at seep
locations, while Hustoft et al. (2007) show gas chimneys with an
intact BSR underneath, as well as gas chimneys with an apparent
disruption of the BSR. Gay et al. (2007) present seismic sections where
the BSR is deflected upwards beneath a seep by about 15–20 m. The
fact that the BSR is disrupted at all seep structures in our seismic
sections, may be attributed to the limited resolution of the data.
Hustoft et al. (2007) and Gay et al. (2007) showed 3D-data sets with
higher lateral resolution. But even where the BSR is very clear, e.g. in
the SW of line P036 (Fig. 3), it terminates right at a seep structure,
then continues and terminates at the next seep structure. This
suggests a disturbance at the BGHSZ rather than a mere imaging
effect. Thus, the existence of a seep structure appears to be coupled to
submarine methane seeps: Seismic evidence from Opouawe Bank,
o.2009.07.005
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Fig. 11. Depth converted seismic image of Seep Structure D, overlain by the 2D-velocity field obtained from the same five OBS Sections in this figure. The OBS numbers are annotated.
The velocity field, note the scale below, was derived by the raytracingmethod of Zelt and Smith (1992). A single layer with a velocity gradient was assumed between the seafloor and
the BGHSZ. Note the low velocities beneath the seafloor between OBS 26 and OBS 27.
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the absence of the BSR. This could imply that the rising fluids inhibit
the formation of gas hydrates by perturbing the temperature field, as
suggested by Pecher et al. (2005).

Several workers (Eichhubl et al., 2000; Gay et al., 2006; Rollet et al.,
2006) have suggested a relation between fluid venting and buried
channels or between slumping and fluid venting (Eichhubl et al., 2000;
Cochonat et al., 2002). We observe a buried paleo-canyon on lines
P033, P034, P035, P036, but no evidence of seepage on its flanks on either
of these lines (Figs 2 and 3). There are also several indications of
slumps in the study area with no evidence of seep structures, e.g. at the
SW (0–4 km) of P036 (Fig. 3). The estimated heat flow is slightly en-
Fig. 12. Heat flowmap of the studyarea. Black lines indicatemultichannel seismic profiles.
The BSR has been picked on all line, except P034 and interpolated between observed
occurrences. Heat flow has then been calculated based on the BSR depth bsf with the
programCSMHYD(Sloan,1998) andusing anaveraged thermal conductivity of 1.2W/mK.
Note the slight increase in heat flow at the SW ends of lines P031, P032 and P036.
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hanced in this area (Fig. 12). This indicates that the BSR has not yet
adjusted to the new seafloor depth and is still too shallow. Hence the
slumpingmust have occurred relatively recently, probablywithin the last
few 1000 years. However, there is no indication of seep structures within
the slump area, the BSR being clear and continuous.

Another factor considered here for seep formation is the dip of
stratigraphic layers. The near-horizontal migration of gas along
stratigraphic layers towards the seafloor has been described e.g. for
the area off Peru (Pecher et al., 2001; Netzeband et al., 2005), off
Angola (Gay et al., 2007) and at the Hikurangi Margin (Lewis and
Marshall, 1996; Pecher et al., 2004). This layer-parallel fluid migration
is expressed in seismic anomalies by high-amplitude bright spots or a
phase reversal. A phase reversal is not found in any of our profiles, but
bright spots occur not only where we expect the BGHSZ, but also
in shallower depths. We infer that, although there may be some
migration along gently dipping stratigraphic layers, it is not a major
factor in seep formation in this area.

Finally, seeps in other areas have been related to structural features
such as faults, polygonal faults and anticlines (e.g. Loncke et al., 2004;
Schroot et al., 2005; Léon et al., 2006; Hustoft et al., 2007). The seismic
records provide only limited penetration below the BGHSZ, so that an
analysis of deeper structures is difficult. A relatively prominent anticline
is observed in the SWon line P035 at about 2.5 s TWT roughly between
1 km and 4 km (Fig. 2) and on P036 at 4 km, the top of the anticline at
approx. 2.0 s TWT (Fig. 3). This feature is not accompanied by increased
seep density and none of the seeps observed in this study is located near
the top of this anticline. Structural faults are largely absent in our seismic
records, which complies with the findings of Barnes et al. (this issue).
They show major thrust faults north and south of Opouawe Bank, but
only small faults beneath the bank itself. Hencewe propose that deeper
structures and faults do not play a role in the distribution of seeps on
Opouawe Bank, although they might generally contribute to the
methane supply. Small faults or fractures are observed in the vicinity
of every identified seep structure. They sometimes reach the seafloor
and sometimes stopwell beneath it (Figs. 4, 6–8). It is possible that these
faults continue out of plane, but this cannot be resolved. The faults
submarine methane seeps: Seismic evidence from Opouawe Bank,
o.2009.07.005
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usually pierce the BGHSZ and hence present pathways for fluids rising
from below into the BGHSZ. This mechanism has been described by
Sibson (1992) as fault valve behaviour. If the hydrostatic pressure at the
BGHSZ reaches the lithostatic pressure, the overpressure can be released
through a fault or crack and free gas can rise into the GHSZ.

We conclude that all seep structures are correlated with small
faults, which provide a path into the BGHSZ and further up to the
seafloor. They present the dominant factor in the formation of seeps at
this part of the Hikurangi Margin.

5.2. Tui and Tieke area

A different setting apparently exists at the area around the seeps
Tui and Tieke imaged on line P036 (Figs. 3, 5c, 7). The bathymetric
depression shows an acoustically high-reflective center (Fig. 5c),
probably related to seep Tieke. The enhanced reflectivity is probably
related to authigenic carbonate precipitation (Bialas et al., 2007). A
single prominent fault impinges at the seafloor at an anticline on
P036, Seep Structure C (Figs. 3 and 7). This feature is slightly different
from other seeps in the research area. Firstly, this is the only seep in
the study area located in a depression, even if this depression is
located on the top of Opouawe Bank. Secondly, the fluid supply seems
to be along a path dipping at only 6°, instead of through a vertical
chimney. This oblique path probably represents a fault; reflections
show an offset at the fault plane. It can be traced clearly to a depth of
1.6 s TWT, but a further continuation down to 1.9 s TWT, which
corresponds to the BSR level, seems plausible. Thus, this fault probably
serves two purposes. Firstly, it serves as a fluid path to the seafloor.
Secondly, the formation of the depression is probably caused by
movement of the blocks. The methane concentration measured at this
seep site was the highest in the entire area (Krabbenhoeft et al., this
issue), hence the low dip of the fault does not reduce the rate of
venting.

5.3. Appearance of seep structures

We see varying appearances of seep structures in the study area:
We see small mounds, seep structures terminating in a flat seafloor
(Fig. 4), seismic chimneys with acoustic blanking (Figs. 4, 6), and
high-amplitude reflections between the BGHSZ and the seafloor
(Figs. 4, 6, 8). Léon et al. (2006) also observed different fluid escape
structures in the Gulf of Cadiz. They found mud volcanoes, carbonate
mounds and pockmarks. They postulated a different origin for the
different structures: mounds are built up during slow rates of venting,
while the pockmarks are formed during episodic events of gas hydrate
dissociation. An episodic event of hydrate dissociation as assumed by
Léon et al. (2006) is very unlikely since the depth of the BGHSZ is at
least 300 m bsf in the study area. Hence, the different seep structures
must have a different origin.

The high-amplitude reflections at the seafloor and in the upper
25 m of the sediment observed in the Parasound can be attributed to
carbonate concretions. They could also be attributed to gas hydrate
depositions or the interface between gas hydrate and free gas,
respectively. Visual seafloor observations have shown massive sedi-
mentation at Tui and Tieke (Bialas et al., 2007).We thus surmise that the
high-amplitude patches at the seafloor are caused by authigenic
carbonates. Hence, we infer that the small mounds observed at Seep
Structures B and D can also be attributed to carbonate formations, so
that a seep at a flat seafloor is probably young, having not yet formed a
carbonate crust.

But what about the strong reflections at 10 m bsf (Seep Structure
A) and 25 m bsf (Seep Structure D)? Are they caused by carbonates as
well or by shallow gas hydrate, or a combination of both as suggested
for pockmarks in the northern Congo Fan by Sahling et al. (2008)?
Since massive carbonates have been observed at the seafloor, it seems
likely that carbonate has been generated for a long time and has been
Please cite this article as: Netzeband, G.L., et al., The structures beneath
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buried in the course of time. Authigenic carbonates can be formed
below the seafloor, but usually at depth of less than a few meters
(Bayon et al., 2007; Luff et al., 2004). Therefore the high-amplitude
reflections we see at Seep Structures A, C and D (Figs. 5 and 9) at
depths of up to 25 m are probably buried, old carbonate crusts, from a
previous time of seep activity.

In the Lower Congo Basin, Gay et al. (2007) found evidence of
episodic seep activitywith 29% of the seeps they found proved presently
inactive. If indeed the strong reflections are from buried authigenic
carbonate crusts, then they were probably buried during an inactive
phase. However, continuous activity and carbonate formation, along
with continuous sedimentation is also possible and would explain a
horizontally very confined (max. 100 m wide) carbonate cementation
reaching down 10 m bsf as seen at Seep Structure A. According to Luff
et al. (2004), for the formation of carbonate crust, a relatively slow (20–
90 cm/a) but pervasive (100–500 years) upward flow of methane-
charged (N50 mM CH4) fluids is necessary. High sedimentation rates
(N0.5 mm/a), in contrast, inhibit crust formation. We do not have
information about the exact sedimentation rate on Opouawe Bank, but
on the Bank it was probably rather low. For a continuous precipitation of
the carbonate crust at Seep Structure Awith amaximum sedimentation
rate of 0.4 mm/a, a persistent methane flux with the required velocity
and concentration for at least 25,000 years would have been necessary.
A possibly more realistic scenario could be a succession of carbonate
precipitation phases with short breaks inbetween.

The mound at Seep Structure D (Fig. 8) represents another setting
with its cementation at 25 m depth (Figs. 5a and 9) and gas accumu-
lation below the seafloor, evidenced by the low velocity (Fig. 11). The
highly reflective seafloor, noticeable in high-resolution profiles (Fig. 9),
could indicate a thin carbonate crust right at the seafloor, which could
serve as a seal for the gas beneath it. This process is called self-sealing
(Hovland, 2002). The buried crust indicates previous activity of this
seep. Either the sedimentation rate at this seep increased above that
conducive to carbonate formation, or the seepage rate or methane
concentration has decreased.
5.4. Coupled seeps?

The close proximity of some seeps, as observed at Seep Structure C
and Seep Structure D poses the question whether these seeps
represent individual seeps or coupled systems of fluid transport.
Berndt (2005) describes a scenario, inwhich the fluids are transported
through a dense net of polygonal faults which are confined to a certain
layer. Above this layer, fluid migration proceeds in individual pipes.
Gay et al. (2006) describe a fluid flow pattern, where the migrating
gas accumulates beneath a gas hydrate seal marked by a BSR. Then the
gas rises through a highly faulted interval along these faults. Both
authors delineate a setting, in which gas is transported up to a certain
level, where it accumulates, before it continues to the seafloor. On
P035 and P036, a broad accumulation of gas beneath the BGHSZ is
indicated by the noticeable signal attenuation. The individual pipes
only appear above the BGHSZ. Hence a coupling of fluid paths below
this level is most likely. But the ascending bright spots we see within
the GHSZ at Seep Structure A and D (Figs. 4 and 8) could also mark
such levels where gas is temporarily trapped. Fig. 10 shows a more
detailed image of Seep Structure D, the steep reflections crossing the
BGHSZ could be associated with rising fluids. It is conceivable that gas,
which has crossed into the GHSZ through small faults and fractures,
accumulates at the bright spots and feeds the chimneys rising above
these bright spots. Thus, the seeps at Seep Structure D would be partly
coupled, up to the shallowest bright spot in about 300 m bsf. A much
more shallow coupling also seems feasible (Fig. 9). Gas could rise
vertically through the seep structure at 7 km until about 40 m bsf
and then migrate SW at a low angle of maybe 4° to the gas pocket at
6.5 km.
submarine methane seeps: Seismic evidence from Opouawe Bank,
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6. Conclusion

Within the New Vents project, Opouawe Bank has been proven a
very active seep area. Locations of seep structures are linked to the
absence of a BSR, because rising gas probably inhibits gas hydrate
formation by perturbing the temperature field. Almost vertical small
faults represent the main structural control on the focused fluid flow
in the area of Opouawe Bank. They act as a gas conduit through the
BGHSZ to the seafloor. However, the Seep Structure C (Seep Tieke)
presents an exception. Its formation is probably controlled by a slant
fault (6°), which is likely to act as a fluid pathway to the seafloor. The
small mounds we see above some of the seep structures are attributed
to authigenic carbonates. A flat seafloor at a seep site is inferred to
represent a younger vent history. The buried carbonate crust of Seep
Structures A, C and D accordingly relates to a previous time of seep
activity, showing that the study area has a history of methane venting.
Seeps can be interlinked below the seafloor or at the bright spots
levels, when gas crosses into the GHSZ through small faults and
fractures, accumulates at these bright spots and rises through separate
chimneys above.
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