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Summary

The fjords of Kiel Bight have been inhabited for centuries and thus exposed to long-term

anthropogenic influence. The fjords have restricted water exchange as reflected in periodical

hypoxia. Overall, the fjords have a high buffer capacity accumulating organic matter and

metals in sediments. The sediments contribute to the supply of recycled nutrients for

phytoplankton, but they also may be a source of toxic compounds for benthic organisms. The

deoxygenation of sediments leads to a diminution of the benthic fauna and a breakdown of the

food chain. Therefore, the sediments reflect the state of the local marine system and present a

valuable tool for the assessment of the environment, at present time and for the past.

The objective of this study was to determine whether anthropogenic activity over the last

century has left the traces in the sediments of Kiel and Flensburg Fjords where sewage

discharge, shipyards, and harbours are of major importance. Further questions addressed were

how the anthropogenic impact superimposes over the natural variations in Kiel and Flensburg

Fjords, and what the main factors controlling the accumulation of pollutants are. To

investigate these questions, surface and core sediments were analysed to recover the spatial

and temporal distribution and accumulation of organic matter and trace metals in the fjords.

This study revealed that the type of sediments and depositional regime are the main

controls of organic matter and trace metals distribution in the fjords. Secondary factors are the

gradient of primary productivity, from the inner to the outer fjord, as well as oxygenation of

near-bottom water and sediments. Anthropogenic influences appear to be less significant than

these factors.

The accumulation of organic matter and trace metals occurs in the inner areas of the fjords.

The reasons for that is the depositional regime in the inner fjords where the most intense

anthropogenic discharge occurs. Anthropogenic activity does not affect the outer fjords. The

only source of exception is the influence of coastal protection measures on cliff erosion and

the sediment supply in depositional areas.

In general, the conditions in the fjords are mesothrophic to slightly eutrophic, except for

the highly eutrophied innermost Flensburg Fjord. The remediation of the fjords after the

cessation of enhanced nutrient input takes more than several decades. Anoxic conditions
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promote denitrification, which favours the loss of nitrogen, but the input of nutrients remains

high because of redeposition and resuspension of sediments under the shallow water depth.

High concentrations of metals, such as copper and zinc are associated with zones of

sediment accumulation in the inner fjords. Only tin, derived from antifouling paints, exhibits

extremely high concentrations and only in harbours. Concentrations of lead in the sediments

had decreased during the last decades due to the ban on gasoline lead additives.

The enrichment of metals and organic matter for the last 70 years in a core from the outer

Kiel Fjord is not clearly apparent due to changes in sedimentation rate and the observed

upward coarsening of the sediments. Elevated fluxes of trace metals fell during the 1930s,

when the harbours and shipyards flourished in Kiel Fjord. An increase of sewage discharges

in the 1940-1970s is recorded in the core as the accumulation of organic carbon and nitrogen.

The downcore distribution of redox-sensitive metals showed that no drastic changes in the

oxygenation of near bottom water and sediments have occurred in the outer Kiel Fjord, in

contrast to the inner fjord.

In spite of expanding anthropogenic activity, its influence is not so pronounced as

originally expected and what influence is seen is veiled by natural variability. However,

anthropogenic effects are significant for the input of nutrients and acceleration of the natural

eutrophication which finally lead to seasonal near-bottom anoxia.
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Zusammenfassung

Die Förden der Kieler Bucht werden seit Jahrhunderten bewohnt und durch die Menschen

langfristig beeinflusst. Der eingeschränkte Wasseraustausch der Förden mit der Kieler Bucht

verursacht regelmäßigen Sauerstoffmangel. Die Förden sind wichtige Puffersysteme und

akkumulieren organische und anorganische Verbindungen in den Sedimenten. Die Sedimente

setzen wiederum Nährstoffe für das Phytoplankton durch den Abbau der organischen

Substanz and außerdem Schadstoffe frei, die die Bodenfauna beeinträchtigen. Die

Sauerstoffzehrung in den Sedimenten kann zur Abnahme der Bodenfauna führen und die

schließlich Nahrungskette zerstören. Dadurch können die Sedimente den Zustand der ganzen

Ökosysteme widerspiegeln, und sind sie deshalb gute Indikatoren des Ökosystems.

Das Ziel dieser Arbeit ist zu prüfen, ob die anthropogen Aktivität während der letzte

Jahrhunderte ihre Spüren in den Sedimenten der Kieler and Flensburger Förde hinterlassen

hat, besonders weil die Abwässer, Werften und der Havenbetrieb dort von wichtiger

Bedeutung sind. Die weitere Frage ist, wie sich der anthropogene Einfluss und die natürlichen

Variationen überlagern, und welche Faktoren die räumliche und zeitliche Verteilung und

Akkumulation von organischen Stoffen und Spurenmetallen kontrollieren.

Die Ergebnisse dieser Untersuchung haben gezeigt dass der Sedimenttyp und das

Sedimentationsregime die Verteilung von organischen Substanz und Metallen in den Förden

regulieren. Der Gradient der Primärproduktion von der Innen- zum Außenförde sowie die

Sauerstoffanreicherung im bodennahen Wasser und im Sediment sind von untergeordneter

Bedeutung. Die anthropogen bedingte Belastung folgt diesen Faktoren ebenfalls.

Die Akkumulation der organischen Substanzen und Spurenmetalle tritt in den innern

Abschnitten der Förden auf, wo die Sedimentation vornehmlich stattfindet, und die

anthropogene Belastung konzentriert ist. Die anthropogene Aktivität wirkt auf die

Außenförden nicht in diesem Maße ein. Die einzige Ausnahme sind die

Küstenschutzmaßnahmen. Sie reduzieren die Kliffserosion und ändern dadurch die Zufuhr

von Sedimentationsmaterial in die Ablagerungsräume.

Die Stoffumsatz charakterisiert die Förden als mesotroph bis leicht eutroph mit Ausnahme

der stark eutrophen inneren Flensburger Förde. Die Sanierung der Förden nach der Reduktion

der Nährstoffbelastung braucht voraussichtlich noch mehrere Jahrzehnte. Der
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Sauerstoffmangel fördert die Denitrifizierung und den Stickstoffverlust, aber die

Nährstoffzufuhr ist immer noch hoch wegen der Umlagerung aus den geringen Wassertiefen.

Erhöhte Spurenmetallkonzentrationen von Kupfer und Zink sind mit den

Sedimentationsräumen in der Innenförden verbunden. Zinn, das von den Antifoulingfarben

herstammt ist, führt zu überaus hohe Gehalten in den Hafensedimenten. Dagegen haben die

Bleigehalte in letzen Dekaden abgenommen, vor allem wegen des Verbots von Blei-

Additiven in Benzin.

Die Anreicherung von Spurenmetallen und organischer Substanz während der letzten 70

Jahre ist in einem Kern aus der äußeren Kieler Förde nicht eindeutig wegen der

Schwankungen in der Sedimentationsrate und einem deutlichen Trend zur

Sedimentvergröberung in jüngster Zeit. Die erhöhten Spurmetallenflüsse während der

dreißiger Jahre fielen in eine Zeit, als der Hafen und Schiffbau florierten. Der Anstieg der

Abwässerbelastung zwischen 1940 und 1970 ist ganz deutlich in der Sedimentären

Überlieferung an akkumulierte organischen Kohlenstoff und Stickstoff zu sehen. Die

Verteilung von redoxsensitiven Metallen im Kern hat gezeigt dass es zu keinem langzeitigen

Sauerstoffdefizit in der äußeren Kieler Förde während der letzten Jahrhunderte gekommen ist,

im Gegensatz zur Innenförde.

Obwohl die anthropogene Aktivität zugenommen hat, ist der Einfluss des Menschen nicht

ausgeprägt und wird durch die natürliche Variabilität in den Förden verschleiert. Nur die

Nährstoffbelastung, die zu einer Verstärkung der natürlichen Eutrophierung führt, ist ein

schwerwiegender anthropogener Effekt in der Kieler und Flensburger Förde.
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Introduction

The Baltic Sea has been exposed to anthropogenic activity for centuries and at the same

time it is highly vulnerable due to the restricted water exchange, long water residence time

and overall weak circulation in this marginal sea. The most affected areas in the Baltic Sea are

coastal zones where natural variability and anthropogenic activity interfere. Coastal areas

themselves present a complex system with gradients in chemical composition, complex

hydrodynamic processes, low salinity and oxygen content (Bonsdorf et al., 2002). The high

productivity and restricted water exchange lead to natural eutrophication and hypoxia of near-

bottom waters. Moreover, nutrients, metals and persistent organic compounds are discharged

here. Hence, the coastal areas are also sink of pollutants.

The anthropogenic influence on the Baltic Sea have become significant since the Medieval,

but the impact was in the frames of the capacity of the system to regenerate through self

cleaning of water and sediments. Only at the end of nineteenth century, the establishment of

industry and the growth of towns enhanced the impact to a level, which could not be

overcome by the ecosystem. The shallow, partially enclosed Kiel and Flensburg Fjords in the

south-western Baltic Sea are a good example for such long-term interaction of humans and

nature.

The city of Kiel expanded rapidly in the 19th century with the foundation of the shipyards.

The growth of city and the development of agriculture in the surroundings increased the

amount of wastewater entering Kiel Fjord (Gerlach, 1996). The elevated levels of nutrients

promoted a strong eutrophication with increasing anoxia in the near-bottom waters. Similar

processes occurred in Flensburg Fjord (Rheinheimer, 1970). Before the Second World War,

the establishment of Navy harbours in Kiel Fjord and intensive activity of shipyards

introduced the amount of metals such as copper and zinc. Later, in the 1960s, antifouling tin-

based paints and anticorrosive coatings containing lead and cadmium were widely used in

civil and marine harbours (Biselli et al., 2000; Förstner, 1980). The sewage discharges and

combustion of fossil fuel also contribute to the metal pollution (Förstner, 1980; Schneider,

1987).

The intensified eutrophication and deterioration of environments in Kiel and Flensburg

Fjords in the 1940s concerned the inhabitants and authorities. This resulted in the construction
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and putting into operation a central sewage plant with an outlet in the outer Kiel Fjord in

1972, and the intensifying of wastewater treatment in Flensburg Fjord. These measures led to

a partial improvement of environmental conditions in both fjords.

The discharged nutrients, particulate organic matter and metals, are accumulated in the

sediments. Therefore, sediments reflect the integrated characteristic of the marine

environment at present time and in the past (Salomons and Förstner, 1984; Harff, 1997). The

concentrations of metals in sediments are not dangerous in themselves, but through the bio-

accumulation, they can become toxic for benthic organisms and finally find their way into the

food chain (Rheinheimer, 1998). Besides the toxicity of sediments, declining bottom water

oxygen has negative effects on benthic fauna too (Rosenberg et al., 1991; Nilsson and

Rosenberg, 2000). The sediments also play an important role in the supplying of recycled

nutrients to the phytoplankton that is more pronounced in the shallow fjords than in the open

sea (Zeitschel, 1980). The study of undisturbed sediments may reveal the processes of

distribution, accumulation, and remediation in the system in a retrospective.

This study has an objective to look whether an anthropogenic activity was really

significant for the functioning of Kiel and Flensburg Fjords, and whether it has left the

footprints in the sediments of the fjords. By that, the natural settings and variability of the

fjords were taken into account. The study was performed at different time scale using surface

sediments deposited during the last five to ten years, and a sediment core covering the past

couple of hundred years. The main factors influencing the distribution of organic matter and

metals were discussed, and the role and degree of anthropogenic impact was estimated.

Chapter 1 considers the surface sediments of Kiel Fjord in order to discover a current

trend in distribution of organic matter, as a measure of primary production and eutrophication,

and trace metals sourced from shipyards and traffic. The sampling of surface sediments was

performed on seasonal scale. It makes possible to trace how the development of a spring

bloom is reflected in the sediment composition. According to the depositional regime, several

zones were distinguished by the metal pollution. To answer the question what is more

important for benthic organisms – anthropogenic pollution or natural fluctuations in salinity

and oxygen, benthic foraminiferal distribution and species composition were studied.

Chapter 2 concerns the monitoring of changes in the sediment composition on a decadal

scale. In Flensburg Fjord, the surface sediments were investigated at the same locations as in

1972, that was before the significant decrease of sewage discharges. The relationships
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between organic matter and trace metals accumulation, hydrography and sediment properties

allow to discern the processes governing the remediation of still eutrophied Flensburg Fjord.

To trace the environmental changes in the region of Kiel Bight on a multidecadal scale, a

sediment core from the outer Kiel Fjord was examined (Chapter 3 and 4). The chronology of

sediments and the determination of sedimentation rates is an integral part of the core studies.

The dating of recent sediments is, however, complicated due to the application of different

methods. Chapter 3 describes and discusses the chronological model developed for this core.

The distribution of organic matter, trace and redox-sensitive metals together with grain-size

composition as referred to this scale (Chapter 4) allowed to attribute the variations of

sediment components to certain anthropogenic activities or natural events in the fjord. The

changes in organic matter reflect the trophic status of the area. Trace metals mirror the

pollution history, whereas redox-sensitive metals help to reconstruct the near-bottom water

and sediment oxygenation.

The principal results of this study are summarized in Conclusions.
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Abstract 

The living benthic foraminiferal assemblages in Kiel Fjord (SW Baltic Sea) were 

investigated in the years 2005 and 2006. The faunal studies were accomplished by 

geochemical analyses of surface sediments. In general, sediment pollution by copper, zinc, tin 

and lead is assessed as moderate in comparison with levels reported from other areas of the 

Baltic Sea. However, the inner Kiel Fjord is still exposed to a high load of metals and organic 

matter due to enhanced accumulation of fine-grained sediments in conjunction with potential 

pollution sources as shipyards, harbours and intensive traffic. The results of our survey show 

that the dominant environmental forcing of benthic foraminifera is nutrients availability 

coupled with human impact. A comparison with faunal data from the 1960s reveals apparent 

changes in species composition and population densities. The stress-tolerant species Ammonia 

beccarii invaded Kiel Fjord. Ammotium cassis had disappeared that reflects apparently the 

changes in salinity over the last 10 years. These changes in foraminiferal community and a 

significant increase of test abnormalities indicate an intensified environmental stress since the 

1960s. 

1.1  Introduction 

The previous studies in the Kiel Bight only gave a very short description of foraminiferal 

distribution, though they were started in the 19th century (Möbius, 1888). Ecological 

observations of foraminifera were initiated by Rhumbler (1935), who used rather descriptive 
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than quantitative methods of investigation. Next, Rottgardt (1952) distinguished three 

different foraminiferal assemblages in the Baltic Sea, which are distributed according to the 

salinity pattern: marine, brackish-marine (fjords and shallow areas of the Kiel Bight), and 

brackish faunas. A detailed taxonomical and ecological overview on benthic foraminifera in 

the south-western Baltic Sea was provided by Lutze (1965), who found out that temperature 

and salinity rather than substrate were the main ecological controls on foraminiferal 

distribution in this area. Vice versa, Wefer (1976) observed that the abundances of 

foraminifera in sediments off Bokniseck (open Kiel Bight) were regulated by substrate 

features, hydrodynamics and oxygen content of the bottom water. Foraminiferal food 

preferences in the open Kiel Bight were described by Schönfeld and Numberger (2007b), who 

reported two reproduction events of Elphidium excavatum clavatum following the spring 

bloom and suggested the “bloom-feeding” strategy of this species.  

The benthic foraminiferal distribution in Kiel Fjord has been left out of sight, with the 

exception of 4 stations investigated by Lutze in 1962-1963, which were taken as reference 

points for our study.  Over the 20th century, Kiel Fjord has experienced a strong 

anthropogenic impact. For monitoring purposes, the foraminiferal response to environmental 

changes attracts attention under the aspect of rising ecological problems. 

A number of studies addressed the foraminiferal reactions to changing environmental 

parameters as salinity, temperature, oxygen, food availability, pH, (e.g. Bradshaw, 1957, 

1961; Boltovskoy et al., 1991; Moodley and Hess, 1992; Alve and Murray 1999; Stouff et al., 

1999ab; Gustafsson and Nordberg 2001; Le Cadre and Debenay, 2003), contamination by 

trace metals (Ellison et al., 1986; Sharifi et al., 1991; Alve, 1991; Alve and Olsgardt, 1999; 

Yanko et al., 1998; Debenay et al., 2001) and sewage effluents (e.g. Watkins, 1961; Schafer, 

1973; Tomas et al., 2000). A decrease of population density, reproduction capability, 

enhanced mortality, and increasing frequency of test abnormalities were observed under the 

high trace metal or organic matter levels (Schafer, 1973; Samir and El Din, 2001; Bergin et 

al., 2006; Burone et al., 2006; Ernst et al., 2006; Di Leonardo et al., 2007). On the other hand, 

it was shown that population density of foraminifera may increase in vicinity of sewage 

outfalls (Watkins, 1961; Tomas et al., 2000). Culture experiments revealed that A. beccarii 

produces abnormal chambers at 10-20 µg l-1 of copper in seawater (Sharifi et al., 1991; Le 

Cadre and Debenay, 2006) and dies at concentrations exceeding 200 µg l-1 (Le Cadre and 

Debenay, 2006). Therefore, foraminifera appear to be a rather sensitive tool for the 

monitoring of pollution, though should be used with caution, because their distribution is 
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determined by numerous environmental variables (Alve and Olsgardt, 1999; Stouff et al., 

1999a,b; Le Cadre and Debenay, 2006). 

The aim of this study was (1) to describe the distribution of living (stained) benthic 

foraminifera in Kiel Fjord, (2) to investigate the distribution pattern of main geochemical 

parameters of surface sediments, (3) to outline the level of pollution by trace metals, and (4) 

to assess the foraminiferal response to environmental changes during the past decades. 

1.2  Study area 

Kiel Fjord is a 9.5 km long, N-S extending and narrow inlet of southwestern Kiel Bight 

(54°19’– 54°30’N; 10°06’–10°22’E). The Friedrichsort Sound divides the fjord into a 

southern, inner fjord with width to 250 m, and a northern, outer fjord, which expands up to 

7.5 km and passes into Kiel Bight (Fig. 1.1). The inner Kiel Fjord is mostly 10 to 12 m deep. 

A system of up to 16 m deep channels connects the inner with the outer fjord. The outer fjord 

itself is more than 20 m deep. 

As the entire Kiel Fjord is relatively shallow and isolated, its hydrographical characteristics 

FIGURE 1.1. Study area: (a) SW Baltic Sea, (b) outer Kiel fjord, (c) inner Kiel Fjord 

with bathymetry (m). Circles indicate here the sampling stations. For station description 

see Appendix 1.1. 
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weakly depend on the salt-rich inflow water from the Belt Sea. The only river discharging 

fresh water into Kiel Fjord is the Schwentine.  

The water masses of the inner fjord are homogenously mixed, except during summer. 

Then, surface water has a temperature up to 16°C and a salinity of about 14 units. The 

underlying deep water has a temperature of about 12°C and a salinity of up to 21 units. In 

winter, the temperature does not change significantly with depth and may decrease to 2°C. 

The salinity is constant with depth as well (Schwarzer and Themann, 2003).  

Coastal and near-shore erosion of Pleistocene till is the most important source of sediment 

in this area. Lag sediments with coarse sand and gravel prevail in the shallow coastal areas. 

They pass into sandy muds and silts in the deeper basins. In the innermost fjord, dark organic-

rich muds are encountered even in shallow areas. Sand veneers are found in the Friedrichsort 

Sound due to relatively strong currents between inner and outer fjord (Schwarzer and 

Themann, 2003).  

Kiel Fjord has seen a strong anthropogenic impact for the last 70 years by town 

infrastructure, shipyards, military and sport harbours and the intense traffic through Kiel 

Canal. The shipbuilding industry has led to a substantial trace metal pollution in places. 

Dredging to keep the seaways clear, and the ship traffic itself have caused a strong 

disturbance of surface sediments. 

1.2.1 PREVIOUS POLLUTION SURVEYS 

Despite the long-term anthropogenic load in study area, reports on the early history of 

pollution of Kiel Fjord are rare. Recently, the monitoring of metals concentration at a few 

stations in Kiel Bight by the Institute for Marine Research, Warnemünde (IOW) indicates no 

significant temporal trend in trace metal content for 1998-2000 with respect to the observed 

high interannual variability (e. g. Nausch et al., 2003b, Pohl et al., 2005). Kiel Fjord itself is 

considered by LANU (The Regional Environmental Protection Agency of the Bundesland 

Schleswig-Holstein) as one of the most important local hot spots of cadmium, lead, copper, 

and zinc contamination in the coastal waters of Schleswig-Holstein. In the year 2000 for 

instance, the concentrations of Cu, Zn and Pb in sediment fraction <20 µm were 82, 300 and 

130 µg g-1 in the inner fjord correspondingly (Haarich et al., 2003), whereas in outer fjord Cu, 

Zn and Pb content was estimated to 30, 210 and 60 µg g-1 respectively (LANU archive: 

Ostseemonitoring Programme). No clear temporal trend of metals concentrations in 1995-
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2004 was observed in sediments of Kiel Fjord. Extremely high concentrations of organically 

bound tin (407-2556 µg TBT-Sn kg-1) were found in the fjord sediments; they are supposed to 

cause the aberrant changes in reproduction system of the periwinkle (LANU, 2001b). High 

concentrations of Cu and Zn were found in fish (Senocak, 1995) and mussels (ter Jung, 1992) 

from the inner Kiel Fjord. But the organisms in the outer fjord showed the lowest metals 

content for all Schleswig-Holstein waters. 

Kiel Fjord has been affected by eutrophication induced by a high load of nutrient and 

organic carbon from the city and surrounding area (Gerlach, 1984). Herein, the nutrient 

concentrations and primary production showed a southward increase to the inner fjord 

(Schiewer and Gocke, 1995). The construction of a central treatment plant (Bülk, Klärwerk) 

in 1972 has reduced the input of nitrogen and phosphorus significantly (Kallmeyer, 1997, 

Rheinheimer, 1998), but the deep-water oxygenation improved not early than in the 1990s 

(Gerlach, 1996; Haarich et al., 2003; LANU, 2003). Nevertheless, oxygen deficiency may 

occur at specific weather conditions in the fjord regularly in late summer due to stable water 

stratification (Gerlach, 1990).  

1.3  Material and methods 

1.3.1 SAMPLING 

This study is based on 89 surface sediment samples collected at 4.5-18.1 m water depth 

between December 2005 and May 2006 on seven daily cruises with RV Polarfuchs. The 

samples were retrieved with a Rumohr corer with a plastic tube of 55 mm inner diameter and 

a Van-Veen Grab. The latter was used when sandy sediments were encountered. The Ruhmor 

corer was deployed three times at each station in order to avoid errors associated with spatial 

patchiness. The uppermost centimeter of the sediment was removed on each deployment with 

a spoon, and with cut-off syringes when a Van-Veen Grab was used. The sediment was 

placed into a glass vial, thoroughly mixed, and subsamples for geochemical analyses were 

taken from this mixture at first. The remaining sample was transferred to a PVC vial, and 

preserved and stained with a solution of 2 g Rose Bengal per litre ethanol in order to mark 

foraminifers living at the time of sampling (Murray and Bowser, 2000).  
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1.3.2 HYDROGRAPHIC MEASUREMENTS 

The salinity, temperature and dissolved oxygen content of the overlying water in the 

Rumohr corer tube was measured on board with Oxi- and Conductivity meters (WTW 

Oxi323/325 and LF320). As the measurements were made within minutes after retrieval, and 

air temperatures were not substantially higher than the water temperatures, we consider these 

values as representative for the near-bottom water. In the Schwentine river mouth, at three 

stations CTD-profiles were done with WTW Profiline 197 TS in 1-m intervals to locate the 

boundary between riverine fresh water and higher- saline fjord waters.  

1.3.3 GEOCHEMICAL ANALYSIS 

Subsamples for geochemical analysis were freeze-dried and powdered in an agate mortar. 

Measurements of Corg, total carbon (TC) and total nitrogen (TN) were performed with a Carlo 

Erba NA-1500-CNS analyzer at IFM-GEOMAR with accuracy better than ±1.5 %. 

Chlorophyll a and phaeopigments were determined after acetone extraction with a Turner TD-

700 Fluorometer at IFM-GEOMAR. The precision of the method is ±10 %. Biogenic silica 

(opal) measurements were done according to an automated leaching method for the analysis 

of SiO2 in sediments and particulate matter described by Müller and Schneider (1993) using a 

Skalar 6000 photometer with precision ±1 %. For trace metal analyses, the sediment samples 

were digested in an HNO3-HF-HClO4-HCl mixture solution. The solution was diluted and 

measurements were performed with an AGILENT 7500cs ICP-MS at the Institute of 

Geosciences, University of Kiel (Garbe-Schönberg, 1993). Blanks and the international 

standard MAG-1 were repeatedly analyzed together with the samples in order to evaluate the 

precision and accuracy of the measurements. The accuracy of analytical results as estimated 

from replicate standard measurements was better than ±1.5 %. 

1.3.4 FORAMINIFERAL STUDIES 

The sub-samples for foraminiferal analysis were stored in a fridge for two weeks to effect a 

sufficient staining with Rose Bengal. The samples were first passed through a 2000 µm screen 

in order to remove molluscs’ shells or pebbles, and then gently washed through a 63-µm 

sieve.  Sediments of the Baltic Sea have a high content of organic detritus. After drying, the 

detritus creates a film layer on the sample, which has to be disintegrated before picking 

(Lutze, 1965). In order to achieve a separation of the organic detritus, the 63—2000 µm size 

fraction was transferred into a cylinder with some tap water and left for a while. Then the 
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supernatant water was poured through a filter paper to collect the suspended organic debris. 

During drying, the organic flocks stuck to the filter paper and foraminiferal tests could be 

easily brushed off (Lehmann and Röttger, 1997). The 63—2000 µm and >2000 µm fractions 

were dried at 60°C, weighed, and splitted. Well-stained foraminifers that were considered as 

living at the time of sampling were picked from respective aliquots, sorted at species level, 

mounted in Plummer cell slides and counted. Both normal and abnormal tests were counted 

separately. The standing stock was expressed as number of specimens per 10 cm3 of sediment. 

The main species were photographed with Cam Scan Scanning Electronic Microscope at the 

Institute of Geosciences, Kiel University. 

1.4  Results and discussion 

1.4.1 HYDROGRAPHY  

The temperature and salinity of near-bottom water in Kiel Fjord showed a pronounced 

seasonality. Temperature decreased from 8°C on average in December 2005 to 2°C in 

February, and raised again to 7°C in May 2006. In December 2005, the near-bottom water 

showed the highest salinity with 23.2 units and minimum values of 16.5 units in May. 

In the Schwentine river mouth, the boundary layer between riverine fresh water and saline 

fjord water was encountered at approximately 1 m depth in February. With an average 

discharge of 7.3 m3 s-1 (Schulz, 2000), the Schwentine substantially freshens the waters of the 

inner fjord.  

The oxygen concentration mostly exceeded 400 µmol l-1 and decreased slightly only in the 

deep basins. The saturation levels varied from 58 % to 100 %. As such, a sincere oxygen 

deficiency in the near-bottom waters of Kiel Fjord was not recognized. 

The oxygen content of near-surface sediments was measured with a Unisense 

microelectrode (Revsbech, 1989) in a short core taken from the inner fjord at the beginning of 

December 2005.  The overlying water had oxygen saturation 71 %; the sediments were 

muddy-sand. At 1 mm sediment depth, the oxygen saturation was still more than 50 %, and a 

zero oxygen level was encountered at 3.5 mm. As compared with a usual 2 to 5 cm thick oxic 

layer in normal marine settings, the oxygenated surface layer in this core was quite thin.  
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1.4.2 ORGANIC CARBON AND C:N RATIO 

The organic carbon content in the surface sediments ranged from 1% in Friedrichsort 

Sound to 7.8 % in muddy sediments of the inner fjord (Fig. 1.2, Appendix 2.1), and it is 

negatively correlated with the sand content (r=0.793, n=89, Appendix 2.5). Though the 

changes in mean Corg values through the year were not substantial, we observed an increased 

Corg content associated with the spring bloom in February and March (Graf et al., 1982, 

Wasmund et al., 2005). Generally, the Corg content was higher than reported by Leipe et al. 

(1998) for the open Mecklenburg and Kiel Bights (5 % for the fine fraction). 

The mean C:N ratio depicts a substantial input of organic matter from the hinterland (Fig. 

1.2). The C:N ratio increases southwards from 4 in the outer fjord to 15 in the inner fjord, 

which is in the range of values for the southern Baltic Sea (Pertillä et al., 2003). Seasonally, 

the C:N ratio changed not significantly but has the lower values in February-March that 

probably mirrors the accumulation of fresh detritus characterized by low C:N values of 5.6 to 

7 (Graf et al., 1982).  

1.4.3 BIOGENIC SILICA 

Biogenic silica (opal) content in surface sediments of Kiel Fjord was higher in spring as 

compared to December (0.1 wt.% to 8 wt.%), and showed a maximum in the inner fjord (Fig. 

1.2). The maximum of diatom biomass and biogenic silica flux to the sea floor was recorded 

in early April in the SW Baltic Sea (Wasmund et al., 2005, 2006). Apparently, the increase of 

opal in sediments of Kiel fjord in February reflected the spring bloom of diatoms in late 

February and March. Surface sediment biogenic silica content clearly reflects spatial 

differences in surface water primary productivity, and at low depths and under relatively high 

sedimentation rates, it could refer to seasonal changes of primary productivity (Rathburn et 

al., 2001; Bernardez et al., 2006). At the same time, Schwentine river might also be a source 

of opal for the inner fjord sediments because in the suspension of its water the opal values 

exceeded 15 wt. % owing to freshwater diatoms. As the maximum of biogenic silica in the 

inner fjord sediments was not found in the vicinity of Schwentine mouth, we consider the 

primary productivity in the fjord as the main cause of seasonal and spatial variations in 

biogenic silica concentrations. 
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Figure 1.2.  Seasonal distribution of organic carbon (%), C:N ratio, biogenic silica (wt.%) and 

chlorine (note: µg g-1 instead of ng g-1 by other authors) in Kiel Fjord. Sampling stations are shown 

here as black dots (see Appendix 2.1). 
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1.4.4. Chlorine and phaeopigments 

Chlorine concentrations in surface sediments varied from 7000 to 600 000 ng g-1 dry 

sediment (Fig. 1.2). The values were generally higher in March than in December. The spatial 

distribution of chlorine concentrations was irregular. In December and February, the highest 

concentrations were observed in the innermost fjord, while in March and May the chlorine 

levels were elevated towards the outer fjord. As chlorine content is a proxy for productivity 

(Harris et al., 1996), this pattern seems to depend on the development of the spring bloom, 

sequential growth of different algal groups and changes in hydrographical conditions (Graf et 

al., 1982) as well as terrigenous input. The ratio of chlorophyll a to phaeopigments generally 

increased from February to May, which infers a flux of fresh organic matter to the sea floor 

(Greiser and Faubel, 1988; Reuss et al., 2005).  

1.4.5 TRACE METALS POLLUTION 

The concentrations of copper, zinc, tin and lead in surface sediments of Kiel Fjord show a 

high variability (Table 1.1). With a sample thickness of one centimeter and presumable 

sedimentation rate in Kiel Fjord about 1 mm per year (Erlenkeuser et al., 1979, Balzer et al., 

1987), one has to keep in mind that the trace metal concentrations present an average over the 

last 10 years. The concentrations are significantly positively correlated with the Corg contents 

and negatively correlated with the sand content (Table 1.1, Appendix 2.5). The correlation 

suggests that most of the trace metals are bound to organic matter, that they accumulate in 

muddy sediments, and that they are winnowed from of sandy sediments. In fact, elevated 

metal levels were recorded in the innermost and central fjord (Fig. 1.3, Appendix 2.1). 

Moreover, exceptionally high metal concentrations were found in surface sediments close to 

Lindenau shipyards at Friedrichsort, and at Tirpitzhafen Navy base. 

Metal Concentration, µg g-1 
mean (range) 

Correlation coefficient (r) 
with Corg, % 

Correlation coefficient (r) 
with sand content, % 

Cu 62.3 (1.79 - 162) 0.726 -0.581 

Zn 185 (11.2 - 434) 0.770 -0.621 

Sn 4.97 (0.24 – 18.4) 0.549 -0.404 

Pb 118 (6.81 - 260) 0.675 (n=52) -0.579 (n=52) 

 

TABLE 1.1. Mean (range) concentrations of trace metals (µg g-1) in the surface sediments of 

Kiel Fjord and their correlation with organic carbon and sand content, number of samples n=53. 
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The long history of human impact in Kiel Fjord suggests that metal concentrations are 

substantially higher than the regional background (HELCOM, 1993). Except in the innermost 

fjord, trace metal concentrations are well in the range of values reported from elsewhere in 

Kiel Bight for the years 1999 to 2004 (Leipe et al., 1998; Haarich et al., 2003; Pohl et al., 

2005). 

Nonetheless, a trace metal study from a sediment core from Kiel Bight demonstrated that 

the metal concentrations systematically increased since the 1830s and reached maximum in 

the 1950s-1970s (Erlenkeuser et al., 1974). The youngest Cu, Zn and Pb contents were 

estimated as 70, 230 and 80 µg g-1 respectively. We found the average values of 62, 185 and 

118 µg g-1 Cu, Zn and Pb. As such, no significant changes in heavy metal concentrations took 

place during last 40 years. To the north of Kiel Canal, we found even lower concentrations 

than in the 1960s presumably referring to environmental protection measures, in particular, a 

banning of lead additives in gasoline during the last decades. This may explain the today’s 

low concentrations of lead in Kiel Fjord keeping in mind that its main sources in the Baltic 

region are atmospheric input and surface runoff (Brügmann, 1996). Tin concentrations were 

not reported in early investigations. In Kiel Fjord the concentration of tin in the sediment 

fraction <2000 µm (LANU archive: Ostseemonitoring Programme) was 24 µg g-1 in 2004 

whereas in other fjords and bays of Kiel Bight it varied from 4 to 17 µg g-1. Our 

measurements range from 0.2 to 18 µg g-1 and confirm the elevated levels in the inner fjord. 

This can be related to sport harbours and shipyards despite the recent restriction of tin-

containing antifouling paints (IMO, 2005). 

Figure 1.3.  Trace metals (Cu, Zn, Pb, Sn) distribution in surface sediments of Kiel Fjord. 
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1.4.6 FORAMINIFERAL POPULATION DENSITY AND SPECIES COMPOSITION 

The foraminiferal population density in Kiel Fjord ranged from 3 to 4895 ind./10cm3, on 

average 200 to 400 ind./10cm3 (Appendix 3.1; 3.3). The living benthic foraminiferal 

communities were dominated by Ammonia beccarii (52 % on average) and subspecies of 

Elphidium excavatum (together 44 % on average). Elphidium incertum, Elphidium 

albiumbilicatum and Elphidium gerthi were common (5.3 and 3 % on average). Ammotium 

cassis, Reophax dentaliniformis regularis, Elphidium williamsoni, and Elphidium gunteri 

were rare (maximal 2 %). The stations with predominance of A. beccarii generally have a 

lower abundance of E. excavatum excavatum and vice versa. We do not recognize any 

physical, biological or chemical parameter that would explain this spatial change in 

dominance. But we cannot entirely rule out, that these species occupy different ecological 

niches. As such, we can presume a substitution of these species. E. incertum and E. 

albiumbilicatum co-occurred with moderate abundances to both sides of Friedrichsort Sound. 

E. gerthi and E. williamsoni were recorded in shallow and near-shore samples (Fig. 1.4). 

The arenaceous species R. dentaliniformis regularis and A. cassis were recorded only 

sporadically in our samples. The situation was quite different in the 1960s, for instance, Lutze 

(1965) reported A. cassis with up to 2 % of the living fauna in Kiel Fjord (Fig. 1.5b). We re-

examined 4 of Lutze’s samples curated at the Institute of Geosciences (University of Kiel) 

and revisited his stations in February 2006 (Fig. 1.5a, c). The samples taken in 2006 revealed 

a 5 to 445-fold increase of foraminiferal population densities as compared to the 1960s. We 

also did not find A. cassis. This species was common elsewhere in Kiel Bight until the mid 

1990s (Schönfeld and Numberger, 2007a). Our results infer that A. cassis has apparently 

disappeared in the 2000s from Kiel Fjord too, and that it has been presumably replaced by A. 

beccarii.  

Positive correlations of population density with biogenic silica (r=0.475; n=21) and 

chlorophyll a (r=0.600; n=21) were found for samples taken in December. This underpins the 

strong relationship of the availability of food, in particular diatoms, and foraminiferal 

population density (Altenbach, 1992; Schönfeld and Numberger, 2007b). 

In order to reveal the stress response capability of the benthic foraminiferal fauna, we 

calculated the ratio of the tolerant species A. beccarii to the specialized E. excavatum (A:E 

Index), firstly described by Sen Gupta et al. (1996) as a proxy of hypoxia. The highest A:E  
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values were found in the central part of Kiel Fjord. They coincide with high Corg (7 %) and tin 

concentrations (18 µg g-1). 

In the inner part of Kiel fjord, we recorded high frequencies of test abnormalities (up to 17 

%). This is considerably higher than the typical value of 1 % under natural undisturbed 

conditions (Alve, 1991; Yanko et al., 1999). The majority of abnormal tests were observed in 

A. beccarii. A high number of test abnormalities preferentially occurred in the inner fjord, 

where the highest trace metal levels were marked. 

E. albiumbilicatum has been described as a typical shallow-water species (Lutze, 1965). 

Here, it inhabits the transitional area of Friedrichsort Sound where sandy sediments prevailed. 

The high water turbulences seemingly prevent the accumulation of organic matter bound trace 

metals here. On the other hand, it was suggested that species living in turbulent waters 

develop spines (Boltovskoy et al., 1991). Tests of E. albiumbilicatum possess the numerous 

pustules in apertural and umbilical areas making the test surface rough and enabling this 

species to withstand the higher water turbulences in this sound.  

Figure 1.4.  Foraminiferal relative abundances and occurrence of arenaceous 

species in Kiel Fjord, here X indicates the stations revisited after Lutze (1965). 
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The species composition of dead assemblages at stations revisited after Lutze was the same 

as the living assemblages. Lutze (1965) reported that thanatocoenoses in the 1960s also 

resembled the living communities. In 2006, the living:dead ratios varied from 0.3 in the inner 

part to 3.2 in the outer Kiel Fjord, which is on average 5 times higher, than it was in the 1960s 

(Appendix 3.2).  

The remarkable increase in population densities as compared to previous studies in Kiel 

Fjord arises a question: why living foraminifera became so abundant since the 1960s, 

especially in the presence of trace metals? According to Yanko et al. (1999), some 

foraminifera might respond positively when the environmental impact is continuous. On the 

other hand, there are no data on trace metal concentrations in Kiel Fjord from the 1960s and 

therefore one cannot conclude that trace metals are the only factor that is responsible for the 

observed changes. Moreover, after the setup of sewage treatment plants and strict 

environmental protective politics in the 1990s (e.g. Danish Action Plan (I); HELCOM), which 

caused a decrease of industrial discharges and agricultural load, a general decrease of nutrient 

inputs and stabilization of oxygen levels in the SW Baltic took place (Nausch et al., 2003a, 

2004). Despite the slight decline in nutrient levels since the mid 1990s, an increase of primary 

production by roughly 40 % during the past 30 years has been suggested for the western 

Baltic Sea (Wassmann, 1990; Schönfeld and Numberger, 2007a). Provided this is applicable 

for Kiel Fjord too, even a doubling in primary production can not explain a 67-fold increase 

in foraminiferal population densities from 23 ind./10cm3 on average in 1963 to 1582 

ind./10cm3 on average in 2005 and 2006.  

RE-EX AM INA TION O F LU TZE’S MAT ER IA L 

Differences in results shown at Fig. 1.5a and 5b may refer to discrepancy in taxonomy, 

sampling seasons, size fractions (> 63µm in this study and >100 µm by G.-F. Lutze) and 

study of the whole samples (in 2006) vs. concentrates (1960s). Fig. 1.5b shows E. excavatum 

subspecies, lumped together in 1960s, as the dominant elements of the living fauna. E. 

incertum had higher abundances, whereas A. cassis and R. dentaliniformis were rare. Lutze 

did not report E. albiumbilicatum and E. gerthi, which we found in his samples. Apparently 

he recognized both species as variants of E. excavatum. Lutze’s sampling campaign started in  

spring 1962 and continued until fall 1963. Regarding the difference in sample numbering (342 

vs. 239), it well might be that sampling in the 1960s also comprised several seasons per year, 

as we did in the current study. Concerning the differences in size fractions, it was shown that 
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there were no living specimens smaller than 80 µm observed in the western Baltic Sea 

(Schönfeld and Numberger, 2007a: p.85). Therefore it is unlikely that G.-F. Lutze missed or 

washed away a significant proportion of the fauna. Most residues of Lutze’ samples contained 

a very few or no living specimens whereas the respective flotation concentrates were very 

rich. Therefore, even if Lutze examined only concentrates but not the whole samples, his 

results on the population density would not differ by two orders of magnitude to the results 

we obtained in our 2006 survey. Thus, we finally consider the differences in methods in this 

study comparing to the 1960s to be of minor influence on the final result. 

INV A SIO N A ND OPPO RT UN ISTIC BEHA V IOUR O F AM MO NIA BE C CAR II  

A. beccarii has an ubiquitous distribution in Kiel Fjord whereas both E. excavatum 

subspecies show avoidance of the central fjord with silty sediments enriched in Corg and tin. In 

the North Sea, Sharifi (1991) described E. excavatum as more frequent than A. beccarii in 

sediments polluted by Zn. According to Alve (1995), abundant and geographically 

widespread species are to be considered as most tolerant to environmental pollution. A. 

beccarii is commonly frequent in coastal and paralic environments (e.g. Stouff et al., 1999ab). 

Figure 1.5.  The species composition in re-examined samples from Lutze collection taken in 1962-

1963 (a), described by Lutze himself (b) and at stations revisited after Lutze in February 2006 (c). Figure 

(d) shows the changes in population density (log scale) since the 1960s (Lutze, 1965).  
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Taking all this into account, we consider that the main reason why A. beccarii is so abundant 

in Kiel Fjord, its opportunistic behaviour and high potential to survive under high input of 

nutrients and trace metal concentrations. 

DISA PPEA RA NC E O F AM MO TIU M CA SSIS  

Sample PO220-37-2 taken in the Kiel Bight in 1996 had 90 % of A. cassis, but did not 

contain any calcareous foraminifera. It may well be, that due to bad storage conditions, all the 

calcareous tests were dissolved in this sample. For this reason, we revisited station PO220-37-

2 in December 2005 but we did not find living A. cassis any more. Lutze (1965) stated that 

foraminifera in the Baltic Sea are mainly salinity and temperature dependant, and that A. 

cassis is adapted to a strong halocline between surface and deep waters in Kiel Bight. 

Schönfeld and Numberger (2007a) suggested cyclic changes of A. cassis abundances 

depending on saltwater inbursts in the Kiel Bight and high salinity contrasts between surface 

and deep waters. As we observed only isolated specimens in some places, the inner Kiel Fjord 

is currently almost unpopulated by A. cassis. This pattern may be due to the fact that the inner 

fjord is shallower, more closed and less saline than the open Kiel Bight. As such, the deep 

boundary layer, which is a necessary condition for nutrition of A. cassis, cannot establish in 

Kiel Fjord (Olsson, 1976). 

It is conceivable that with faunal change from very large A. cassis to much smaller A. 

beccarii, the total biomass might decrease. However, as the population density increased 

significantly since the 1960s, we may assume that biomass today is higher than it was in the 

1960s and 1990s, when Ammotium cassis was abundant in the Kiel Bight. 

1.5  Conclusions 

The results of the present study showed that labile organic compounds (biogenic opal, 

chlorine, Corg) in sediments of the Kiel Fjord were subjected to a strong seasonal variability. 

Their concentrations are significantly higher in springtime. The spatial distribution of labile 

organic compounds is mainly determined by sediment type. Generally, the levels of 

concentrations of biogenic compounds are comparable to those reported from the open Kiel 

Bight. Markedly low levels of food in Friedrichsort Sound establish quite unfavourable 

conditions for many benthic foraminiferal species. The surface sediment pollution by copper, 

zinc, tin and lead principally could be considered as moderate because the levels of metals are 

comparable to those elsewhere in the Baltic Sea. Nevertheless the inner Kiel Fjord is 
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distinguished by a high load of heavy metals. The high tin concentrations in surface sediments 

apparently depend on its accumulation in muddy sediments for previous decades.  

The analysis of foraminiferal population density shows a patchy distribution and a 

response to food availability, which is depicted by SiO2 and Chl a in the sediments. The 

strong increase of population density since the 1960s remains enigmatic. It cannot be 

attributed to an increase in organic matter supply and a slight reduction of pollution. 

Furthermore, we observed significant changes in foraminiferal species composition in 2005-

2006 as compared to the 1960s. The stress-tolerant species A. beccarii invaded Kiel Fjord. 

We suppose that this species is highly opportunistic and can tolerate elevated levels of 

nutrients and trace metals. E. albiumbilicatum apparently is able to withstand the higher water 

turbulences and therefore inhabits the transitional area of Friedrichsort Sound. Unfavourable 

salinity conditions in the Kiel Bight and absence of a deep halocline in Kiel Fjord might have 

caused the disappearance of A. cassis during the past decades. 

Faunal reference list 

Ammonia beccarii (Linné) = Nautilus beccarii Linné, 1758; Schönfeld and Numberger, 

2007a, p. 52, pl.1, fig.2. (Note: Ammonia tepida; De Noijer, 2007, p. 24, pl.1, fig. 

A; molecular types of Ammonia T1 and T2, Hayward et al., 2004, p. 256-258, pl. II-IV). 

Ammotium cassis (Parker) = Lituola cassis Parker, 1870; Frenzel et al., 2005, p. 75, fig. 4., 

no. 3. 

Elphidium albiumbilicatum  (Weiss) = Nonion pauciloculum  Cushman subsp. 

albiumbilicatum Weiss, 1954; Frenzel et al., 2005, p. 73, fig. 2., no. 10; Schönfeld and 

Numberger, 2007a, p. 52, pl.1, fig.4. (Note: Elphidium asklundi Brotzen, 1943 of Lutze 

(1965); Cribroelphidium albiumbilicatum of Frenzel (2005)). 

Elphidium excavatum  excavatum (Terquem) = Polistomella excavata Terquem, 1875, 

Miller et al., 1982, p. 127, pl.1, fig.11-12; Schönfeld and Numberger, 2007a, p. 52, pl.1, 

fig.12-13. 

Elphidium excavatum clavatum (Cushman), 1930; Miller et al., 1982, p. 127, pl.1, fig.8; 

Schönfeld and Numberger, 2007a, p. 52, pl.1, fig.7-9. 

Elphidium gerthi van Voorthuysen, 1957; Lutze, 1965, p. 159, pl. 15, fig. 45 (Note: 

Cribrononion cf. gerthi of author). 
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Elphidium gunteri Cole, 1931; Frenzel et al., 2005, p. 73, fig. 2., no. 2 (Note: 

Cribroelphidium gunteri of authors). 

Elphidium incertum (Williamson) = Polystomella umbilicatula (Walker) var. incerta 

Williamson, 1858; Schönfeld and Numberger, 2007a, p. 52, pl.1, fig.5-6. 

Elphidium williamsoni Haynes, 1973 (Note: Cribrononion cf. alvarezianum Orbigny, 1839 of  

Lutze (1965)); Frenzel et al., 2005, p. 73, fig. 2., no. 8. (Note: Cribroelphidium williamsoni of 

authors). 

Reophax dentainiformis f. regularis Höglund, 1947; Schönfeld and Numberger, 2007a, p. 52, 

pl.1, fig.11. 
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Abstract 

A study of surface sediment organic matter and heavy metal content (e.g. Cu, Zn, Pb and 

Sn) was carried out in 2006 to assess changes in eutrophication and pollution in the 

periodically anoxic Flensburg Fjord since 1972. Low hydrodynamic activity together with 

sewage discharges and high primary production in the inner fjord promotes the enrichment of 

present day surface sediments in organic matter and metals relative to the outer fjord. 

However, heavy metal contents in the fjord are typical for the western Baltic Sea, although 

they are higher than in the preindustrial period.  

The anthropogenic nutrient load has substantially decreased since the 1970s. Sediments 

from the inner fjord contain more organic material in 2006 than in 1972 resulting from high 

primary production supported by internal nutrient loading. Of the heavy metals measured, a 

decrease in Pb content since the 1970s is distinct, which is explained by the banning on 

gasoline lead. Taken together, these results suggest that the amelioration of environmental 

conditions needs time but is indeed related to reduced anthropogenic inputs. 

Key words: Baltic Sea, eutrophication, sediments, organic matter, heavy metals, decadal 

changes 

2.1  Introduction 

The coastal areas of the Baltic Sea exhibit a high trophic status resulting from high inputs 

of organic and inorganic nutrients from rivers, as well as local coastal and diffusive sources 
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(HELCOM, 1993). Moreover, the relatively shallow water depth of the Baltic promotes 

benthic-pelagic coupling and thus supports enhanced primary production (Zeitschel, 1980). 

As such, most Baltic coastal areas were classified as being mesotrophic and eutrophic (Nixon 

et al., 1995). Moreover, the fjords and bays often become anoxic because of the structured 

topography of these fjords and bays, which leads to restricted or only intermittently restricted 

water exchange with the Baltic Sea, thus resulting in persistent water column stratification 

(Jørgensen and Richardson, 1996; Meyer-Reil and Köster, 2000). High production and 

stagnation of deep waters then leads to oxygen deficiency and to long-term hypoxia, or even 

anoxia in the fjords and bays, driving the profound changes in the ecosystem structure 

(Bonsdorf et al, 2002).  

The coast of Schleswig-Holstein, in the southwestern Baltic Sea is characterized by long 

narrow inlets and bays, which have been inhabited for centuries. The more recent municipal, 

industrial and agricultural activities in the region resulted in a high level of contamination by 

metals and organic compounds in coastal area for the past 50-70 years. As the fjords and 

shallow bays possess high filtering and buffering capacity (Schiewer and Gocke, 1996), they 

are often significantly eutrophied and polluted (Müller et al, 1980; Rheinheimer, 1990; Lange, 

1990; Gerlach, 1996; Brügmann and Leipe et al, 1998; Meyer-Reil and Köster, 2000).  

Flensburg Fjord is still comparably undisturbed by anthropogenic activities. Nevertheless, 

severe anoxia and an extremely high primary production in the inner Flensburg Fjord caused 

concern of local authorities in the 1970s (GKFF, 1973a; GKFF, 1973b). Consequently an 

extensive monitoring program was established in 1972-1973 to evaluate the fjord’s 

environmental conditions, which was followed by activities to reduce the nutrient input into 

Flensburg Fjord. After these measures were taken, primary production in the fjord decreased, 

although oxygen depletion still occurred. In addition, high concentrations of heavy metals in 

bottom sediments were reported in the 1970s. 

The aim of this study was to assess whether the decrease in the inputs of nutrient and other 

anthropogenic contaminants has affected the eutrophication and pollution levels in Flensburg 

Fjord over last three decades. Specifically, we measured organic carbon, total nitrogen, 

chlorophyll a and biogenic silica in surface sediments in order to fully constrain both the 

pattern of surface productivity and the capacity for organic matter preservation in modern 

sediments. The heavy metals copper, zinc, lead and tin, common anthropogenically sourced 

pollutants, were also measured. The relationships between all these parameters, as well as the 

linkages to hydrography and sediment properties, were compared in order to define the main 
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factors influencing their distribution.  Finally, through comparison with similar data from a 

1972 study we attempted to predict the future development of the fjord. 

2.2  Study area 

Flensburg Fjord is a narrow, 50 km-long bay of the northwestern Kiel Bight between 

Germany and Denmark (Fig. 2.1). The inner fjord is 15 km long and 2.3 km wide with water 

depths not exceeding 19 m. The inner fjord has only restricted water exchange with the Kiel 

Bight and the Baltic Sea due to a sill depth of 10 m off Holnis Peninsula. Southward, the inner 

fjord terminates with the narrow, elongated Flensburg city harbour at 7 to 9 m water depth. 

The outer Flensburg Fjord comprises Sonderborg Bay (13 to 31 m depth), Gelting Bay (4 to 

22 m depth) and open waters eastward of Gelting Peninsula with a depth range from 5 m in 

the coastal area to 39 m in the Little Belt (Fig. 2.1). 

The bottom topography is shaped by current and wave activity that drives erosion of cliffs 

as well as in shallow water areas, and deposition of the eroded material in deeper waters. In 

the outer fjord, silt and mud dominates the sediments in deeper areas, while in water 

shallower than 8 m sand and muddy sand prevail (Exon 1971, Exon, 1972; GFKK 1973a). 

Dark, sandy mud and soft mud characterize the sediments of the inner fjord (Exon, 1971). 

The hydrography of Flensburg Fjord, seen particularly in salinity distributions, is spatially 

Figure 2.1 . Location of sampling stations in Flensburg Fjord. Station prefix PF16- is omitted. 

Depth contours are in meters. Stations sampled after 1972 are given according to GKFF (1973a). 
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determined by salt-water inflows from the Belt Sea (GKFF, 1973b). Salty bottom water at the 

outer fjord in spring and autumn forces its way across Holnis sill and renews the stagnant 

bottom water in the inner fjord. After such inflow the halocline occurs at 8 to 9 m depth and 

greatly inhibits vertical mixing between the water layers in the inner fjord. In the outer fjord 

this pycnocline is found between 16 and 20 m depth (Exon, 1972).  In the period between 

inflows, vertical mixing is the only mechanism of water exchange. Density and wind-induced 

currents, which occur frequently, are of decisive influence on the rate of water renewal of the 

whole fjord. Runoff of small rivers and brooks, atmospheric precipitation and sewage 

discharges input fresh water at rate of about 470 km3 a-1 to the Fjord (average between 1986 

and 1997, LANU, 2001a). The annual salinity range is 15-20 psu in surface water, and 20-26 

psu in bottom waters (Kändler, 1963; Exon, 1972; Bluhm, 1995). The water temperature of 

the Fjord varies from 0°C to 20°C near the surface, and from 3°C to 15°C in the near-bottom 

layer.  

2.2.1 OXYGEN DEFICIENCY EVENTS 

The combined effects of bathymetry and seasonal temperature stratification on bottom 

water turnover result in oxygen deficiency (Kändler, 1963; GKFF, 1973b). A short period of 

oxygen depletion with values less than 90 µmol l-1 has been noted in late May-July in the 

inner fjord and Flensburg harbour (Wahl, 1985). Severe long-term oxygen depletion (less than 

4 µmol l-1 in bottom water), however, occurs in August and September (Kändler 1963; 

GFKK, 1973b; Wahl, 1984; Lorenzen et al., 1987; DDTFF, 1992; LANU, 2003). This 

summer deoxygenation is accompanied by a degradation of the benthic macrofauna (Bluhm, 

1995). In winter and early spring, however, the oxygen conditions become favourable again 

Figure 2.2 . Oxygen content in near-bottom water of Flensburg Fjord: year, depth and 

location of measurement are given for every series. Shadow boxes depict the reported anoxia 

periods. 



2. Reassessment of Flensburg Fjord 
 

 27 

for benthic organisms caused by enhanced wind-driven vertical mixing (Fig. 2.2). 

A cultural eutrophication in 1960-1980 is purported to have had intensified the oxygen 

deterioration of the inner fjord due to nitrogen and phosphorous input from open sewage 

systems (Anonymous, 1985). That is, large amounts of nutrients from the sewage inputs 

induced an increase of primary production in the inner fjord, thus raising a demand of oxygen 

in near-bottom water by organic matter-decaying microorganisms. After the installation of the 

biological cycle of purification of the Flensburg sewage plant in 1967-1969, Rheinheimer 

(1970) found an improvement of the oxygen situation in the inner fjord. Nevertheless, in the 

1980s severe periodical oxygen depletions, even including hydrogen sulphide formation, were 

reported from the inner fjord (Bluhm, 1995). In 1989, an experimental aeration pump started 

operating in the inner Flensburg Fjord (Jaeger, 1990). Following stagnant, fully anoxic 

conditions, oxygen content increased immediately in bottom water after installation of the 

pump. While this aeration experiment did not intend to rehabilitate the Fjord waters, it lasted 

only for several months but clearly demonstrated the efficiency of such aeration techniques 

for oxygenating of stagnant brackish water (D. Jaeger, written comm.). Annual oxygen 

depletions have been reported for the 1990s and the 2000s (DTFF, 1993; LANU, 2001a; 

LANU, 2003), despite significant diminution of sewage discharges. 

2.2.2 NUTRIENT INPUT AND PRIMARY PRODUCTION 

The main sources of nutrient input into Flensburg Fjord are the drainage from agricultural 

watershed and communal sewage. For the most recent decades, the input of phosphorous from 

sewage has declined: from 169 t a-1 in 1986 to 7 t a-1 in 1997. Similarly, the total input of 

phosphorous from all sources has decreased from 305 t a-1 in 1986 to 84 t a-1 in 1997. As 40 

% of the nitrogen comes into the Fjord from diffusive sources, the elimination of nitrogen 

from sewage alone was not as effective in reducing the source function, which dropped from 

2600 t a-1 in 1986 to 1600 t a-1 in 1997 (LANU, 2001a). Again, the largest part of nutrient 

load mainly affected the inner fjord. 

The changes in nutrient input apparently reduced primary production in the inner fjord 

from 550-700 gC m-2 a-1 in 1986-1989 to 225-290 gC m-2 a-1 in 1995-1997 (LANU, 2001a), 

although considerable variations were observed between years. In the outer fjord, primary 

production was consistently at 105-200 gC m-2 a-1 over this period.  
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2.3  Material and methods 

2.3.1 SAMPLES COLLECTION 

The sediment samples were collected in June 2006 with RV Polarfuchs (IFM-GEOMAR) 

at 32 stations in the German area of Flensburg Fjord (Fig. 2.1, Appendix 1.2) by two different 

sampling devices. A Rumohr corer with a 55 mm inner diameter was used for muddy 

sediments, and the upper centimeter of the cores was removed with a spoon and kept in 

plastic vials. A Van Veen grab was used for sandy sediments, and the samples were taken 

with scaled syringes. After returning from cruise, the samples were frozen at -18°C, then 

freeze-dried and homogenised manually in an agate mortar. To get comparable geochemical 

data, samples were taken at the same locations and at the same season as those used in the 

1971-1972 studies by Flensburg Fjord Commission (GKFF, 1973a). However, in the 1972 

study the upper three centimetres of sediments were taken by a Van Veen grab for 

geochemical analyses. 

Salinity, temperature and dissolved oxygen content of the overlying water in the Rumohr 

corer tube were measured on board with an Oxi- and Conductivity meter (Oxi323/325Set and 

LF320/Set). These values represent the near-bottom water properties as the measurements 

were made immediately after retrieval. At the locations where only a Van Veen Grab was 

deployed, no data on near-bottom water properties could be obtained. 

2.3.2 GEOCHEMICAL ANALYSIS 

To assess the productivity and nutrient status of the Fjord, the organic and total carbon, 

total nitrogen, silica, and pigments were measured. Total carbon, organic carbon, and nitrogen 

contents of the sediment were determined with a Carlo Erba NA-1500-CNS analyzer at IFM-

GEOMAR with accuracy better than ±1.5 %. Total carbon was obtained from bulk sediments, 

whereas the organic carbon content was measured in decalcified sediments. The atomic C:N 

was calculated in order to assess the sources of organic matter. 

The quantities of biogenic silica were measured by the automated leaching method 

according to Müller and Schneider (1993). Opaline material was extracted from bulk 

sediment by sodium hydroxide at 85°C for about 45 min. The dissolved silicon in the leaching 

solution was determined by molybdate-blue spectrophotometry with a precision of ±1 %. 

Chlorine contents in sediments were measured with a Turner TD-700 Fluorometer after 

acetone extraction. The precision of the method was ±10 %.  
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The heavy metals Cu, Zn, Pb and Sn were measured in the bulk sediment from 20 

locations. Powdered samples were completely digested in a mixture of hot nitric, fluoric, 

perchloric and hydrochloric acids under heat (150°C). Once dissolved, the solutions were 

dried down and diluted in 2 % nitric acid for analysis. These elemental measurements were 

performed with an AGILENT 7500cs ICP-MS at the Institute of Geosciences, University of 

Kiel (Garbe-Schönberg, 1993). The accuracy of analytical results estimated from replicate 

measurements of the international standard MAG-1 was better than ±1.5 %.  

2.4  Results 

2.4.1 PHYSICAL PARAMETERS 

HYDR OG RA PH Y 

In June 2006, the bottom water temperature varied from 8°C in the open, eastern part of 

the Fjord to 11°C in the sheltered inner fjord, with a maximum of 14°C in Gelting Bay. The 

bottom water salinity increased from 18.3 psu in Gelting Bay and 19.3 psu in the inner fjord, 

where freshwater input has a significant influence, to 25.4 units outside the Fjord. The surface 

water temperature in June fluctuated about 16°C throughout the Fjord and increased to 22°C 

in Gelting Bight; surface water salinity changed from 18 units in inner fjord, and 16-18 units 

in Gelting Bight to 24 units in the outer fjord (MAEWEST, 2007). 

OXYG EN 

The dissolved oxygen content varied from 159 to 307 µmol l-1 throughout the Fjord 

(Appendix 2.2). A consistent pattern was not discernable, but the lowest concentration of 

oxygen with a saturation level of 48-64 % was found in the inner fjord at the depths less than 

12 m. In the outer fjord, the saturation was 53-58 % at 25-28 m water depth. In the shallower 

areas, bottom water oxygen saturation reached values as high as 81 % off Holnis Peninsula 

and 100 % in well mixed waters of Gelting Bay. Oxygen saturation at most of the stations did 

not fall below 50 %, therefore presenting favourable conditions for benthic organisms. No 

significant correlation between oxygen content and water depth was found. 

At the inner fjord stations PF16-2; -3; -4 black sediments were recovered, in which H2S 

was present and which were barren of any benthic organisms. The cores taken by Rumohr 

corer at these stations contained very dark sediments covered by few millimetres of light 

brown oxygenized sediments.  
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BOTTO M SE D IM EN TS 

Sediment compositions were determined by washing subsamples of the sediments through 

a 63-µm sieve. Most of the samples contained less than 20 % sand except the samples from 

Gelting Bay, which all contained 40-90 % sand. Sandy sediments prevail in the coastal areas, 

whereas muddy sediments were encountered off Holnis Peninsula and to the east of Gelting 

Peninsula. In the inner fjord muddy sediments entirely dominate. All sediment samples 

contained ash and coal particles. 

2.4.2 ORGANIC COMPOUNDS 

ORGAN IC C AR BO N A N D TO TA L N IT RO GE N 

The content of organic carbon clearly increased from the outer to the inner fjord (Fig. 2.3). 

The  distribution  of  Corg  is  correlated   inversely  to  the sand  content  of  the  sediments    

(r = -0.685). With a mean value of 4 %, the highest Corg concentrations around 11.5 %, were 

recorded in Flensburg harbour, around the Flensburg sewage plant, and in sediments of 

Kupfermühle Bay at the mouth of Krusau river. Towards the Holnis Peninsula, the organic 

carbon content decreased to 3.3 % and was not correlated to the sand content (Appendix 2.6). 

Exceptionally low Corg values of 0.2-1.3 % characterize the sandy sediments offshore 

Figure 2.3 . Distribution of organic carbon, total nitrogen, biogenic silica and chlorophyll a in 

surface sediments of Flensburg Fjord. Dots indicate sampling stations. 
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Glücksburg (stations PF16-8 and -9) and Gelting Bay. Sediments of the outer deep fjord 

contained 3.8-4.2 % of organic carbon.  

Organic carbon accounts for 50-100 % of the total carbon throughout the Fjord, with the 

exception of Gelting Bay where organic carbon comprised 10-40 % of total carbon. The lower 

values seen in Gelting Bay are likely the result of intensive wave activity in the bay, which 

does not favour preservation of organic carbon or enriches the relative content of shell debris. 

Total nitrogen concentration in Flensburg Fjord sediments varied from 0.06 to 1.2 % with 

the lowest values in Gelting Bay and along the shore off Langballig, and with a distinct 

increase in the inner fjord (Fig. 2.3). The distribution pattern followed the distribution of 

organic carbon such  that  total  nitrogen  also  negatively  correlates  with  the  sand  content 

(r = -0.749).  

The C:N ratio in the sediment had a quite distinct distribution over the fjord, from 14 in the 

inner part to 6.8 in the outer fjord. The mean C:N ratio of 7.5, differed from the median 8.7 

due to a few data fliers. The large difference between mean and median values was observed 

for virtually all parameters, and seems to be a result of extremely different conditions in the 

Fjord. Surprisingly low values of C:N were measured in Gelting Bay, despite a substantial 

allochtonous organic matter input from rivers and agricultural watershed.  

BIOG EN IC SILICA AN D PIGM EN TS 

Sediments of Flensburg Fjord contain biogenic silica between 1.0 and 10.5 % with a mean 

of 3.4 %. The data show a maximum in the inner fjord with a seaward decrease, and minimal 

values were found in Gelting Bay (Fig. 2.3). Biogenic silica correlates significantly with 

organic carbon (Fig. 2.4) and chlorophyll a content (r = 0.862). 

Figure 2.4.  Relationships between biogenic silica and organic carbon, 

chlorophyll a and organic carbon contents in sediments of Flensburg Fjord. 
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We observed highly variable chlorine concentrations in sediments of Flensburg Fjord (150 

µg g-1 to 910 µg g-1), although the highest contents characterized only some stations in the 

inner fjord while the chlorine content in the rest of the Fjord did not exceed 300 µg g-1. 

Gelting Bay exhibits low concentrations of chlorine at 20 to 70 µg g-1. The chlorophyll a 

content in sediments ranged from 4.1 to 200 µg g-1 with a minimum at Gelting Bay (Fig. 2.3). 

Chlorophyll a concentrations exceeded 100 µg g-1 again only in the inner fjord.  

The ratio of phaeopigments to chlorophyll a, which indicates the degree of chlorophyll a 

decay and preservation of organic matter, varied from 3.3 in the inner fjord to 1.3 in Gelting 

Bay with 2.7 on average, which means that preservation was high. However at some stations 

in the inner fjord PF16-2, -6, -14 and –16 at sand portion less than 11 % pigment ratio 

exceeded 4.2 indicating low preservation. 

Trace metal 
Mean, 
µg g-1 

Median, 
µg g-1 

Range, 
µg g-1 

Correlation 
with sand (%) 

Correlation 
with Corg (%) 

Cu 45.1 24.4 2.3 – 194 -0.542 0.891 

Zn 137 111 10.4 – 438 -0.655 0.831 

Sn 4.15 2.45 0.3 – 18.1 -0.595 0.827 

Pb 40.3 29.5 6.30 – 158 -0.522 0.826 

2.4.3 HEAVY METALS 

The heavy metal content in sediments of Flensburg Fjord varies widely (Table 2.1, Fig. 

2.5). All the metals measured show significant correlation with organic carbon and the sand 

fraction (Table 2.1, Appendix 2.6). Consequently, the inner fjord sediments showed elevated 

metal levels whereas Gelting Bay sediments contain low metal concentrations. 

Unexpectedly, normalization of heavy metal content by Corg did not reveal any changes in 

the distribution of the metals (Newman and Walting, 2007). We thus suggest that there are no 

specific point sources of metals in the Fjord. Nevertheless, the metal content in the inner fjord 

deviates from the Corg -regression model (e. g. Cu; Fig. 2.6). In the outer fjord the metal 

content is proportional to organic matter and likely represents a natural situation whereas in 

the inner fjord metals less relate to Corg. In particular zinc and tin content could therefore be 

related to contamination from sport harbours and the shipyard situated in the inner fjord. 

Overall, the high concentrations of metals characterize only a few stations (Fig. 2.5). For 

Table 2.1.  Concentrations of trace metals (Cu, Zn, Sn, Pb) in the surface sediments of 
Flensburg Fjord in 2006 (n=20) and correlation coefficients with sand fraction and organic carbon. 
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example, Cu content higher than 50 µg g-1 was encountered at only 25 % of the stations and 

all of these were situated in the inner fjord. Only 20 % of the stations had Zn concentrations 

above 200 µg g-1 and 60 µg g-1 of lead. Tin content did not usually exceed 2 µg g-1, although 

reaches the levels above 5 µg g-1 at four stations in the inner fjord. 

The data on near-bottom water properties during the sampling period and concentration of 

variables in sediments are additionally presented in Appendix 2.2. 

 

2.5  Discussion 

2.5.1 PRESENT STATE 

The difference between surface and bottom water salinities in June 2006 points to the 

formation of a halocline throughout most of the fjord, with exception of Gelting Bay. 

Furthermore the salinity in 2006 was generally higher than the long-term summer average 

(Krug, 1963; GKFF, 1972b). These two facts imply that inflow of oxygenated saline water 

from the North Sea occurred, probably starting in April 2006 (MAEWEST, 2007). A thin 

oxidized top layer on sediments containing H2S from the inner fjord also points to oxygen 

exposure resulting from the inflow of oxygen-enriched salty waters. On the other hand, low 

oxygen contents in near-bottom waters as well as the presence of some H2S and the absence 

Figure 2.5.  Distribution of copper, zinc, lead and tin in surface sediments of Flensburg Fjord. Dots 

indicate sampling stations. 
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of bottom fauna may be recognized as a consequence of short oxygen depletion after 

formation of the halocline and water stable stratification. Similar summer oxygen depletions, 

accompanied by the absence of benthic organisms in sediments, were described by Wahl 

(1985) and Bluhm (1990) in the inner fjord. Nevertheless winter studies showed the presence 

of normally structured benthic community in the inner fjord compared to the summer absence 

(Bluhm, 1990) that was interpreted as recovery of the community under the favourable 

oxygenated conditions.  

The distribution of sediments apparently depends on water dynamics in the Fjord. In the 

inner fjord and central outer fjord muddy sediments have been deposited whereas in the 

dominantly erosive regime at Gelting Bay and off Holnis Peninsula one encounters mostly 

sandy sediments. Following the finer sediment pattern, the accumulation of organic 

compounds and pollutants is favoured in the inner fjord. 

2.5.1.1  ORGAN IC M ATT E R D IST RIBUTION A N D SOUR C ES 

The distribution of organic compounds in Flensburg Fjord reflects two features. The first is 

geographical settings and therefore significant differences in accumulation of organic matter 

in the outer dynamic fjord and in the restricted inner fjord. The second feature relates to our 

sampling in late spring, which is reflected in the elevated levels of organic compounds, and 

which depicts the recent phytoplankton spring bloom. The inner fjord sediments are highly 

enriched in organic matter compared to the outer fjord and in particular to Gelting Bay. Low 

levels of organic matter in eastern Gelting Bay are apparently linked to prevailing sandy 

sediments and strong wave erosion, whereas in the southern and the southwestern parts, they 

are caused by a lack of water mixture and low nutrients content (Exon, 1971; 1972).  

Moreover the enrichment of sediments in organic matter in the inner fjord mainly points to a 

higher productivity in comparison with the outer fjord (LANU, 2001a). Nevertheless organic 

matter levels in the sediments are still in the same range as organic carbon values of bottom 

sediments elsewhere in the Kiel Bight (Exon, 1973; Balzer, 1984; Gerlach, 1996; Leipe, 

1998).  

Organic carbon makes up 80 % of total carbon; though in places a large fraction of total 

carbon is occupied by the inorganic part, presumably represented by calcium carbonate. The 

enhanced portion of carbonates in sediments (11 % on average) is higher than usually in the 

southwestern Baltic Sea (Balzer et al., 1987; Brügmann and Lange, 1990). In particular, the 

values of 25-59 % carbonate are considered as not reliable. The apparent increase of inorganic 
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carbon may be caused by additional sources, most likely shell debris or coal and soot. 

The total nitrogen concentrations along with organic carbon are also high but of the same 

order as in other areas of the Baltic Sea (Balzer, 1984; Koop et al., 1990; Carman et al., 1996; 

Kauppila et al., 2005; Ellegaard et al., 2006). Enhanced concentrations of Corg and total 

nitrogen denote the high rates of sedimentation of organic matter together with high primary 

production and the high burial potential of sediments. 

The biogenic silica content describing the production of diatoms is much higher in the 

inner Flensburg Fjord than those reported by Emelyanov (1988) for sediments of the open 

Baltic Sea. Nevertheless, biogenic opal levels are comparable to those found elsewhere in 

eutrophied bays of the Baltic Sea (Conley and Johnstone, 1995; Carman and Aigars, 1997; 

Kaupplila et al, 2005; Vaalgamaa and Conley, 2008). 

In the Kiel Bight, the spring bloom usually fell on the beginning of March to April (Hickel, 

1967; Smetacek, 1980; Wasmund and Uhlig, 2003) but the maximum primary production in 

Flensburg Fjord was reported to occur in May (LANU, 2001a). The high levels of biogenic 

silica in the inner fjord in June are apparently linked to both phytoplankton bloom deposition, 

and the restricted water exchange in this area. The topographical restriction of the inner fjord 

and the shallow water depth inhibit silica export from this area. Silica is recycled and 

therefore may be available for diatom production (Raguenaeu et al., 2002), which is usually 

limited by the availability of dissolved silica in the water column. Moreover, the correlation 

of biogenic silica with chlorophyll a content (r = 0.862) in Flensburg Fjord sediment indicates 

a non-detrital but diatom origin of Chl a (Christiansen et al., 2000). Both silica and 

chlorophyll a, as is seen from their high content in sediments, were incorporated in the bottom 

sediments within a month from production. 

On the other hand, the extremely enhanced levels of biogenic silica in the inner fjord could 

also be explained by the input of fresh water diatoms through rivers and brooks (Conley, 

1997; Beucher et al., 2004). This hypothesis is supported by the enhanced Corg:SiO2 ratios in 

the innermost, high-depositional part of the Fjord (Fig. 2.4) indicating allochtonous organic 

matter input (Carman and Aigars, 1997). Indeed, the regression of biogenic silica and 

chlorophyll a on organic carbon (Fig. 2.4) showed that in the inner fjord an additional source 

of organic carbon must exist, either natural (river discharge), or anthropogenic in origin 

(sewage outlet, nutrient from agricultural drainage area and atmosphere). The same is 

reflected in high C:N ratios of 10-14 in the inner fjord showing that the organic carbon is 

mostly of terrestrial origin (Calvert and Pedersen, 1992). The portion of allochtonous organic 
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matter apparently decreased in the outer fjord where the C:N ratios varied between 7 and 8 

and approach the values of marine phytodetritus (Carman et al, 1996) in the outer fjord. These 

values are fairly low for such an area, but may be influenced by recent spring sedimentation 

of fresh organic matter (Graf, 1980).  

The concentrations of total pigments and chlorophyll a in Flensburg Fjord are as high as 

sediments elsewhere in the Baltic Sea, safe for the strongly eutrophied Danish fjords (Bianchi 

et al., 2002; Hansen and Josefson, 2003; Kauppila et al., 2005; Reuss et al., 2005). In the 

inner part of Flensburg Fjord they apparently refer to periodic suboxic conditions. They 

support preservation of pigments as the grazing by macrofauna is not so efficient because of 

its periodical diminution under oxygen depletion (Bianchi et al., 2000). On the other hand, 

good oxygenation and light conditions in Gelting Bay affect the rate of chlorophyll a loss by 

stimulating the activity of microbes and herbivores (Leavitt, 1993). 

The mean values of the phaeopigments : chlorophyll a ratio for the Fjord characterize 

sediments, which have been recently enriched by chlorophyll a. In the inner part, the values 

are comparable to those which depict the winter sediments with a high decay level of Chl a, 

or which were affected by resuspension and oxic conditions (Bianchi et al., 2002). However, 

the low ratios in Gelting Bay, which prevailed under oxic conditions, are enigmatic. The only 

explanation can be a generally low level of pigments due to the high hydrodynamic activity 

and also a lower productivity in the absence of nutrient recycling from bottom sediments 

(Exon, 1973). The latter might be responsible for low total concentration of pigments in 

sediments of this area (Leavitt, 1993; Reuss et al., 2005). 

2.5.1.2  HEA V Y M ET A LS PO LLUT ION 

The heavy metal concentrations in the sediments of Flensburg Fjord have a distinct 

distribution; they decrease from the inner to the outer part. In the absence of large point 

sources of heavy metals in the fjord the geographic and the hydrographic settings of the Fjord 

seems to be the main constraints of metal distribution. In the inner stagnant and restricted 

fjord, the highest levels of all metals occur, whereas in the dynamic, outer fjord, where sandy 

sediments dominate, the metal contents are significantly lower (Fig. 2.5). However, the 

regression model (Fig. 2.6) shows that the regional source of contamination should mainly 

affect the inner fjord, which is the sewage water, harbours and shipyards of Flensburg and 

Glücksburg cities. The absence of correlation between high levels of Corg and metals in the 

inner fjord reveals the parallel influence of scavenging by organic matter particle flow and 
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direct anthropogenic metal pollution. 

In the inner fjord the metal contents 

reach very high values, which are definitely 

higher than a “background” determined for 

coastal sediments in the western Baltic Sea 

(HELCOM, 1993). Sediments provide a 

temporally integrated indication of 

ecosystem state and pollution. The mean 

sedimentation rate derived from a core from 

the outer, deep Gelting Bay was 3 mm a-1 

(Müller et al. 1980). Therefore, the obtained 

concentrations of metals from the surface 

samples encompass the last 3-4 years, 

reflecting quite modern conditions. Heavy 

metal concentrations and distribution patterns of 2006 correspond well to the findings of the 

State Department for the Environment of Bundesland Schleswig-Holstein (Landesamt für 

Natur und Umwelt, LANU) in the year 2004 (LANU archive: Ostseemonitoring Programm). 

Overall, the metal levels are within the range for Kiel Bight (Leipe et al., 1998; Haarich et al., 

2003; Pohl et al., 2005). Comparing our results with pre-1880 concentrations from the core 

from Gelting Bay (Müller et al, 1980), a 6-fold enrichment of sediments in Zn and a 8-fold 

increase in Pb content were recognised for the inner Flensburg Fjord. However, since 1995 a 

slight decrease of Cu, Zn and Pb concentrations was observed (LANU archive: 

Ostseemonitoring Programm). 

The distribution pattern of lead is mostly not affected by sewage outlets and harbours or 

fine sediment distribution, but mostly by the input from the atmosphere (Brügmann, 1996), 

and therefore has a more uniform pattern. Copper contents also show some increase above 

background level (HELCOM, 1993) in the inner fjord, but remained low in the outer fjord and 

Gelting Bay. Tin levels in the outer fjord sediments are comparable to ones from the western 

Baltic (Cato and Kjellin, 2005), whereas in the inner fjord the tin concentrations are much 

higher and even exceed levels of Kiel Fjord (Nikulina et al., 2008). The latter is possibly 

influenced by yacht harbours and shipbuilding industry because until recent times Sn was 

used in antifouling paints (IMO, 2005). In this way, Flensburg Fjord can be considered 

polluted only in its inner part that is determined by diffusive, non-point sources and 

Figure 2.6.  Relationships between organic 

matter and copper content in sediments of the entire 

Flensburg Fjord (A), in the outer fjord (B) and in the 

inner fjord (C). 
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hydrographical conditions.  

2.5.2 Reassessment of Flensburg Fjord 

2.5.2.1  ORGAN IC M ATT E R SU PPLY AN D EUT RO PHICAT IO N 

In comparison with data from samples taken in 1972 (GKFF, 1973a), organic carbon and 

total nitrogen concentrations measured in 2006 did not significantly change throughout the 

Fjord (Corg: paired t-test, p=0.225; TN: paired t-test, p = 0.150) although some discrepancies 

were observed at particular stations. The distribution pattern remains the same and is in good 

agreement to ones described eventually in different parts of the Fjord (Exon, 1971; Lorenzen, 

1987). The median values for Corg and TN are very similar. However, the variability of 2006 

data was significantly higher (Fig. 2.7). This is probably due to additional stations sampled 

(Fig. 2.1). Alternatively, the topmost 3-centimeters sampled in 1972 introduce a higher 

integration over several years and, by that, reduces the noise in the data set as well as 

represents layers with more decayed organic carbon than in the uppermost centimeter. 

Nevertheless, a marked increase (up to 200 %) in the amount of organic matter in 2006 

comparing to 1972 in the inner part of the Fjord is revealed (Fig. 2.7, Appendix 2.3). 

The reason for such changes might be an increase of primary production in this area, 

enhanced sedimentation and input of organic matter, which cannot be completely decomposed 

in bottom sediments. Moreover, the preservation of organic carbon in sediments under 

hypoxic-anoxic conditions may cause organic carbon enrichment (Virtasalo et al., 2005). This 

is plausible, as in the inner part of the Fjord oxygen depletion events were regularly 

Figure 2.7 . Organic carbon and total nitrogen in surface sediments of 

Flensburg Fjord in 1972 (GKFF, 1973a) and 2006 (this study). 
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encountered (Kändler, 1963; Kremling et al., 1977; Wahl, 1984; LANU, 2003). On the other 

hand, the inner fjord also shows an increase in total nitrogen (Fig. 7). However, under anoxic 

conditions, nitrogen is more efficiently metabolized by denitrifying bacteria leading to a loss 

of nitrogen as gas or ammonia to the water column and to the atmosphere (Balzer, 1984; 

Seitzinger, 1988; Koop et al., 1990; Canfield, 1994). Numerous studies showed no significant 

difference in rates of organic matter decomposition under oxic and reduced conditions 

(Jahnke, 1990; Calvert and Pederson, 1992; Cowie and Hedges, 1992; Henrichs, 1995). Thus, 

obviously, still high production stimulates the accumulation of organic carbon even though 

the external input of nutrients in the Fjord significantly decreased for the last decades 

(DDTFF, 1993; LANU, 2001a).  

An internal forcing may be the alternative explanation. In the restricted inner fjord the 

settled nutrients may become available again for plankton growth after storm events topping 

up externally added nutrients (DDTFF, 1993; Meyer-Reil and Köster, 2000; Kauppila et al., 

2005). A decomposition of the dead benthic fauna after anoxic events might be an additional 

source of nutrients, for instance phosphorous (Fallesen et al, 2000). The transition from oxic 

to anoxic conditions in the surface layer of sediments also induces the mobilization and 

release of phosphates bound to trivalent iron in the overlying waters (Gerlach, 1988) although 

this process is reversible under oxic conditions. Indeed, the concentration of nitrogen and 

phosphorous in the water column did not change in line with the external nutrient input 

(DDTFF, 1992; LANU, 2001a), which suggests an internal source. Further, the high C:N 

ratios in the inner fjord suppose that the organic matter contains some compounds (e.g. lignin) 

which anaerobic microorganisms can not metabolize quickly (Cowie and Hedges, 1992; 

Calvert and Pederson, 1992; Canfield, 1994). Hence, this terrestrial organic carbon has a 

higher potential to be preserved in marine sediments and contributes in the generally high 

content of organic carbon.  

2.5.2.2 HEAVY METAL TRENDS 

The comparison of average metal contents as well as t-tests on significant differences 

between 1972 and 2006 showed that only the lead concentrations had changed significantly 

(paired t-test, p=0.027). Copper and zinc content did not show any changes through time 

(paired t-test, Cu: p=0.882, Zn: p=0.230). Although the medians of 1972 and 2006 are very 

close for Cu and Zn, at isolated stations we observed strong variations of metal content (Fig. 

2.8, Appendix 2.2 and 2.3), which was probably due to the patchiness of sediment samples. 

The distribution pattern of all metals remained constant over the observed period of time, 
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which means no changes in sources distribution as well as the absence of large point sources 

for heavy metals. The high concentrations of metals in the inner fjord in 1972 thus had the 

same causes as at present time. Owing to high water dynamics Gelting Bay showed the lowest 

metal concentrations, similar to 1972. However, the common enrichment of Baltic Sea 

sediments by metals leads to enhanced levels of metal concentrations today if we compare 

2006 and 1972 values to those from 1880 as being preserved in the nearby core (Müller et al., 

1980). 

The changes in lead content are noticeable in Flensburg Fjord for the last three decades, 

though in the Baltic Sea overall, no trend in metal content was detected through time (Pohl et 

al., 2005). The similar decrease of lead was observed in sediments of Northern America lakes 

in twenty years after the significant reduction of lead levels in atmosphere (Callender and Van 

Metre, 1997). Atmospheric transport and surface runoff together with boating and shipping 

industrial activities are considered as the main sources of lead in the Baltic (Nriagu, 1978; 

Brügmann, 1996). As such, the decrease of lead in sediments of the enclosed fjord is 

apparently associated with ban on gasoline lead additives. 

Figure 2.8.  Heavy metal concentrations in Flensburg Fjord sediments in 
1972 (GKFF, 1973a) and 2006 (this study). 
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2.6  Conclusions 

The distribution of both organic compounds and heavy metals in Flensburg Fjord are 

mostly constrained by natural conditions, such as geographical settings and water exchange. 

Generally, the high concentration of organic matter in Fjord sediments did not significantly 

change since the protection measures applied and sewage discharge was reduced in the 1980s 

and 1990s. Apparently, the high levels of intensive nutrient discharges in the inner fjord until 

the end of 1970s still support the primary production rates and organic matter supply in the 

inner fjord. The nutritional conditions in the outer fjord have remained the same over the last 

decades and are comparable to the open Kiel Bight. The inner fjord is a depositional area, 

where recycling of organic matter occurs, and not a sealed sink. 

We suggest that under the efficiently decreased anthropogenic nutrient input, natural cycles 

of oxic and anoxic conditions regulate the amount of primary production in the system and 

mitigate the eutrophication in the inner Flensburg Fjord. Denitrification under suboxic 

conditions is intensified because nitrate is still available, but oxygen is almost depleted 

(Nixon, 1981; Gerlach, 1990). This leads to nitrogen loss from sediments, decrease of its 

availability for phytoplankton and therefore less organic input into sediments and less 

hypoxia.  

The artificial oxygenation of near bottom water may help to support the denitrification and 

temporarily to diminish anoxia. Unfortunately, the oxygenation technology for brackish and 

salt water has yet not been developed for long-term implementation and remains energy-

consuming and expensive. It seems impossible to prevent anoxic events in the inner fjord and 

deep parts of outer fjord, where the water exchange processes play the main role. 

High levels of copper, zinc, lead and tin were observed in 1972 and 2006 even though no 

prominent point sources could be identified. The restricted water exchange and prevailing 

muddy sediments makes the inner part a depositional area favouring metal enrichment and 

concentration of pollutants. Nevertheless, the levels of lead decreased in the whole fjord since 

1972 due to the banning on lead-containing gasoline additives. The outer Flensburg Fjord as 

well as Gelting Bay may be considered as essentially non-polluted areas for the last three 

decades. The heavy metal levels in the inner Flensburg Fjord will most likely not substantially 

improve in the near future. Apparently even the reducing of metal concentrations in the 

discharges from sewage systems and shipyards will not give a successful result on a short-

time perspective.  

We speculate that the development of anoxia on seasonal scale in Flensburg Fjord due to 
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water stagnation and high productivity may be helpful in understanding the development and 

consequences of anoxia in the Baltic deeps at present time, or on a geological scale, the 

oceanwide stagnation periods during the Miocene and Cretaceous. Though the reasons for 

onset of anoxia and eutrophication may be temperature rise due to high CO2 content (Wilson 

and Norris, 2001), nutrients input due to sea levels change (Jenkyns, 1980; Filippelli et al, 

2003), which leads to high productivity and carbon burial, or water stagnation (Neumann et 

al, 1997; Matthäus et al, 1999), the processes involved are similar in all scales. Enhanced 

primary production and/or water stagnation cause a lack of oxygen in near-bottom water. 

Oxygen deficiency impedes nitrification and favours denitrification in sediments and in the 

water column. Meanwhile, the demand of nitrate for phytoplankton growth is partially 

compensated by N2 fixation in near-surface waters at the absence of external inputs. At 

greater depths, the return of nutrient nitrogen from deep anoxic waters to the photic zone is 

cut off by denitrification and anaerobic ammonium oxidation (Kuypers et al., 2004). This 

discontinuity in the nitrogen cycle together with changes in carbon cycle may decrease 

productivity in the water column and therefore anoxia. However, apparently only changes in 

deep circulation may bring down the anoxia induced and maintained by the stagnation itself. 
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Abstract 

The dating of sediments is an integral part of the sedimentary core studies. The recovery of 

chronology in recent sediments is often complicated by a variety of processes affecting the 

distribution of 137Cs and 210Pb, used for the age determination within the last hundred years. 

Several age models were created for a core from the outer Kiel Fjord because of the 

ambiguous profile of 137Cs and the irregular downcore distribution of 210Pb. The most feasible 

model showed that the upper 10 cm of sediments cover the last 70 years with slight changes 

in sedimentation rates. The radiocarbon dating of bivalve shells in the lower part of the core 

revealed that 40 cm of sediments were deposited during 550 years with 0.3 mm a-1 between 

years 1930 and 1600 and 1.5 mm a-1 in the period from 1460 to 1600. Changes in erosion 

intensity, runoff and primary production induced by eutrophication together with recent 

anthropogenic coastal protection activity may be the reasons for such variations in 

sedimentation rates. 

3.1  Introduction 

The dating of sediments is a tool for time interpretation of geochemical or biological 

sedimentary records. The determination of the sedimentation rates gives a clue to sedimentary 

processes in particular area. In recent sediments exposed to different kinds of disturbances, 

especially in dynamically active areas, the recover of age and sedimentation rates may be a 

challenge. A number of methods, which can be used for dating of the recent sediments, are 
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limited. To get a chronology with a high resolution, the several chronological techniques are 

applied independently or together. 

The lead-210 method is generally used (Krishnaswami et al, 1971; Robbins, 1978) for 

dating and determination of sedimentation rates in recent sediments deposited during the 19th 

and 20th centuries. In ideal case, the sediments should necessarily be undisturbed for instance 

by bioturbation or physical mixing, and the complete sediment profile should be sampled 

without loss of sediments from the core (Geyh and Schleicher, 1990).  
210Pb occurs naturally as a radionuclide of the 238U decay series. The decay of 226Ra in soils 

and crust material produces gaseous isotope 222Rn, which diffuse to the atmosphere and 

decays through a series of short-lived radionuclides to 210Pb, which in turn is washed out from 

the atmosphere by precipitation. 210Pb falling directly into the ocean or drained from 

hinterlands is scavenged from the water column and is deposited with sediments (Appleby 

and Oldfield, 1992). Excess (unsupported) 210Pb in sediments over those in equilibrium with 

in situ 226Ra decays according to the radioactive decay law. Thus, the time passed since the 

particles were at the sediment surface can be calculated from the decrease of excess 210Pb with 

depth. The excess 210Pb activity is usually determined by subtracting 210Pb supported (the 

activity derived from 226Ra) from the total 210Pb activity (in Bq kg-1). 

However, in order to assess the applicability of the 210Pb chronology an independent dating 

technique is highly recommended, for instance sediment records of anthropogenic 

radionuclide 137Cs and 241Am or furthermore completely independent stratigraphic markers as 

ash layers from steamships, storm layers or specific contaminants introduced to the 

environment (Cantwell et al., 2007). 

In contrast to 210Pb, the 137Cs method is a radiochemical stratigraphical approach where 

distinct 137Cs peaks are historically identified and used as absolute time marker at the position 

of highest anomaly. In Northern Hemisphere two distinct 137Cs fallout events are 

distinguished: the atmosphere fallouts during the nuclear bomb testing from 1957-1964 with a 

maximum in 1963 and Chernobyl reactor explosion in 1986 (Appleby, 2001). Furthermore, in 

the North Atlantic, Sellafield radionuclide discharges in 1971-1973 contributed in 137Cs 

concentrations in sediments (Christiansen and Kunzendorf, 1998; Kunzendorf, 1999). These 

anthropogenic 137Cs incorporate in sediments and can be detected. However the application of 
137Cs as independent marker is sometimes complicated by similar problems as for 210Pb due to 

broadening of peaks as a result of bioturbation, erosion and resuspension of sediments. This 

implies to difficulties to verify all potential peaks. The comparison of 137Cs record in 
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sediments with monitoring data on 137Cs supply to the water column is therefore useful for 

verification. 
137Cs dating technique is limited to the last 50 years. The half-life time of 210Pb constrains 

the application of this method to 150 years. To estimate the age of sediments deposited 

earlier, the radiocarbon method is used. Radiocarbon dating is based on the presence of an 

equilibrium ratio of R(0) = 14C/12C in the carbon cycle. Organisms taking up carbon during 

their life, for instance molluscs, obtain and fix in their cells the equilibrium value from the 

environment. The exchange with the environment and also the uptake of 14C stops after the 

death of the organism. Because of the decay of 14C, the 14C/12C ratio decreases exponentially 

according to the half-life of radiocarbon. From the remaining ratio at a certain time after 

death, we may calculate the age of the material. However, the equilibrium ratio is not 

everywhere the same in the ocean, because of the dissolution of old carbonates from 

sediments or mixing with old or stagnant water masses (Waelbroeck et al, 2001). This causes 

apparent age differences known as reservoir ages. Although in a marine environment the 

average reservoir age is 400 years, one should account to regional differences. 

Several chronological techniques give a more precise result, but may complicate the 

establishment of an age model. The objective of this study was to detect whether 137Cs fallout 

events and discharges left the traces in the sediments of Kiel Fjord and are reliable 

independent markers to accomplish the 210Pb age model. To extend the chronology in deeper 

sediment layers, the radiocarbon dating was applied to bivalve shells found in the sediments. 

The established chronological model helps to attribute the results of my geochemical study to 

certain time intervals and better interpret causes and consequences of environmental changes 

in Kiel Fjord. 

3.2  Environmental settings 

Kiel Fjord is narrow and shallow bay of the Kiel Bight, which is open to the Baltic Sea 

(Fig. 3.1a). The inner Kiel Fjord is partially isolated from Kiel Bight by shallow Frisdrichsort 

Sound. Hydrographical conditions of the outer Kiel Fjord are comparable to those for the 

open Kiel Bight. The water depth in the outer fjord varies from 17 to 25 m. Salt-water inflows 

from the North Sea almost annually reach Kiel Fjord and refresh water in the deep channels 

increasing salinity and oxygen content. The near-bottom current carries the water from Kiel 

Bight in the inner fjord along the west coast, whereas the less saline surface water flows out 

from the fjord along the east coast (Themann, 2002). 
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Kiel Fjord was formed during the Saale Glaciation and attained its final shape as glacier 

tongue basin through several ice advances during Weichselian (Schwarzer and Themann, 

2003). The topographical highs surrounding of Kiel Fjord were created by Late Quaternary 

oscillating ice advances. 

The main source of sediments is Pleistocene till. It forms the sea bottom and make up the 

cliffs in Kiel Bight. Other sources of sediment material are fluvioglacial sands, glacial-lake 

mud and Holocene sediments. The near-shore transport of sediments is mainly directed into 

the inner fjord (Fig. 3.1b). Thus, the inner fjord is the depositional area with fine sediments, 

whereas the outer Kiel fjord has coarse-grained partially sorted or lag sediments on erosive 

shoals. 

3.3  Methods 

3.3.1 SAMPLING  

Three cores were taken at the location 54° 25.235’N 10°12.709’W in the outer Kiel Fjord 

at depth 14.9 m, PF1738a, PF1738b and PF1838. Master core PF1738b of 40 cm length was 

used for geochemical investigations related to time (Chapter 4). Core PF1738a of 20 cm 

length was subjected to chronological analysis to establish the age model and sedimentation 

rates in the upper 10 cm. 

For sampling a Rumohr corer (a type of a lot corer) with plastic tube diameter 5.5 cm was 

used. A small diameter of tube could result in disturbance of the upper part of the core 

(Farmer, 1991) and compaction in the lower part. However, the core showed good sequences 

Figure 3.1 . Overview of the western Baltic Sea (a) and location of sampling site in Kiel Bight (b). 

Depth counters in meters. The arrows designate the main directions of nearshore sediment transport in 

Kiel Bight (Sterr, 1998). 
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of layers.  

The core PF1738a was sliced in 0.5 cm down to 5 cm, and in 1 cm down to 10 cm. The 

slices were frozen and freeze-dried. 137Cs and 210Pb activities were measured in bulk 

sediment. Considering expected sedimentation rates of approximately 1 mm a-1 (Erlenkeuser 

et al., 1974; Balzer et al., 1987) estimated for this part of the Baltic Sea and the half life of 
137Cs (30.17 years) the sub-sampling strategy is aimed for steps integrating 5 and 10 years at 

maximum, depending on the down-core position. Overall, the sediments shallower than 10 cm 

should present the beginning of the twentieth century and potentially recover pre-Chernobyl 

imprints like Sellafield discharges and prior nuclear bomb tests.  

Furthermore, two bivalve shells were picked in core PF1738b at 18-20 cm and 38-40 cm 

depth for radiocarbon analysis. The master core and additional core for geochronology were 

correlated by their lithostratigraphy (Fig. 3.2). The chronological model constructed for 

PF1738a was then projected to core PF1738b and expanded to 40 cm. This age model was 

applied to the geochemical investigation. 

3.3.2 210PB  AND 137CS 

The first geochronological approach was focused on the identification of 137Cs anomalies 

as absolute marker in the sediment sequence, especially of the pronounced and widespread 

impact of the Chernobyl disaster (AD 1986).  

The non-destructive counting of gamma-ray activity was chosen as analytical method. It 

allows measuring simultaneously several gamma radionuclides in a sample, keeping the 

sediments undamaged and suitable for further analysis (e.g. geochemical or foraminiferal 

studies) although this does not give highly precise 210Pb records, at least on that given small 

sample amounts. The samples were analysed for 210Pb, 137Cs and 226Ra at the Labor für 

Radioisotope am Institut für Forstbotanik, University of Göttingen, using a low-background 

coaxial Ge(Li)detector. 210Pb was measured via its gamma peak at 46.5 keV, 137Cs via its 

gamma peak at 661 keV and gamma peak of 226Ra via the granddaughter 214Pb at 352 keV. 

Two standard simple models have been developed to calculate 210Pb dates (Appleby and 

Oldfield, 1992). The constant initial concentration (CIC) model assumes that sediments have 

a constant initial 210Pb concentration regardless of accumulation rates, and therefore the 

supply of 210Pb to the sediment record must vary directly in proportion to the sedimentation 

rate (Geyh and Schleicher, 1990). The constant rate of supply (CRS) model is usually applied 

to sites where sedimentation rates are not uniform (Appleby, 2001) resulting in changes in the 
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initial excess 210Pb concentrations. The dates of older sediments are calculated not from their 

present concentrations but from the distribution of 210Pb in the sediment record.  

The alternative method of age determination with 210Pb is a linear interpolation, in which 

the constant flux of 210Pbexc at water-sediment interface as well as constant sedimentation rate 

at certain core intervals are assumed. The age between intervals is estimated by using linear 

interpolation (Sharma et al., 1994; Brack and Stevens, 2001). The activity on top and bottom 

of a certain interval is determined as x-intercept of a regression line. The age is calculated 

according to the equation of radioactive decay: 

T = 1/λ ln (A0/At), 
where A0  and At are activities on the top and bottom of interval respectively and λ is the 

constant of radioactive decay equals to 0.0311 s-1 for 210Pb.  

The validation of lead chronology was based on the profile of the anthropogenic nuclide 
137Cs derived from the nuclear tests, nuclear power plants and related hazards. In the Baltic 

Sea, three 137Cs anomalies are distinguished in sediments: in 1963 related to atmosphere 

fallouts during the nuclear bomb testing, in 1986 because of the Chernobyl disaster, and in 

1971-1973 linked to Sellafield radionuclide discharges (Christiansen and Kunzendorf, 1998; 

Kunzendorf, 1999). The mean sedimentation rate on intervals was independently calculated 

from the sediment thickness between assumed dates derived from 137Cs profile. 

3.3.3 RADIOCARBON 

To extend the chronological model deeper in the core, the radiocarbon isotopes were 

measured in bivalve shells by accelerated mass spectrometry at Leibniz-Laboratory for 

Radiometric Dating and Stable Isotope Research at the University of Kiel. 

To prepare the samples for measurements, the adhering dust, detrital carbonate and organic 

surface coating were removed by 30 % H2O2 in an ultrasonic bath. Then samples were again 

cleaned with 15 % H2O2 in an ultrasonic bath. Cleaned samples were converted to CO2 by 

acidification of CaCO3 with 100% phosphoric acid at 90°C in an evacuated, flame sealed 

quartz tube. The sample CO2 was reduced to graphite with H2 on an iron catalyst, and the 

resulting graphite-iron mixture was pressed into aluminium target holder for the ion sputter 

source (http://www.uni-kiel.de/leibniz/index.htm). 

The 14C concentration of the samples was measured by comparing the simultaneously 

collected 14C, 13C, and 12C beams of each sample with those of Oxalic Acid standard CO2 and 

pre-Eemian foraminifera. Conventional 14C ages were calculated according to Stuiver and 
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Polach (1977), with a δ13C correction for isotopic fractionation based on the 13C/12C ratio 

measured simultaneously with the 14C/12C ratio. Both the counting statistics of the 14C 

measurement and the variability of the interval results were used to determine the measuring 

uncertainty. The larger of the two was taken as measuring uncertainty and completed by the 

uncertainty connected with the subtraction of “blank”. 

3.4  Results 

The sediments recovered in core PF1738a were perceptibly not disturbed and quite 

homogeneous. However, random changes in bulk sediment density were noted (Fig. 3.2d). 

That might indicate an absence of significant early compaction of the sediments in the core. 

The highest density was found in the uppermost layer apparently due to the artificial washing 

out of the fine fraction during sampling (Fig. 3.2d). The ship clinker is encountered in the 

whole sediment column. In the uppermost 8 cm, the amount of ship clinker is negligible, the 

ash and soot particles are small and not frequent. Below 11 cm depth, ship clinker particles 

are more common and getting larger, up to 1 cm in diameter (Fig. 3.2a). The occurrence and 

the size of ash particles from the steam shipping seem to be independent variables and may 

validate the dating of the core. 
210Pb has an irregular profile in the sediments, which does not well fit to logarithmic 

distribution (Fig. 3.2b, Appendix 4), but concentrations nevertheless rise upwards. In the 

uppermost centimeter, the activity of 210Pb decreases due to probable loss of sediments during 

coring. Therefore, the modern lead activity level was assumed as x-intercept of a regression 

Laboratory 
number 

Sample 
description 

Corrected 
pMC* 

δ13C(‰)** Conventional 
age, BP 

Conventional 
age, AD 

Calibrated 
age, AD*** 

KIA 36953 PF1738b-20,  

2.2 mg C 

92.35 ± 0.29 -1.46 ± 0.24 640 ± 25 1310 ± 25 1530-1650 

KIA 36954 PF1738b-40,  

2.5 mg C 

90.46 ± 0.27 -1.77 ± 0.16 805 ± 25 1145 ± 25 1430-1480 

*  Corrected pMC indicates the percent of modern (1950) carbon corrected for fractionation using the 13C 

measurement.  

** The δ 13C includes the fractionation occurring in the sample preparation as well as in the AMS measurement 

and therefore cannot be compared to a mass-spectrometer measurement. 

*** Calibrated age was calculated using Marine04 calibration curve and delta R=-67±66.  

Table 3.1 . The results of radiocarbon analysis of two bivalve shells  

from depth 18-20 and 38-40 cm in core PF1738b. 
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line. 137Cs shows a broad peak at 2.75 cm, a dominating peak at 5.5 cm depth, and two 

smaller peaks at 4.25 cm and 8.5 cm which are not clearly distinguishable from the baseline 

within the errors (Fig. 3.2c).  

Radiocarbon dating was consistent as both carbonate samples gave enough carbon and 

produced a sufficient ion beam for AMS measurements. The 13C values were in the normal 

range of marine carbonates in this area. Thus the results are considered reliable from the 

analytical side (Table 3.1).  

For radiocarbon chronology, the calibration of conventional years to calendar years was 

made with CALIB 5.0 Radiocarbon Calibration Programme based on the curve Marine04 

(Hughen et al., 2004) and delta R = -67±66 for correction on regional reservoir age. This delta 

R is the mean of data available for the south-western Baltic Sea (Marine Reservoir Correction 

Database) and is supposed to be reliable for Kiel Fjord too. The calibration revealed an age of 

AD 1596±25 for the layer 18-20 cm and AD 1460±25 – for the 38-40 cm layer. 

However, the uncertainty of plateau/shoulder in the Marine04 calibration curve from about 

AD 1550 to 1640 includes the calibrated interval. As such, the age of the slice extends from 

ca. AD 1530 to AD 1650 (P. Grootes, pers. comm.). The Marine04 calibration curve is very 

steep in the region about AD 1460, which does not allow precise calibration. The date of 38-

40 horizon indicates then interval from AD 1430 to 1480. 

3.5  Discussion 

3.5.1 137CS IMPRINT 

The uppermost 137Cs peak at the depth 2.75 cm records most probably the Chernobyl accident 

in 1986. It is the latest one in the profile and the shape of the peak is similar as in the cores 

described elsewhere for the Baltic Sea (Christiansen and Kunzendorf, 1998; Kunzendorf, 

1999; Christoffersen et al., 2007, Fig. 3.3). The shape of the upper 137Cs peak apparently links 

to upward and downward redistribution of 137Cs due to bioturbation (Farmer, 1990; Brack and 

Stevens, 2001), or to mobility of 137Cs under anoxic conditions in presence of NH4
+ as well as 

in coarse grained sediments (Sholkovitz, 1985; Crusius and Anderson, 1995). The shape of 
210Pb profile at this depth also implies some disturbance. 

Nevertheless the atmospheric transport and the discharge from the adjacent land contribute 

significantly to the 137Cs activity in Kiel Bight to create a pronounced peak after Chernobyl 

fall-out (Kautsky, 1981; Nies and Wedekind, 1987). The sedimentation rate in the upper 3 cm  
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is 1.3 mm a-1 on average estimated from the time span and thickness of sediments deposited 

during that time. The second prominent peak at 5.5 cm depth can be explained in two ways: 

Scenario 1 supposes that the large 137Cs peak at depth 5.5 cm corresponds to the global 

atmospheric fall-out due to the bomb testing with a maximum in 1963. Thus the 

sedimentation rate in the middle part of the core from 2.75 to 5.5 cm would be 1.2 mm a-1. 

Subsequently the small increase of 137Cs activity at 4.25 cm between 1963 and 1986 would 

correspond to the Sellafield discharges in 1971-1973. Whereas the 8.5 cm increase does not 

exceed the uncertainties of measurements and would be reduced below 5.5 mm. 

Scenario 2 refers the 5.5 cm peak to the year 1973 when the maximum of Caesium was 

observed in North Sea waters (Vintro et al., 2000). Thus the mean sedimentation rate between 

2.75 and 5.5 cm e.g. 1986 and 1973 would be 2.1 mm a-1. The slight increase of radioactive 

caesium at 8.5 cm sediment depth may be related to 1963 accordingly, and the mean 

sedimentation rate between 5.5 and 8.5 cm then would be 3 mm a-1. The smooth peak at 4.25 

cm in this scenario may be interpreted as formed due to “dilution” of signal. 

Some papers (Christiansen and Kunzendorf, 1998, Emeis et al, 2000) described enhanced 
137Cs levels in the sediment cores from the Baltic Sea Deeps, a sink of the North Sea inflow 

water, associated with Sellafield discharges (Fig. 3.3). When elevated activity of 137Cs was  

observed in the North Sea and the Kattegat, the monitoring of 137Cs in the surface waters of 

Kiel Bight did not show the increase of 137Cs activity in 1971-1973 (Helcom, 1991; BSH, 

2008). In the bottom waters, the increase in 137Cs content was detectable but very low in the 

Schlei mouth and off Kiel Fjord (Murray and Eicke, 1977, Kautsky, 1981). Indeed, the 

increase of 137Cs in  Kattegat water does not mean obligatory that one had enhanced 

concentrations of radionuclides in the waters of shallow Kiel Bight and Kiel Fjord because the 

inflow water bypass this area and is trapped in Gotland Basin and other deeps. Therefore, the 

first scenario with fallout events at ~3.0 cm and 5.5 cm sediment depth appears to be more 

plausible and provides the preferred geochemical age model. Scenario 1 reflects rather 

constant sedimentation rates around 1.3 mm a-1 whereas Scenario 2 implies continuous 

decrease from at least 3 mm a-1 to 1.2 mm a-1. 
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3.5.2 210PB CHRONOLOGY 

The choice of the appropriate model is crucial for 210Pb chronology. CRS model is the only 

one taking into account the variable sedimentation rates (Robbins and Erdington, 1975; 

Appleby and Oldfield, 1983; Appleby and Oldfield, 1992) as well as compaction and dilution 

of sediments. However, the CRS model cannot be used in the mixed layers (Farmer, 1991). 

Moreover, the CRS model has two requirements: precise measurements of 210Pb and the 

exactly identified depth of equilibrium between 210Pb and 226Ra (Joshi et al, 1988; Emeis et 

al., 2000). Thus, on the one hand for the unconsolidated sediments of the Baltic Sea the CRS 

model is more appropriate (Emeis et al., 2000), but on the other hand, Baltic Sea sediments 

are frequently disturbed (Gellermann et al., 1990). The non-monotonic 210Pb profile (Fig. 

3.2a) in the core from the outer Kiel Fjord points to the feasibility of the CRS model for age 

calculations (Appleby et al., 1986). In this case study, however, the use of the CRS model is 

constrained by the sampling strategy and the analytical method with major aim on 137Cs 

detection. This results in high depth resolution but little material is available for analysis due 

to small diameter of the core. The gamma-radioactivity method gave quite imprecise 210Pb 

concentrations (2σ 15-35 %). In turn, high uncertainty in 210Pb levels (Fig. 3.2a) and shallow 

measurement depth in sediments made it difficult to designate a level where 210Pb and 226Ra 

activity are in equilibrium. 

The age derived from the activities of 210Pb in the uppermost layer and in the lowermost 

layer according to the law of radioactive decay (linear interpolation model) showed that the 

Figure 3.4 . The 210Pb and 137Cs chronology of core PF1738a from the outer Kiel Fjord. CRS model 

dates were calculated according to Appleby (2001). Scenario 1 and Scenario 2 are described in text. SR – 

sedimentation rate. 
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10 cm of sediments cover a time span of about 70 years. In contrast, the CRS model with an 

assumption that at 9.5 cm the activity of 210Pb reaches equilibrium with 226Ra, showed the 

core bottom age to be 135 calendar years (Fig. 3.4). However the age derived from CRS 

model does not correlate to 137Cs derived dates in Scenario 1, whereas the correlation with 
137Cs in Scenario 2 is even worse. The sedimentation rates and age calculated by linear 

interpolation also did not well corroborate with the large 5.5 cm 137Cs peak. Therefore, the 

corrected age model was constructed by linear interpolation of excess 210Pb in the sediments 

between the known 137Cs dates. 

The part below 5.5 cm (year 1963) comprises about 30 years, when sediments accumulated 

with the rate 1.4 mm a-1. Linear sedimentation rates till 1963 were accepted from 137Cs dates 

in Scenario 1. Therefore the mean sedimentation rate in 10 cm depth of the core is about 1.3 

mm a-1. According to radiocarbon dates, the sedimentation rate below 10 cm decreases to 0.3 

mm a-1 with a subsequent increase to 1.5 mm a-1 from 19 to 39 cm (Fig. 3.5).  

The downcore distribution of coal and ash particles from steam shipping period confirms 

the developed chronology (Fig. 3.2a). After the 1940s only negligible amount of ash was 

encountered, whereas earlier than the 1920s a lot of ash and ship clinker particles were found. 

Indeed, the flourishing of the steam shipping fell on the period from the 1840s to 1920s, when 

steam ships transported the most of goods and passengers (Couper, 1972; Bunker and 

Ciccantell, 2005). In the 1860s, the 

amount of coal consumed in steam 

ships significantly decreased 

(Marshall, 1995). This decline is 

reflected in the gradual downcore 

increase of size and amount of 

ship clinker particles from depth 

12 cm to 20 cm where relatively 

large (>10 mm) slag pieces 

occurred.  

All obtained sedimentation 

rates are comparable to those 

derived from dating of sediment 

cores retrieved in different time in 

Kiel Bight and in the adjacent area 

Figure 3.5 . Composite chronology of core PF1738b based 

on 137Cs and 210Pb records in sediments and 14C dating of 

bivalve shells. SR – linear sedimentation rate. 
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(Erlenkeuser et al., 1974, Whiticar, 1978; Balzer et al. 1987; Müller et al., 1980; Brügmann 

and Lange, 1990). However the drastic changes in sedimentation rate along the core are 

unexpected, though an inhomogenity in the recent sedimentation rates was reported, for 

example by Balzer et al. (1987) for Eckernförde Bay.  

The largest part of the period of slow sedimentation fell into the Little Ice Age (Jones and 

Bradley, 1992; Grove and Switsur, 1994). It is showed (Nesje and Dahl, 2003) that at that 

time the winter precipitation over the Baltic Sea region was higher than at present time that 

should principally intensify the land runoff, suspension influx and sedimentation. However, in 

the cores PF1738 from Kiel Fjord this is not a case. Sedimentation rate variations are 

apparently induced by variations in erosion intensity while the main source of sediments in 

Kiel Fjord is erosion and redeposition of material from coastal cliffs built by Pleistocene till 

(Seibold, 1971). On the other hand, the compaction may partially be responsible for changes 

of linear sedimentation rates though the fluctuations of bulk density of sediments along the 

core provide no evidence for it (Fig. 3.1c).  

3.6  Conclusions 

The irregular distribution of 210Pb through the core together with the ambiguous profile of 
137Cs made the construction and validation of age model difficult. The linear interpolation of 
210Pb profile between the known 137Cs dates of Chernobyl accident and most probable 

imprints of bomb testing fall-out was chosen to calculate the age of the core whereas the 

Sellafield discharges imprint was unclear. Ten centimetres of the core correspond to 70 

calendar years. The distribution of clinker and ash from steamship period in the core supports 

the obtained chronology in the upper 10 cm. The linear sedimentation rate was virtually 

constant for this time span with a mean value of 1.3 mm a-1. Before the 1900s the 

sedimentation rate estimated from radiocarbon measurements was much slower on average 

0.3 mm a-1, whereas in period from ~1460 to ~1600 the sedimentation rate was maximum for 

this core 1.5 mm a-1. The fourfold decrease of the sedimentation rate during the Little Ice Age 

is unclear. At that time the precipitation over the Baltic region was higher, thus the land 

runoff and erosion of cliffs were more intensive that should lead to the increase of 

sedimentation rates, but it is not the case for core PF1738. 
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Sedimentary record of anthropogenic  

impact versus  natural changes 

 in Kiel Fjord 

 
 
 
 
 
 
 
 
 
 
 
 
Abstract 

The distribution of organic matter, trace and minor elements as well as grain-size 

distribution were analysed in a core from the outer Kiel Fjord. The organic matter and trace 

elements, immobile and redox-sensitive species showed an upward decrease from the base of 

the core corresponding to 1600-1700 AD to the water-sediment interface. This decrease on a 

first instance is apparently explainable by a dilution effect caused by the upward coarsening 

of the sediments and the increased sedimentation rates in the twentieth century. The periodical 

oxygenation of the sediments also contributes to the observed downward redistribution of 

redox-sensitive metals. The general coarsening of sediments in the upper part of the core 

might be caused by coastal protection measures reduced cliff erosion, which diminished the 

availability of the fine-grained detrital sediment. 

The intensive eutrophication due to sewage input in the 1940-1970s is reflected in the 

accumulation of organic carbon and nitrogen in the core. The elevated fluxes of trace metals 

during the late 1930s correspond to the period before the Second World War, when active 

shipbuilding and harbour construction occurred in the inner Kiel Fjord. Copper and zinc also 

exhibit an anthropogenic enrichment in the 1970-1990s, whereas Pb, Sn and Cd 

concentrations are apparently unaffected by anthropogenic activity during this time. The 

distribution of redox-sensitive elements in the core implies that no long-term anoxic events 

have occurred in the outer Kiel Fjord during the last centuries. It is shown that the U:Mo ratio 

may serve a suitable indicator to reconstruct past bottom water oxygen conditions. 
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4.1  Introduction 

In the Baltic Sea, eutrophication and anthropogenic pollution are major concerns (Helcom, 

2002). Pollution in coastal waters results in the accumulation of harmful substances in the 

sediments, water column and biota (Brügmann and Lange, 1990; Olsson et al., 2002; Gerlach, 

1996; Rheinheimer, 1998). Anoxia and hypoxia of the sea bottom and changes in community 

structure and abundance of biota may also occur (Weigelt, 1987; Bonsdorff, 2002; Wasmund 

and Uhlig, 2003). Sediments provide a temporally integrated record of such environmental 

changes and are valuable archives of eutrophication and pollution trends in coastal areas, in 

particular where high sedimentation rates allow high-resolution sampling. Moreover, rapid 

sedimentation provides minimal diagenesis and the preservation of the signatures of the 

pollutants (Callender, 2000). 

In the western Baltic Sea one of the first studies of recent sediments (Erlenkeuser et al., 

1978; Balzer et al., 1987) was carried out in Eckernförde Bay and revealed strong 

anthropogenic enrichment in copper and zinc in comparison with the preindustrial 

background as a result of contamination by ship clinker and combustion of fossil fuel. Later, 

Brügmann (1990) and Borg and Jonsson (1996) investigated the cores from the Baltic Sea and 

showed the enrichment of trace metals and organic carbon near the surface of the cores but 

the degree of enrichment varied between the sites depending on their depositional regime. A 

core from Lübeck Bight (Leipe et al., 1998) revealed synchronously enhanced levels of 

organic carbon and lead, copper, and cadmium in a distinct subsurface layer indicating the 

remediation of environmental conditions during the last decade after the diminution of 

pollutant discharges. 

Early studies focused on trace metals as main pollutants, but in the 1990s Danish estuaries 

(Clarke et al., 2003), Swedish fjords (Blomqvist et al., 1992), Norwegian fjords (Brack and 

Stevens, 2001) and the Gulf of Finland (Kauppila e al., 2005; Vaalgamaa and Korhola, 2004) 

have received attention by studies to assess the sewage history, eutrophication and to quantify 

changes in nutrient concentrations. Recent studies in the Baltic Sea use a multi proxy 

approach comparing the chemical composition of sediments with organic remnants and the 

history of human disturbance (e.g. Ellegaard et al., 2006).  

Many studies assumed rapid transport of organic matter and metals associated with the 

settling of inorganic particles and biogenic detritus from the water column to the bottom, as 

well as a little or no postdepositional disturbance of the sediments (Farmer, 1991). However, 

the distribution of contaminants under anoxic conditions (Piper, 1971; Paetzel et al., 1994; 



4. Sedimentary record 
 

 59 

Adelson et al., 2001) showed that redox changes in the sediments can lead to a redistribution 

of trace elements. This can be misinterpreted as human impact, for example, extremely high 

levels of copper and cadmium appeared of diagenetic origin rather than anthropogenic. 

Therefore, some trace elements such as Cd, U, Mo, V have attracted attention as potential 

tracers of past redox conditions in the sediment and the water column (Calvert and Pedersen, 

1993; Rosenthal et al., 1995; Crusius et al., 1996; Morford and Emerson, 1999; McManus et 

al., 2005; Tribovillard et al., 2006). 

The sediments of bays and fjords of the western Baltic Sea has been extensively 

investigated (Müller et al., 1980; Balzer et al., 1987; Leipe et al., 1998), but Kiel Fjord was 

not addressed by complex studies despite a long history of human impact.  

Here I study the geochemical composition of a sediment core taken from the less 

anthropogenically disturbed outer part of Kiel Fjord. To analyse the eutrophication trend in 

comparison with sewage discharges in Kiel Fjord, organic matter compounds were traced in 

the core. The development of shipbuilding, harbours growth, ship traffic and urban runoff are 

supposed to be reflected in the abundance of trace metals such as copper, zinc, lead, tin and 

cadmium. The record of manganese, iron, uranium, molybdenum and vanadium is interpreted 

to reflect the oxygenation of water column. These records and the chronostratigraphy of the 

sediments help to understand, which factors have mainly governed the distribution of 

anthropogenic metals and the overall accumulation of substances in the sediments of Kiel 

Fjord. The degree of correlation between pollutants and the activity of the local industry and 

urbanization combined with the natural variability provide insights into the sensitivity of the 

system to different perturbations. 

4.2  Environmental settings 

4.2.1 BATHYMETRY AND HYDROLOGY 

Kiel Fjord is a shallow narrow bay within the Kiel Bight (Fig. 3.1, Fig.4.1). Although the 

Kiel Bight is enclosed to the west and south, it is exposed to the influx of highly saline 

Kattegat waters from the northwest and less saline waters from the Baltic proper. Water in 

Kiel Bight is mesohaline and due to the relatively shallow depths the density structure of the 

water column is salinity- rather than temperature- dependent. The water depth in the outer 

fjord varies from 17 to 25 m. Inflows from the Kattegat reach Kiel Fjord almost annually and 

refresh the water bodies in the deep channels by increasing their salinity and oxygen content. 

Kiel Fjord is well stratified during the summer period and less stratified during winter and 
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spring. During May and June, a clear halocline at 8 m depth separates bottom- from surface-

water. While the inner fjord is dominated by relatively fresh and stagnant waters, hydrological 

conditions in the outer fjord are similar to those in Kiel Bight. The near-bottom currents 

transport water from Kiel Bight into the inner fjord along the west coast, whereas the less 

saline surface water flows out of the fjord along the east coast (Themann, 2002). 

During the season from September to March when winds from northeast prevail, the 

influence of waves and erosion are significant along the western coast of the outer Kiel Fjord 

while along the eastern shore the wave effects are poor (Schwarzer and Themann, 2003).  

4.2.2 SEDIMENTS 

The coastline of the inner fjord is overbuilt and used for shipyards, ferry terminals and 

harbours. Nevertheless some natural coast sections exist along the outer fjord comprising 

active and inactive cliffs, lowlands and some sandy beaches. The nearshore sediment 

transport is mainly directed from North and South into the fjord (Kachholz, 1982; Schwarzer 

and Themann, 2003, Fig. 3.1).  

Pleistocene till forms the sea bottom and builds the cliffs surrounding Kiel Bight. The till is 

the most prominent source of sediment in this area. It consists mostly of quartz, feldspar and 

clay minerals. Additional sources of material are fluvioglacial sands, glacial lake mud, and 

Figure 4.1 . Location of the sampling site and distribution of sediments 

in Kiel Bight. The sediment type map is modified after Babenerd and 

Gerlach, 1987 and Kögler and Ulrich, 1985. For bathymetry and nearshore 

sediment transport see Fig. 3.1. 
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Holocene sediments (Seibold et al., 1971). 

In general, two types of sediments occur in the outer fjord (Fig. 4.1). At water depth of 

more than 15 m, sediments contain up to 70 % of silt and clay with high contents of organic 

compounds prevailing. At shallower depth sandy sediments with a silt and clay content less 

than 35 % dominate (Seibold et al., 1971). The heavy ship traffic is supposed to affect 

sediment distribution in the shallow parts (Schwarzer and Themann, 2003) but at depth of 15 

m and below the sediments should not be affected.  

4.2.3 PRODUCTIVITY 

In terms of productivity, Kiel Bight and Kiel Fjord are considered as mesotrophic areas 

with an annual primary production of 125-175 g m-2 y-1 (Wassmann, 1990; Smetacek, 1980). 

Only a third of this organic matter reaches the sea floor and is incorporated in the sediments 

(Smetacek, 1980). 

4.2.4 ANTHROPOGENIC LOAD 

The human activity on the coasts of Kiel Fjord started early (Fig. 4.2). At the beginning of 

the 19th century Kiel was a small town with 30 thousand inhabitants, living mostly of fishing 

and agriculture. In 1838, the foundry was established together with a ships’ repair workshop 

which was the beginning of Howald Deutsche Werft, one of the largest shipyards in Germany. 

In the 1870s Kiel was chosen as a center of Prussian Navy and started to grow and develop 

the harbours. In the 20th century the population of Kiel increased by a factor of eight in 

comparison with the beginning of 19th century. 

However, all domestic wastewaters were still released directly in the fjord without 

treatment. The increase of particulate organic matter and nutrients input stimulated primary 

Figure 4.2 . Timescale showing the time period of sewage loading, construction activities and 

industries in the vicinity of Kiel Fjord. 
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production, which was the reason why bottom water oxygen deficiency and hydrogen sulfide 

formation occurred (Kallmeyer, 1997; Rheinheimer, 1998). A centralized sewage system was 

introduced in 1929, but nevertheless treated domestic waters were discharged into the inner 

fjord. After 1972 the central city treatment plant came into operation and output of sewage 

discharges started in the outer fjord. The environmental situation of the whole fjord improved, 

primary production declined and oxygen deficiency has occurred seasonally due to the lack 

inflows originating from Kiel Bight (Gerlach, 1984, Gerlach, 1996, Haarich et al, 2003). In 

1972/73 the sewage plant Bülk Klärwerk discharged 2427 t a-1 of nitrogen and 252 t a-1 of 

phosphorous, whereas by 1990 the amount of nitrogen had been reduced to 1306 t a-1 and       

9 t a-1 phosphorous. Nevertheless, no declining trend in phytoplankton production as derived 

from chlorophyll measurements was recognizable in the nearby Eckernförde Bay (Gerlach, 

1996). In the 1980s, an increase in the abundance of phosphates was recorded in Kiel Bight 

(Gerlach 1990), and between the 1960s and 1990s, the nitrogen portion from atmosphere 

sources doubled in water of Kiel Bight (Gerlach, 1996). 

The discharge of trace metals into the fjord apparently started with the sewage input as 

some metals namely zinc, copper and cadmium are enriched in sewage water (Förstner, 1980; 

Bricker, 1993). A flourishing of steam shipping in the middle of 19th century and the active 

shipping through Kiel Canal may also have contributed to the metal input. The influence of 

shipping is undoubted because a lot of ship clinker particles were found in the near-surface 

sediments. Ship clinker contains extremely high concentrations of trace metals such as Zn, 

Cu, Pb and Cd (Erlenkeuser et al, 1974). At the same time the shipbuilding industry was 

established, and the input of metals such as lead, tin and zinc, which were or still are widely 

used in anticorrosive coating and antifouling paints, increased. Burning of fossil fuels and 

municipal transport (Förstner, 1980) are additional sources of lead, cadmium, zinc, and 

copper. The main fraction of anthropogenic lead is considered to enter the water column and 

sediments from the atmosphere and urban surface runoff. Nowadays, in general, the metal 

input into Kiel Bight mainly occurs through the atmosphere (Schneider, 1987), while river 

input is negligible. Under natural conditions a large part of metals were introduced by erosion 

of glacial clays. 

The surface sediments of the inner Kiel Fjord contain increased concentrations of copper, 

zinc, lead and tin in comparison with the open Kiel Bight (Nikulina et al, 2008). An 

investigation of cores from the different bays of Kiel Bight in the 1980s showed surface 

maxima or substantial subsurface increase of metal concentrations in Eckernförde Bay 
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(Erlenkeuser et al, 1974), Flensburg Fjord (Müller et al., 1980), nearby Lübeck Bight (Leipe 

et al., 1998) and the Greifswalder Bodden (Rösel et al., 1996). Therefore it is reasonable to 

assume the increased anthropogenic metal concentrations together with organic matter, as 

marker of production have been recorded in sediments of Kiel Fjord. 

4.3  Materials and methods 

4.3.1 SAMPLING 

Two double cores were taken in the outer Kiel Fjord in May 2007. These sediments have 

presumably never been disturbed while in the inner fjord a lot of dredging and transport 

activity have occurred. The sampling site was placed in the outer Kiel Fjord and is supposed 

to represent the conditions between the eutrophic fjord and the open Kiel Bight. The location 

of cores PF1738a and PF1738b is 54° 25.2348’N and 10°12.7092’W at 14.9 m water depth. 

I used a Rumohr corer with a plastic tube 5.5 cm of diameter. It is necessary to note that 

such a small diameter of the tube could result in disturbance of the upper part of the core and 

compaction in the lower part (Farmer, 1991). However, both cores showed well-preserved 

sequences of layers by which they were correlated to each other.  

Immediately after returning to the laboratory, the master core PF1738b (40 cm length) was 

sliced in 0.5 cm sections down to 10 cm and in 2 cm intervals from 10 to 20 cm depth for the 

geochemical analysis. The samples then were washed on 63 µm sieve. The clay and silt 

fraction was collected in jars, frozen, freeze-dried and powdered with an agate mortar.  

The organic compounds and heavy metals were measured from the fraction < 63 µm. It 

was done, firstly, to avoid contamination by coal particles, soot and ash, which were 

encountered in all core layers, and secondly, to reduce bias from large particles with a low 

surface area in order to increase sensitivity in detecting contamination (Luoma, 1990; Irion, 

1994).  

The second core (PF1738a of 20 cm length) was taken for geochronological analysis based 

on 137Cs and 210Pb that described in Chapter 3. Knowing the sedimentation rate of about 1 mm 

a-1, which is typical for Kiel Bight (Erlenkeuser et al, 1978; Müller et al., 1980; Balzer et al, 

1987), the sediments from depth around 10 cm must represent the beginning of twentieth 

century when the most intensive human activity in the area of Kiel Fjord took place. The 

presence of coal and ship clinker particles throughout the core (Fig. 4.3) confirms that the 

core covers a time interval within the steam shipping era. 



4. Sedimentary record 
 

 64 

4.3.2 GRAIN-SIZE ANALYSIS 

In June 2008 a third 25 cm long core (PF1838) was taken at the same location as the 

previous two cores to analyse the grain-size distribution. It was dissected in 0.5 cm intervals. 

The samples were dried in the oven at 50°C. With known volume of the samples (0.5 cm x 

square of corer tube) and weight loss after drying, the bulk densities and water contents were 

calculated. Then the samples were washed through a 63 µm sieve to collect the fine fraction 

in jars. The fine fraction was further separated into grain size distributions of silt (2-63 µm) 

and the sortable silt (10-63 µm). Sodium polyphosphate solution was added to the fine 

fraction samples to facilitate sufficient homogenization of the suspension. The suspensions 

were thoroughly homogenised in a rotating carousel and were exposed to an X-Ray beam in 

Micrometric Sedigraph 5100. The attenuation of X-rays indicates the concentration of settling 

particles. The grain size analysis ranged from 1 to 63.1 µm and was performed with a density 

of quartz (2.654 g cm-3) at a constant temperature of 35°C. Where the amount of sample was 

not enough for reliable measurement, two or three subsequent samples were combined.   

4.3.3 ORGANIC COMPOUNDS 

Concentrations of organic carbon, total carbon, total nitrogen, biogenic silica and pigments 

were measured as markers of primary production in the water column and preservation 

conditions in the sediments. 

Measurements of organic carbon, total carbon and nitrogen were performed with a Carlo 

Erba NA-1500-CNS analyzer with a precision of ±1.5 %. The organic carbon was determined 

after removing carbonate carbon by acidification with 0.01 M hydrochloric acid. The 

inorganic carbon was derived from the difference between total and organic carbon. The 

carbonate fraction was determined according to their atomic weight ratios as CaCO3 = 

8.33•(TC-TOC). To investigate the sources of organic matter, the atomic C:N ratio was 

calculated. 

The automated leaching method by Müller and Schneider (1993) was used to determinate 

the biogenic silica content. The opaline material was extracted from sample using sodium 

hydroxide at 85°C for about 45 min. The dissolved silica in the leaching solution was 

continuously measured by molybdate-blue spectrophotometry with an accuracy better than    

1 %.  

Chlorophyll a and phaeopigments abundances reflect the primary productivity (Harris et 

al., 1996) and terrigenous input of organic matter and were determined after acetone 
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extraction with a Turner TD-700 Fluorometer at IFM-GEOMAR with an uncertainty of     

±10 %.  

4.3.4 METALS 

An array of elements was measured in the fine fraction: Cu, Zn, Pb, Sn and Cd represent 

those influenced by anthropogenic sources; V, U, Mo, Cd are redox sensitive metals enriched 

in the sediments under particular redox conditions; Ti is a marker of heavy mineral input; Ba 

is a marker of productivity; as well as Al, Fe and Mn serve to normalize the other elements to 

natural background. 

The sediments were totally digested in a mixture of hot nitric, perchloric and hydrofluoric 

acids at 150°C. The solutions were dried and dissolved in 2 % nitric acid to be measured for 

trace metals with an AGILENT 7500cs ICP-MS (inductively coupled plasma-mass 

spectrometry) at the Institute of Geosciences, University of Kiel (Garbe-Schönberg, 1993) 

and for Al, Fe and Mn with an ICP-AES JY 170 ULTRACE (IFM-GEOMAR).  

The reproducibility of replicate analyses of the samples is better than 4 % for trace 

elements and better than 1 % for minor elements. To evaluate the precision of measurements, 

a blank and the international standard BIR-1 and BHVO-2 were analysed together with the 

samples. The accuracy of analytical results as estimated from replicate standard 

measurements was better than 5-10 %. 

4.4  Results 

4.4.1 STRATIGRAPHY AND AGE OF THE CORES 

Three cores were taken at the same location in 2007 and 2008. They showed distinct 

bedding that allows correlating them. This lithostratigraphical correlation facilitated to 

develop a composite chronological model for the cores PF1738a and PF1738b. Cores were 

correlated to depth and age using Analyseries 2.0 (Paillard et al., 1996). The time scale 

thereafter is applied to the master core PF1738b (Fig. 4.3). 

The age model developed for the cores was based on the high-resolution records of 137Cs 

and 210Pb in the upper 10 cm of core PF1738a. Radiocarbon dating was performed at bivalve 

shells picked at 18-20 cm and 38-40 cm in core PF1738b. The composite age model is 

discussed in Chapter 3, Fig. 3.5. 

The 210Pb chronology relates the sediments at the depth of 9 cm to year 1935. In the upper 

ten centimeter, the sedimentation rate varies around 1.3 mm a-1. The linear sedimentation rate  
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 decreases to 0.3 mm a-1 between 10 and 20 cm, and increases again to 1.5 cm a-1 between 20 

and 40 cm. The distribution of ship clinker from the steam-shipping period (1860-1940) in 

three cores is in agreement with age model. The application of this age model allows me to 

describe the variations of organic matter and trace element contents over the last 400 years. 

4.4.2 GRAIN-SIZE COMPOSITION 

Core PF1838 shows abrupt changes in sediment composition. Sand-rich sediments 

characterize the uppermost 8 cm, while silt and clay abundances are distinctly higher at 62 % 

and 19 % below, respectively (Fig. 4.4a, Appendix 5.1). The portion of clay particles remains 

rather constant throughout the core but the silt fraction shows two types of distribution of 

particles. At the base of the core a polymodal pattern of particle distribution prevails that 

indicates currents of variable strength. Above 7 cm, the polymodal distribution passes into an 

unimodal (Fig.4.4c, Appendix 5.2), which indicates that the sediments were deposited beneath 

high velocity current, which prevented the accumulation of fine-grain material at the site. The 

mean sortable silt exhibits a pronounced increase at the top of the core and a thin deeper layer 

Figure 4.3 . The visual stratigraphy of the upper 25 cm of the cores taken 

in the outer Kiel Fjord in 2007 and 2008. The size and frequency of the dots 

reflect the relative size and abundance of ship clinker particles encountered in 

the cores. The time scale refers to the age model described in Chapter 3.  
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of coarser sediments is also distinguishable at 12 cm (Fig. 4.4b). 

4.4.3 ORGANIC MATTER ACCUMULATION 

The abundance of organic matter compounds changes along the core in a way similar to 

the grain size distribution (Fig. 4.5, Appendix 2.4). The mean content of organic carbon is 

about 2 %. Organic carbon represents 37-64 % of total carbon. Changes in total nitrogen 

concentration through the core are also pronounced from 0.19 to 0.49 % with an average of 

0.27 %. 

Organic carbon and total nitrogen show the upward decrease of concentrations from 20 cm 

to 9 cm depth, followed by slight increase from 9 cm to 5.5 cm depth. Above 5.5 cm, the 

concentrations subsequently decrease to 0.5 cm depth (the 1970s-2000s). Total carbon varies 

differently in the core. The increase is found again at the bottom part with the lowest 

concentration recorded at ~ 8 cm. Higher levels of total carbon are found in the upper 6 cm. 

The biogenic silica content shows small variability but steadily decreases (Fig. 4.5) from 

4.38 % at 20 cm depth to 1.63 % at the surface. The profiles of pigments closely resemble the 

biogenic silica distribution. Chlorine and chlorophyll a as well as phaeopigments contents 

decrease upward in the core too (Fig. 4.5).  

 

Figure 4.4 . Sediment characteristics along core PF1838: (a) abundance of clay, silt and 

sand fractions in bulk sediment in %; (b) fraction of mean sortable silt; (c) typical particle 

distributions in the fraction 2-63 µm.  
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Figure 4.5 . Variations of organic compounds and mean sortable silt for comparison within core PF1738 

from the outer Kiel Fjord. The error bars indicate the measurement uncertainties (standard deviation) and are 

only displayed when they are significant for the interpretation. 
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Component Mean Std. Dev. RSD, % RSDm, % 

Ti (µg g-1) 4366 217 5.0 3.8 

V (µg g-1) 70.3 5.86 8.3 3.4 

Cu (µg g-1) 55.0 33.1 60.2 2.4 

Zn (µg g-1) 165 37.8 22.9 0.8 

Mo (µg g-1) 2.28 1.04 45.5 0.7 

Cd (µg g-1) 1.08 0.15 13.5 0.9 

Sn (µg g-1) 5.23 1.16 22.2 0.5 

Ba (µg g-1) 397 17.0 4.3 0.4 

Pb (µg g-1) 62.2 17.1 27.4 0.5 

U (µg g-1) 2.81 0.28 10.0 0.6 

Al (µg g-1) 37520 4201 11.2 3.8 

Fe (µg g-1) 24472 2616 10.7 2.4 

Mn (µg g-1) 457 58.3 13.0 0.4 

TC (wt %) 3.57 0.43 12.1 1.5 

TN (wt %) 0.27 0.07 25.9 1.5 

Corg (wt %) 1.88 0.50 26.5 1.5 

CaCO3 (wt %) 14.08 3.20 22.7 1.5 

SiO2 (wt %) 2.97 0.79 26.7 1.0 

Chl a (ng g-1) 4232 1353 32.0 10 

Phaeo (ng g-1) 22739 7499 33.0 10 

< 2 µm (wt %) 15.0 2.1 14.0 - 

< 20 µm (wt %) 50.3 20.5 40.9 - 

 

Taking into account the measurement precision (Table 4.1), the pigment abundances 

between 4 and 9 cm can be considered constant. The marked upward decrease from 20 cm to 

9 cm is, however, significant. The upper 0.5 cm of the sediment contains very small amounts 

of all types of pigments in comparison with the underlying sections, even though the core was 

taken in the summer. The ratio of phaeopigments to chlorophyll a fluctuates about a value of 

5 along the core (Fig. 4.5) and decreases in the uppermost centimeter of the core indicating 

the input of fresh detritus. Core PF1738 reveals similarity between the records of the C:N 

ratio and the pigment ratio. 

 

Table 4.1 . Variations in trace metals, organic compounds and 

sediment fraction percentage in the core PF1738. RSDm – uncertainty of 

measurements. 



4. Sedimentary record 
 

 70 

 

Figure 4. 6 . Downcore variations in the concentrations of trace and minor metals in core PF1738. The 

error bars (1 St.Dev.) are shown only when they are significant for the interpretation of the variability. 

         Continued on next page 
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4.4.4 Downcore variations in metal concentrations 

Minor element and trace metal concentrations follow a general trend with distinctly high 

values at 16-20 cm core depth and a steady upward decrease (Fig. 4.6). Aluminum has the 

most invariant profile with value around 37 mg g-1. Variations in barium content are also 

negligible. Trends in titanium concentrations are opposite to the other metals. It gradually 

increases from 4023 µg g-1 at the bottom of the core to 4808 µg g-1 at the surface sediments 

(Fig. 4.6, Table 4.1). However, taking into account the measurement errors, the variations of 

Ti are close to insignificant. 

Those metals (Pb, Sn, Cd), which may potentially be introduced anthropogenically, do not 

show a consistent increase in concentration in the upper part of the core as may have been 

expected. Instead, high levels are observed at 19 cm for lead and tin. Their contents decrease 

from the bottom to the surface with some fluctuations in the upper 10 cm.  

Figure 4. 6 . Downcore variations in the concentrations of trace and 

minor metals in core PF1738. The error bars (1 St.Dev.) are shown only 

when they are significant for the interpretation of the variability. 
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Zinc shows a similar distribution, except for two small peaks at 2.75 and 3.75 cm, which 

are ~25 % higher than the mean concentration. Copper content is quite constant throughout 

the core, though it shows peaks similar to Zn, and it is highly enriched at 4.75 cm (Fig. 4.6).  

Manganese concentrations are constant with 400-430 µg g-1in the bottom part of the core 

and increase in the upper sections. Manganese forms two broad peaks at 1.75 and 4.25 cm. 

Iron content does not show pronounced peaks. It decrease continuously from 31 mg g-1 at 20 

cm to 10 cm. Iron levels vary about 24 mg g-1 in the uppermost ten centimeter. A similar 

downcore distribution characterizes vanadium and uranium (Fig. 4.6). 

Cadmium exhibits the same features as vanadium and uranium, but with more pronounced 

relative increase of concentrations at the base of the core and lower concentrations in the 7-8 

cm layer. Molybdenum concentration decreases from the base of the core to the upper part, 

than forms a sharp peak at 7.25 cm. The enhanced Mo levels in 15-19 cm depth are probably 

also a part of a subjacent peak. 

Figure 4.7 . Distribution of some elements normalized to aluminum 

through core PF1738. 
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All metals except Cu and Mn have significant linear correlations with organic carbon 

content (Appendix 2.7). Excluding outliers the correlation between copper and organic matter 

was also recognised (r=0.600, n=22). The strongest correlations with organic carbon 

characterize zinc, cadmium, tin and lead. Apparently, these metals are supplied to the 

sediments either together with organic matter or adsorbed and bound to organic matter. 

Lead, Cu, Zn, Cd, Sn, V, and Fe correlate well with the aluminum (Appendix 2.7). 

Therefore metals were corrected to aluminum (Fig. 4.7) because Al content is more or less 

constant in the sediments of a region and in the core sampled. Normalized Sn, Pb, Fe, Cd and 

V show similar steady downcore concentration trend. Uranium and molybdenum show a 

tendency to accumulate at 8 cm, whereas, only Mn shows enrichment in the upper part of the 

core. Copper and Zn still show pronounced peaks at 2-4 cm but do not vary a lot otherwise in 

the core (Fig. 4.7). As aluminosilicates are constituents of the clay fraction, such distribution 

of metals indicates that the part of metals is absorbed on clay. 

4.5 Discussion 

4.5.1 GRAIN-SIZE COMPOSITION 

Prevailing currents carrying fine-grained sediments from Kiel Bight to the inner, 

depositional part of Kiel Fjord explain the sandy character of the sediments in the outer Kiel 

Fjord. These general sedimentation dynamics, however, do not explain the coarsening of 

sediments in the uppermost part of the investigated sediment core. 

The distribution of particle sizes in the fraction 2-63 µm allows to attribute the coarsening 

pattern to changes in the strength of currents. The polymodal distribution of particles (Fig. 

4.4c) is associated with low energy currents and partial accumulation of the fine fraction. The 

unimodal distribution in upper 7 cm suggests that stronger currents prevailed during sediment 

deposition, which did not allow settling of fine particles (Höppner and Henrich, 1999; 

Rüggeberg et al., 2005). The SEM images of sediments from different core sections confirm 

the results of grain-size analysis (Fig. 4.8). 

According to Seibold (1971), half of all winds and three quarters of the storms in Kiel 

Fjord are westerly. During strong winter storms, wave erosion is enhanced on the shallows, 

and compensating currents can carry sandy sediments at 6 m to 12 m depth (Seibold et al., 

1971). Thus, the increased storminess in the 1980s (Alexandersson et al., 2000; Bärring and 

von Storch, 2004) can explain the upward coarsening tendency of the sediments of the outer 

fjord. Furthermore, an increase of sedimentation rates in the 20th century (Chapter 3) also 
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invokes an increased supply of sediments, which was accompanied by an increase in the sand 

content. Moreover, coastal protection in the 1970s increased the capture of fine particles in 

the inner fjord obviously contributed in the upward coarsening of sediments. 

4.5.2 ORGANIC MATTER: SEWAGE INPUT VS. NATURAL VARIATION 

The pattern of organic matter accumulation in the core from the outer Kiel Fjord is quite 

unusual because most of the Baltic Sea cores, including those from the fjords and bays of Kiel 

Bight, exhibit downcore decrease of organic matter (Müller et al., 1980; Balzer, 1984; 

Kauppila et al., 2005; Damm, 1992; Emeis et al., 2000; Clarke et al., 2006; Vaalgamaa and 

Conley, 2008). Such changes in the Baltic Sea are considered to be caused by a combination 

of increased organic matter input during last decades due to natural and anthropogenic 

eutrophication and decomposition of organic matter in the underlying sediments (Canfield, 

1994). In cores from the Greifswalder Bodden, the accumulation of organic matter in the 

upper sediments was referred to changes in sediment sources (Rösel et al., 1996). Thus, the 

decrease of organic matter towards the water-sediment interface in the Kiel Fjord core might 

be a result of changes either in sedimentation rate or primary production. The role of 

productivity and oxygen availability in preservation of sedimentary organic matter has been 

discussed, but no consensus has been reached (Canfield, 1989; Fenchel and Finlay, 1995). 

Figure 4.8 . SEM photographs of the sediment fraction <63 µm: (a) at 12 cm 

depth, magnification 200, (b) 12 cm, × 600, (c) 20 cm, × 200 and (d) 20 cm, × 600. 

The images show a clear difference in the grain size distribution between core sections. 

The sediments have apparently glacial origin. 
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With sedimentation rate of about 1-1.3 mm y -1, anaerobic conditions seem to have no 

significant effect on preservation (Calvert and Pedersen, 1991), which means that the organic 

carbon record in the sediments mainly reflects the productivity through time.  

It is known that primary production in the inner Kiel Fjord increased as a consequence of 

high nutrient input in the middle of the 20th century (Rheinheimer, 1998). However, Stienen 

(1986) showed that nutrient status and phytoplankton dynamics in the inner part of Kiel Fjord 

differ considerably from those in the outer part. A substantial fraction of the nutrients entering 

the inner fjord is retained there by sedimentation and never reaches the open Kiel Fjord. 

Schiewer and Gocke (1996) also mentioned the gradient of nutrients and chlorophyll a as a 

measure of primary productivity from the inner to the outer Kiel Fjord. 

The observed decrease of organic carbon from deep to surface sediments is not monotonic 

(Fig. 4.5). In the layer 5-9 cm (AD 1940-1970) an upward increase of Corg and TN values is 

observed, whereas in the section above 5 cm, which corresponds to the 1970s-1980s, levels of 

organic matter decrease. This part of record agrees with the history of sewage discharges in 

Kiel Fjord. The amount of sewage waters increased in the first half of 20th century with the 

growth of population in the city and diminished after the introduction of the central sewage 

plant in 1972. Therefore, the 1940-1970s accumulation rates of organic matter in the 

sediments are plausible because of the excessive input of particulate organic matter, the high 

availability of nutrients for phytoplankton growth, and a slow degradation of settled organic 

matter under anoxic conditions (Fenchel and Finlay, 1995). The remediation of environmental 

conditions obviously followed the intensification of the sewage treatment. 

Although there are not a lot of data about the content of organic matter in the silt fraction, 

our values, at least organic carbon, appears to be slightly lower in comparison with data from 

other bays (e.g. Gerringa et al., 1990). This implies that the outer Kiel Fjord by trophic 

conditions is closer to the open Kiel Bight than to the eutrophied inner Kiel Fjord. 

Biogenic silica as marker of diatom and dinoflagellate abundance and thus phytoplankton 

productivity (Conley, 1988; Conley and Schelske, 2001), does not change in line with organic 

carbon in core PF1738. A common response to increased nutrient loading, however, indeed is 

an increase of diatom biomass that leads to increased accumulation of biogenic silica in 

sediments and to a decrease in the dissolved silica reservoir in the water column (Conley et 

al., 1993; Beucher et al., 2004). Possibly, a lack of dissolved silica limited the diatom 

production, and therefore the contribution of this group of organisms in the total biomass 

decreased with time. Indeed, a decrease of the cold-water phytoplankton (diatoms) portion in 
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the bulk algae linked to warming was recognized during last decades in the Baltic Sea 

(Bonsdorf et al., 2002; HELCOM, 2007).  

The weak fluctuation of chlorophyll a and total pigments around the mean in the upper 10 

cm and then increase to the bottom of the core in general resembles the organic carbon 

record. Chlorophyll a and total pigments are marker of primary production and an indirect 

measure of oxygenation of the bottom waters and sediments, which governs the 

decomposition of pigments and herbivore digestion (Furlong and Carpenter, 1988; Leavitt, 

1993; Sun et al., 1993; Meyers, 1997; Bianchi et al., 2000). In the Kiel Fjord core, 

chlorophyll a and overall pigments levels are lower relative to those from eutrophied bays of 

the Baltic Sea (Bianchi et al., 2002; Reuss et al., 2005). However, one has to keep in mind 

that they account only for the fraction finer than 63 µm. In the bulk sediments they are most 

likely even lower.  

The ratio of phaeopigments to chlorophyll a is commonly used to estimate the degree of 

pigments decomposition because the parent compound chlorophyll a is readily degraded 

while the degradation products are more stable. Anoxic conditions in the water column and 

sediments preferentially prevent the decay of chlorophyll a in comparison with the 

decomposition of other pigments (Bianchi et al., 2000; Reuss et al., 2005). The 

phaeopigments to chlorophyll a ratio varies from 4.4 to 7.5 within the core (Fig. 4.5), 

suggesting an oxygen regime that favored the degradation of chlorophyll a. A small peak at 

2.75 cm hints to the anoxic event at the beginning of the 1980s. Indeed, Kiel Bight waters 

frequently suffered depletion of oxygen in 1980-1983 (Gerlach, 1984). Probably, the outer 

fjord area, where the core was retrieved, was not substantially affected by extended anoxia 

with an exception of the strong event in the 1980s.  

A similarity of fluctuations of the C:N ratio and the pigment ratio observed in the core is 

unclear. The C:N ratio mainly depends on the sources of organic matter, and it can also 

decrease under anoxic conditions due to preferential nitrogen loss during organic matter 

decomposition. The phaeopigments : chlorophyll a ratio in sediments mainly depends on their 

oxygenation. Under oxic conditions chlorophyll a decays faster than phaeopigments, and the 

ratio increases. Thus, the ratios should change in opposite directions under certain conditions, 

but it is not a case in the core from Kiel Fjord. 

As sediments were sampled in spring, the low content of pigments as well as biogenic 

SiO2 and total carbon in the uppermost centimeter is unusual because sampling fell into the 

production season. This pattern therefore may be related to a loss of the fine sediment fraction 
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during core sampling (Farmer, 1991), which is, however, unlikely with Rumohr corer. The 

other explanation would be an active remineralisation of fresh detritus in the uppermost 

oxidized centimeter of the sediments prior to establishment of steady state conditions (Balzer 

et al., 1987).  

The reason for the decrease in concentration of all biogenic parameters toward the surface 

of the core is unclear. Anthropogenic disturbances can be excluded given that 20 cm core 

depth correspond to the age of about 400 years (AD 1600). Therefore, the non-anthropogenic 

background seems to be higher than can be predicted based on changes recorded in the upper 

part of the sediment core. Obviously, two facts may elucidate this feature. Firstly, the low 

sedimentation rates and thus slow accumulation at the time interval when the core section 10-

20 cm was deposited may fairly elevate the amount of organic matter in those deposits. 

Secondly, the observed upward coarsening of sediments may be responsible for the reduced 

levels of Corg. Changes in grain size with time may strongly affect the analytical data. Indeed, 

when the main part of organic matter and trace elements is brought from the inner fjord to the 

outer fjords with the silt fraction, the coarsening of sediments in last 60 years may have led to 

an effect of “cleaning” of the sediments (dilution of concentrations in sediments) of the outer 

fjord. Christiansen et al. (2002) observed the similar record of organic carbon due to the 

increased portion of coarse silt fraction in bulk sediments from Danish estuary.  

4.5.3 EVOLUTION OF THE METAL ACCUMULATION AND INPUT 

The steady concentrations of Al imply that no change in sources of clastic material such as 

river inputs or erosion occurred. The record of titanium, as a marker of heavy minerals input, 

also indicates no variations in the sources of deposited material. Barium content varies 

negligible. Given that barium is assumed to be an indicator of paleoproductivity and also 

shows redox-sensitive behaviour (McManus et al., 1998; Brumsack, 2006), its profile 

suggests that neither significant changes in productivity nor diagenetic remobilisation linked 

to the migration of redox boundaries occurred. 

4.5.3.1  META LS PO TE NT IA LLY INT RO DU C ED AN TH RO POG EN IC A LLY  

In the bays of the western Baltic Sea, many workers observed a clear accumulation of trace 

metals in the sediments deposited in the 20th century (Erlenkeuser et al., 1974; Müller et al., 

1980; Brügmann and Lange, 1990; Rösel et al., 1996; Leipe et al., 1998). In these studies 

metal enrichment was attributed to an increased anthropogenic load of metals since the 

beginning of industrialisation. Obviously, the sewage discharges, foundry, steam shipping 
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and shipyards, harbours, and municipal transport introduce some amount of metals to the 

sediments of Kiel Fjord. In spite of these settings, copper, Zn, Pb, Sn and Cd concentrations 

are virtually constant with some variations in the upper 10 cm of the core studied and 

regularly decrease from 20 to 10 cm depth (Fig. 4.6). Referring to the quite uniform profiles 

of these metals normalized to aluminum, they apparently have not been modified by redox 

changes as evidenced from the difference to Mn, U and Mo distributions. This finding is in 

agreement with Calvert and Pedersen (1993), Gobeil et al. (1997) and McManus et al. (2006). 

However, the increased rates of sedimentation in the 20th century as well as grain-size 

variations could affect the record of metals. Even if trace metal concentrations increase due to 

anthropogenic activity at the fjord watershed, they might be easily masked by natural changes 

through time and may show as a result constant or even depleted values in the core respective 

intervals. The generally stable concentrations of metals in the deposits from the 20th century 

may also be due to the fact that environmental conditions in the outer Fjord are closer to the 

Figure 4.8.  The fluxes of anthropogenically introduced metals within the fraction finer than 63 

µm in core PF1738. 
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open Kiel Bight than the depositional inner fjord. 

To compensate the effect of higher sedimentation rates, the fluxes of metals, whose 

distribution is presumably not modified by diagenesis, were calculated within the fraction 

finer than 63 µm. The distribution of metal fluxes through the core revealed that the input of 

metals significantly increased from the late 1930s to the mid 1940s. In that period of time, the 

intensive building of large warships and the expanding of harbours occurred in Kiel Fjord 

before the Second World War, followed by the period of depression of the city of Kiel and 

shipyards till the 1960s.  

The peaks of zinc and copper between 3 and 5 cm appear to reflect later pollution as this 

horizon was deposited between 1970 and 1990. The fact, that copper (extreme values 

omitted), Zn and Cd correlate significantly with organic carbon content (Fig. 4.9) imply that 

they accumulate concomitantly with organic matter, or, these metals are bound as 

micronutrients with organic matter. The positive x-intercept of the regression line reveals 

another additional source of these metals, possibly anthropogenic influx or background 

sedimentation of outwash of glacial till. Lead and tin also correlate with organic carbon 

content because apparently they are able to build stable complexes with organic matter 

(Förstner, 1981). For instance, high concentrations of tributyltin, enough to induce aberrations 

in reproductional system of periwinkle, were found in near-coastal surface sediments in the 

vicinity of the site investigated here (LANU, 2001b). 

The hydraulic and mineralogical fractionation of deposited particles leads to increasing 

natural trace metal concentrations with decreasing grain size in most estuarine and coastal 

Figure 4.9 . Relations between copper, zinc and cadmium content and 

organic carbon percentage in core PF1738. The parentheses designate 

values considered as outliers, which were excluded from the linear 

regression. 



4. Sedimentary record 
 

 80 

sediments. Metals are associated with clay minerals and organic matter. Anthropogenically 

derived non-detrital metals also become associated with fine-grained inorganic and organic 

material during transportation and deposition (Förstner, 1981; Loring, 1991). Therefore, 

metal concentrations usually decrease in the sand and coarse silt fractions because of the 

dilution of the fine-grained carriers adsorbing trace metals by coarser grained quartz, feldspar, 

and other components with low surface area on only little trace metal content. Although I 

already accounted to this grain size effect measuring the metals directly in the fraction finer 

than 63 µm (Förstner and Salomons, 1980; Irion and Müller, 1987), the particle size 

distribution in this fraction also varies between the sediment layers and they affects the total 

metal concentrations (Damm, 1992) Therefore a normalisation of metals to the fraction finer 

than 20 µm was done (Fig. 4.10).  

Normalized to < 20 µm concentrations, all metals display a tendency to become enriched 

in the sediments deposited after ~1945. From anthropogenic trace metals, tin exhibits the 

greatest increase in concentration, as with zinc and cadmium. High tin concentrations in the 

sediments in the 1960s are connected with the extended use of antifouling paints containing 

tin in shipyards of Kiel Fjord. Tin additives were prohibited since the 1990s (IMO, 2005), but 

the concentrations of Sn in sediments of the inner fjord are still high compared to the open 

Kiel Bight.  

The copper and zinc contents of the 

fine silt and clay fraction are constant 

downcore and only slightly elevated 

between 2-4 cm layer. The excessive metal 

concentrations point to an anthropogenic 

origin of these peaks. Lead and cadmium 

concentrations are fairly constant. 

Therefore these elements must be linked to 

a large extent to the fine fraction and do 

not depend on external sources. However, 

the surface sediments of the innermost 

fjord show elevated Pb content that was 

related to municipal transport and surface 

runoff (Nikulina et al., 2008).  

The trace elements were determined in 

Figure 4.10 . Downcore variations of elements 

normalised to percentage of fraction finer than 20 µm. 
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the fine fraction. If the sand fraction carries no trace metals at all, and the concentrations in 

silt fraction were proportional for the bulk sample, one would obtain values lower by factor 5 

than reported in Table 1 in the subsurface sediments and lower by factor 1-2 below 

approximately 7 cm. Such concentrations are, however, within the background levels for the 

Baltic Sea (e.g. Brügmann and Lange, 1990). Nevertheless, the normalised concentrations of 

metals along the core constrain the human impact only to specific elements as tin, zinc and 

cadmium. They are closely related to the shipyard industry. 

4.5.3.2  RE DO X SEN SIT IV E E LE ME NT S 

Kiel Bight has been exposed to periodical hypoxia or even anoxia once the inflow of salt 

and oxygen rich waters from the North Sea was diminished, a stable water stratification was 

established and organic matter decomposition led to complete consumption of oxygen in near 

bottom water (Gerlach, 1988). In the inner part of Kiel Fjord, the anoxic events have occurred 

to a different degree from June to September, whereas the outer fjord did not experience an 

oxygen deficiency regularly (Gerlach, 1990). The change of oxic conditions at the water-

sediment interface, as well as within the sediments causes a redistribution of redox-sensitive 

elements through the sediment column. Elements are ordered around the actual oxidation 

front in sediments according to their different redox potential (Thomson et al., 1993). If this 

pattern is presented, it gives a possibility to recover the depositional or postdepositional 

conditions in a particular area. Furthermore, the formation of hydrogen sulphide associated 

with anaerobic bacterial sulphate reduction is an important factor for trace metal fixation due 

to the formation of sulphides (Rosenthal et al., 1995; Sundby et al., 2004). 

Manganese 

Among all redox sensitive metals measured in core PF1738 only manganese shows a small 

subsurface peak at 1.75 cm, which corresponds to the base of the oxic layer. Manganese is 

prone to upward reductive remobilisation (reduced Mn2+ is mobile and oxidised Mn4+ is 

immobile) and therefore gets enriched in the upper oxygenated sediment layer forming stable 

oxides (Calvert and Pedersen, 1993; Fig. 4.11a). The subsurface peak in core PF1738 

therefore suggests that pore water oxygen does not penetrate below 2 cm (Froelich et al., 

1979). 

The slight peak at 5 cm depth may reflect the past redox conditions, when oxygen 

penetrated deeper in the sediments (Fig. 4.11b). Manganese from a peak formed earlier at the 

redox boundary diffuse upward after the setting of reducing conditions and redox upshift. The 
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low concentrations of Mn and the 

absence of sharp peaks may be 

resulted from the instantaneous 

changes from oxic to anoxic 

conditions in the Kiel Bight 

depending on the salt-water inflows 

or water mixing during the storms. 

As a result the periods of 

oxygenation can be not enough long 

for accumulation of Mn as oxide, 

whereas the deoxygenetion of 

sediments leads to the diffusion of 

Mn to the water column.  

Besides manganese, vanadium, molybdenum, uranium and cadmium are redox-sensitive 

elements. Their distribution is affected by diagenesis, and therefore they are frequently used 

for reconstruction of the paleoenvironment (Pedersen et al., 1989; Rosenthal et al., 1995; 

Morford and Emerson, 1999; McManus et al., 2006; Brumsack, 2006; Crusius and Thomson, 

2000). Vanadium, U and Mo originate mostly from an early diagenetic processes and enter 

the sediment via diffusion from the water column 

because of their different solubility in oxic water as 

compared to reducing pore water (opposite to the 

behaviour of Mn). Other elements, such as 

cadmium and copper are involved in biological 

cycling and they are concentrated before deposition 

(Sundby et al., 2004; Brumsack, 2006).  

Uranium  

Uranium forms peak concentrations in the 

reducing environment immediately below the 

oxygen penetration front (Crusius and Thomson, 

2000) and below the Mn spike (Klinkhammer and 

Palmer, 1991; Crusius et al., 1996; Fig. 4.12). In 

core PF1738 the elevated concentrations of 

Figure 4.11 . An illustration of solid phase manganese 

distribution in sediments when the redox boundary migrates, 

modified after Gobeil et al. (1997) and Burdige (2006). (a) 

the initial Mn profile, (b) after a redox upshift.  

Figure 4.12 . An illustration of 

redistribution of solid phase redox-sensitive 

metals at redox boundary (after Thomson, 

1993; Gobeil et al., 1997; Crusius and 

Thomson, 2000)  
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uranium are recognised at 6-8 cm. They are slightly shifted downward as compared to the 

peaks of Mn, but a significant correlation between Mn and U is observed (Appendix 2.7). The 

record of uranium in Kiel Fjord sediments is comparable to other records from suboxic 

hemipelagic sediments (Klinkhammer and Palmer, 1991). Generally, the increase of uranium 

in sediments is associated with bottom water oxygen depletion, higher rates of organic carbon 

rain or a combination of both factors (McManus et al., 2005). The similarity of Corg and U 

records in core PF1738 suggests that the amount of uranium is associated to the greater 

degree with organic carbon. In turn, organic carbon levels are determined by its preservation, 

which depends on the oxygenation of the near-bottom water and the sediments. 

Molybdenum 

Unlike uranium, Mo displays an increase in the two upper centimeter in parallel to Mn. 

Under oxic bottom water conditions, Mo may be captured in the near surface sediment layer 

by Mn-oxihydroxides and concentrates there (Sundby et al., 2004; Tribovillard et al., 2006). 

Then, at the depth of 7.75 cm it displays a sharp peak (though with relatively low magnitude). 

Mo is known to accumulate in extremely reduced sediments below the horizon where 

sulphides are generated. No substantial accumulation of Mo was found at suboxic conditions 

(Crusius et al., 1996; Tribovillard et al, 2006). The authigenic enrichment of Mo continues 

long after burial and several centimetres into the sediment, but at particular sites, there is a 

small separation between U and Mo enrichment patterns (McManus et al., 2005), in that Mo 

enrichment generally occurs deeper than that of U. Therefore, the spike at 7.75 cm may 

indicate strongly reduced conditions with presence of hydrogen sulphide, whereas the shallow 

peak at 2 cm is caused by Mn oxide co-precipitation.  

On the other hand, Adelson et al. (2001) attributed the upward increase of Mo content in 

cores from the seasonally anoxic Chesapeake Bay to a rise of recent coastal anoxia. When 

bottom waters are anoxic, MoO4
2- concentrates at the sediment-water interface, and 

thiomolybdates is fixed in sediments. As such, a subsurface change in Mo content in the outer 

Kiel Fjord might be interpreted in two different ways: as a marker for favourable oxic 

conditions at present time or for seasonal oxygen depletion caused by the lack of salt-water 

inflow from North Sea in the 1990s (Matthäus, 1990).  

Vanadium and cadmium 

Vanadium, which in PF1738 has no discernible deviations in concentration, is considered 

to precipitate as oxides/hydroxides in the presence of dissolved sulphide or to adsorb on 
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particle surfaces (Calvert and Pedersen, 1993). In our case, a clear correlation between V and 

Cd content suggests similarities in their sources and post-depositional behaviour. In turn, 

cadmium reduction occurs under suboxic conditions (Gobeil et al., 1997). Thus cadmium 

enrichment is commonly found a little shallower in the sediments than that of U. In anoxic 

sulphide bearing sediments, cadmium is known to immobilise as CdS, but Rosenthal et al. 

(1995) and Crusius et al. (1996) also proposed precipitation of cadmium sulphide in suboxic 

sediments in the presence of traces of free sulphide. In the outer Kiel Fjord core, cadmium 

does not show a perceptible peak, even though an increase in concentrations is observed at 7 

cm depth. This feature may signify the absence of sulphide formation in the core shallower 

than 7 cm. A cadmium peak often overlaps with copper, zinc and lead accumulation, which 

also precipitate together with free dissolved sulphide (Rosenthal et al., 1995; Tribovillard et 

al., 2006). Indeed, the records of Cd and Pb are of similar character, with elevated element 

content between 5 and 7 cm. However to attribute the high levels of Zn and Cu in the layer 

2.5-5 cm to anoxic conditions seems not plausible while other metals, e. g. Cd and Pb, do not 

support them. Therefore, their increased concentrations possibly had an anthropogenic source 

in the 1970s-1980s. The overall depletion of Zn, Cu, Cd and Pb in the uppermost oxic 

sediments is seemingly controlled by the migration from pore water solution to the near-

bottom water as a result of active decomposition of organic matter. 

From the considerations above, three sections can be distinguished in the core: the layer 

from surface to 2 cm is characterised by oxic conditions designated by a Mn peak. It is 

underlain by a suboxic layer down to 8 cm as evidence by the Mo spike. Below 8 cm, the 

conditions are apparently fully anoxic with presence of H2S that is reflected in enhanced 

levels of trace metals and organic matter. This conclusion is in agreement with synchronous 

peaks of metals concentrations normalised to the Al content at 8 cm. 

4.5.3.3  U:Mo ratio and salt water inflows 

The variability of redox elements in the core may give us an impression of the redox 

conditions that prevailed in the sediments or in the water column at time of deposition or 

afterwards. McManus et al. (2006) investigating the relationships between U and Mo 

autigenesis and carbon burial, proposed that the U:Mo ratio is sensitive indicator for bottom 

water oxygen concentrations because both metals are differently sensitive to chemical 

parameters (e. g. presence of sulphides in pore water) coupled with oxygenation. The U:Mo 

ratio is higher at elevated oxygen content in bottom water. Values lower than 1 correspond to 
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anoxic waters. It is then plausible to suggest, that variations of U:Mo throughout the core may 

reflect the concentrations of oxygen in overlying water column during the deposition, at least 

the general tendency of the oxygen situation. In Kiel Fjord, the sedimentary U:Mo ratio 

shows a steady increase from surface to about 3.5 cm and a subsequent decrease downcore 

with a minimum at 8 cm (Fig. 4.13). The U:Mo profile negatively resembles the Mo record. 

Oxygenation of bottom waters in the Baltic Sea mainly depends on the renewal of waters 

through the Skagerrak and Kattegat. In Kiel Bight, salt-water inflows are important for 

maintaining the general stratification and the ventilation of near-bottom waters. The salt water 

inflows occur randomly during the winter season at intervals from one to several years forced 

by variability of the wind pattern (Lass and Matthäus, 1996). This pattern was different in the 

mid-seventies when only weak or no major inflows were observed. 

The periods without strong inflows are indicated by a salinity decrease in bottom waters in 

the Baltic Sea, together with steady increase of hydrogen sulphide concentrations. Thus, the 

salinity variation reflects deep-water renewal processes. The long term oceanographic 

Figure 4.12 . The variations in U:Mo and Mn:Fe ratios in core PF1738, multidecadal changes in salinity 

of Baltic Sea water from records in Koljö Fjord (Filipsson and Nordberg, 2004) and Gotland Basin (Matthäus, 

1990; Nausch et al., 2003, 2005), and major Baltic inflows between 1880 and 2005. Major Baltic inflows are 

shown in their relative intensity (Matthäus and Frank, 1992; Fischer and Matthäus, 1996). 
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observations in Koljö Fjord (Filipsson and Nordberg, 2004) and Gotland Basin (Matthäus, 

1990; Nausch et al., 2003, 2005), both on the way of inflowing North Sea water, together 

with frequency and intensity of inflows (Matthäus, 2006) make it possible to reconstruct the 

prevailing oxygen conditions. Comparison of downcore variations of the U:Mo ratio from 

Kiel Fjord core with salinity variability and inflows frequency through the time shows a 

general similarity of these records. The peaks of the U:Mo ratio are shifted downward relative 

to the time of salt water inflows. This shift in depth is explainable by the fact, that anoxic 

conditions in sediments do not necessarily mean that the water above the sediments was 

anoxic (Calvert and Pedersen, 1993). The water may still have been saturated with oxygen, 

but did not penetrate deeper in the sediments leading to the establishment of suboxia or 

anoxia in subsurface sediment layers. The shift in depth depends on the depth of oxygen 

penetration, which in turn is determined by oxygenation of near bottom water and sediment 
properties (at site are favorable). The observed U:Mo variations imply that near-bottom 

waters at the study site of the outer Kiel Fjord have never been fully anoxic. Otherwise the 

peaks of U:Mo ratio in the surface sediments would coincide with periods of low inflows. 

This conclusion is consistent with the record of the pigment ratio indicating strong 

degradation of chlorophyll a throughout the whole core. This can only have occurred under 

oxic conditions in the upper sediments. 

Likewise, Neumann et al. (1997) used the Mn:Fe ratio in sediments of Gotland Basin to 

infer the major salt water inflows and relate them to oceanographic observations. In their 

study, the Mn:Fe ratio varied from 0.5 to 3, and good correlation was found between strong 

North Sea water inflows with values of 2-3. In our case, the Mn:Fe ratio ranged from 0.015 to 

0.025 is very low and any correlation with the salt inflow record is not significant (Fig. 4.13). 

The low concentrations of manganese are possibly explained by its mobilization out of the 

core to the water column. 

If the hypothesis on predominant oxic conditions in bottom water of the outer Kiel Fjord is 

right, then a constant replenishment of oxygen in the sediments would explain the absence of 

consistent peaks of uranium due to remobilization when oxygen penetrates to a region where 

authigenic U has accumulated (McManus et al., 2005; Tribovillard et al., 2006). The other 

trace elements such as V, Mo, Cd, Cu and Zn, also might be affected by re-oxidation process 

but to a lesser extend than uranium (Morford et al., 2001). 
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4.5.3.4  VER TICA L DISTR IBUT IO N OF TR AC E E LE ME NT S 

The steady upward decrease of trace metals in the core looks quite unusual, though some 

examples of a similar behavior of redox sensitive metals are known (Chaillou et al., 2002; 

Crusius et al., 1996; Sundby et al., 2004). Two explanations of this distribution can be 

proposed. Firstly, changes in sediment properties may strongly affect the concentrations of 

metals. A gradual increase of the portion of the fine fraction reflects a greater accumulation of 

authigenic metals. The observed reduction of the sedimentation rate below 10 cm may also 

influence the fluxes of organic matter and metals. Secondly, the periodic oxygen exposure 

may lead to remobilization of metals. It is conceivable that downward diffusion could then 

increase their concentration in the sediment below the level of initial precipitation. This 

mechanism cannot explain the gradual downward increase of concentrations in the core. 

However, core PF1738 is quite short and probably does not cover all the most recent 

diagenetic processes. Indeed, the metal concentrations in core do not reach any stable levels 

that could be considered as background. Furthermore, Sundby et al. (2004) proposed that 

such a distribution of metals could be controlled by slow kinetics. That means, if the rate of 

metals precipitation is slow compared with diffusion, authigenic metal can accumulate in a 

broad sediment layer below those where precipitation initially started. These explanations 

might also be applicable together. 

The increase of organic carbon, biogenic silica and pigments with depth in the core infer a 

higher primary production in pre-industrial time. The induced levels of metals as 

micronutrients (Fe, Cu, Cd, Zn), which are supplied to the sediments with organic matter and 

are incorporated in the sediments after organic matter decomposition, also propose an 

increase of primary production at that time. As the sediments did not suffer strong oxygen 

depletion causing a partial preservation of organic compounds, it may be concluded that in 

1600-1700 AD the primary production was even higher than at present time under 

anthropogenically induced eutrophication. 

4.5  Conclusions 

By comparing the chemical composition of the dated sediments and the known 

environmental history of the Kiel Fjord, the effects of anthropogenic activity were minor. The 

most striking aspect of the data discussed is that the concentrations of trace elements as well 

as organic entities gradually increase throughout the 20 cm long core. Except for titanium, 

barium and aluminium, the vertical trend is distinguishable for all elements and compounds. 
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The most probable explanation for this is a dilution effect due to higher sedimentation rates in 

20th century and coarsening of sediments in recent time. 

Coastal protection measures and harbour construction in the inner fjord since the 

beginning of 20th century together with increased storminess in the region apparently caused 

the coarsening of sediments while the fine fraction was more efficiently captured in the 

depositional inner fjord. In turn, coarsening promotes lowered concentrations of trace metals 

as well as organic carbon, pigments and biogenic silica. Nevertheless, variations in organic 

carbon and nitrogen in the core reflect the increased eutrophication in the fjord in the 1940s 

due to sewage loading with consequent remediation after a treatment plant came into 

operation in 1972. 

Among the trace metals, which are supposed to be anthropogenically introduced in Kiel 

Fjord, copper and zinc show distinct increase between the 1960s and the 1990s. Lead, tin and 

cadmium concentrations steadily raise downward. The overall low levels of metals and 

organic matter in the core in comparison with surface sediments from Kiel Fjord imply that 

metal pollution and high organic matter accumulation in Kiel Fjord are localised in the inner 

fjord and does not extend to the outer fjord. 

In the core, only manganese and molybdenum exhibit distinct peak concentrations, 

whereas other redox sensitive metals continuously decrease with depth without distinct 

variations. According to this, the sediment column is subdivided into three zones according to 

oxygenation: from water-sediment surface to 2 cm the sediments are oxic, from 2 to 8 cm a 

suboxic layer expand, and below 8 cm the sediments are fully anoxic.  

The main result of this study is that the outer Kiel Fjord appears not to have suffered 

strong oxygen depletion of bottom waters caused by organic matter decomposition and 

irregular salt water inflows as it is common for the deeps elsewhere in Kiel Bight. 

Nonetheless, the ventilation history is mirrored in the U:Mo ratio, which demonstrates that 

this proxy can be suitable tool under more oxygen depleted settings. In any case, the initial 

assumption that the outer Kiel Fjord exposed to sever anoxia turned out to be wrong. 

Periodical oxygenation of near bottom water resulted in remobilisation of elements and their 

diffusion and changes in sediment composition together induced the downward decreasing 

trend in redox sensitive metals. 

Apparently the natural changes and environmental variability in the outer Kiel Fjord 

modify and mask anthropogenically induced disturbances. The decrease of organic matter and 

metals content should not be misinterpreted as being a result of a better sewage treatment. 



Conclusions

This study revealed that the type of sediments and depositional regime mainly control the

distribution of organic matter and trace elements in Kiel and Flensburg Fjords. The other

factors are primary production and the oxygenation of near-bottom water and sediments,

which is more important for accumulation of organic substances (organic carbon, pigments)

and redox-sensitive metals. The anthropogenic influence follows these factors and interferes

with them.

Kiel and Flensburg Fjords have a distinct morphological structure: an outer marine part

and an enclosed inner part. This implies original differences in the natural conditions between

both parts. In the inner fjords, higher productivity due to nutrient input and periodical anoxic

conditions favour the accumulation of substances associated with fine-grained sediments.

The grain size distribution in surface sediments and upward coarsening of sediments in a

core from the outer Kiel Fjord infer that the construction of piers, dykes and harbours

promotes the accumulation of silt-sized material in the inner fjords. The inner fjords are

partially affected by anthropogenic nutrient input from sewage and metal load from shipyards

and harbours. In the outer fjords, the main role is played by natural variations. However, even

weak anthropogenic disturbances always co-act with natural factors and may lead to stable

environmental changes. These changes cannot be overcome by a simple elimination of the

impact, as it was shown for Flensburg Fjord.

The levels of organic carbon, pigments and biogenic silica, which reflect the primary

productivity, are not higher than in other fjords of the western Baltic Sea. They show that the

conditions in Kiel and Flensburg fjords are mesotrophic-slightly eutrophic. The only

exception is the innermost Flensburg Fjord, which suffers a high eutrophication.

Trace metals are mostly associated with organic matter and they are enriched the fine

sediments of the inner fjords, where the anthropogenic load of metals is also concentrated.

Overall, the metal concentrations are typical for those elsewhere in Kiel Bight, except for tin.

The significant tin enrichments of the surface sediments are attributed to the harbours and

shipyards as a result of using of tin containing antifouling paints. The lead concentrations are

related to combustion of lead containing gasoline. They are higher than pre-industrial levels
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but the recent decrease of lead concentrations during last thirty years is recorded in sediments

from Flensburg Fjord. Elevated concentrations of copper and zinc were discovered only in the

innermost fjords in the vicinity of shipyards. Friedrichsort Sound and Gelting Bay differ

significantly from the other areas. In that, they are hydro-dynamically active shallow zones,

distinguished by extremely low concentration of organic matter and trace metals.

The variations of sedimentary organic matter and metals through time are another aspect of

this study. In that, the investigation of sediments from Kiel Fjord during the year revealed that

seasonal variations in organic matter supply are quite distinct and are related to the seasonal

cycle of phytoplankton production. The sedimentary concentrations of organic compounds

increase in spring with a gradient from the inner to the outer fjord reflecting the development

of the spring bloom.

The study of eutrophication and metal pollution in Flensburg Fjord on decadal scale

showed that the remediation of the system is slow after the cessation of enhanced nutrient

input. The concentrations of metals, which come from sewage, shipyards and harbours, did

not change significantly, but the levels of organic matter in the system have even increased.

Although the annual cycle of oxic-anoxic conditions favours the loss of nitrogen from the

sediments and the water column due to denitrification, the system still sustains high levels of

organic carbon and biogenic silica. This is due to high primary production levels promoted by

nutrients from resuspension and redeposition of sediments at shallow depths.

The study of a core from the outer Kiel Fjord shows changes in accumulation of organic

carbon and trace elements in this area on multidecadal scale – during the last 400 years. Here,

in comparison to other areas of the Baltic Sea, no consistent upward enrichment in organic

matter and trace metals was found. In general, an unexpected upward coarsening of sediments

together with elevated sedimentation rates during the 20th century is responsible for this. The

variations in sedimentation rates are referred to changes in erosion and runoff intensity. The

upward decrease of organic matter concentrations in the core seems to reflect the higher

primary productivity at pre-industrial time. The increase of organic matter supply the 1940-

1970s due to high nutrient load before the construction of central sewage plant is, however,

discernible.

The enrichment of core sediments in copper, zinc, cadmium and tin is masked by changes

in sediment composition. But nevertheless, it is perceptible for the last 40 years related to the

shipbuilding industry. The record of redox-sensitive elements elucidates that no drastic

changes in oxygen regime in the outer Kiel Fjord had occurred. The U: Mo ratio in the
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sediments as a proxy of water column oxygenation showed in comparison with a record of

salt-water inflows that the near-bottom waters in the outer Kiel Fjord was not completely

anoxic during the last 150 years. However, the inner fjords had suffered strong anoxia in the

past and during the last years.

Kiel and Flensburg Fjords are of particular interest by the fact that each of them presents

two environments due to their morphological settings. The further monitoring of the fjords

allows to understand the combined effects of natural and anthropogenic factors that is a main

point in the environmental studies of the coastal areas. The investigation of cores from the

depositional areas of fjords may provide insight in the functioning of the inner fjords as a sink

of organic matter and trace metals. The study of fluxes and budgets of nitrogen and carbon as

well as metals in sediments and in the water column may illuminate the role of annual anoxic

events in the distribution and accumulation of organic matter and metals. Further detailed

investigations and monitoring will allow to forecast the development of the environmental

conditions in the fjords.
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APPENDIX 1. SAMPLING STATIONS

APPENDIX 1 .1
Location and depth of sampling stations in Kiel Fjord

Station Datum Latitude (N) Longitude (E) Depth, m

P0220-35.2 09.07.1996 10º00.19´ 54º47.04´ 26.3
P0220-37.2 10.07.1996 10º15.98´ 54º27.66´ 18.6
PF15-01 09.12.2005 54°20.207´ 10°10.119´ 11.3
PF15-02 09.12.2005 54°20.266´ 10°10.043´ 13.2
PF15-03 09.12.2005 54°20.437´ 10°10.486´ 4.6
PF15-04 09.12.2005 54°20.415´ 10°10.423´ 8.7
PF15-05 09.12.2005 54°20.336´ 10°10.342´ 13.2
PF15-06 09.12.2005 54°20.324´ 10°10.157´ 13.1
PF15-07 09.12.2005 54°20.530´ 10°10.473´ 4.6
PF15-08 09.12.2005 54°20.541´ 10°10.328´ 9.0
PF15-09 09.12.2005 54°20.563´ 10°10.293´ 12.5
PF15-10 09.12.2005 54°20.557´ 10°10.144´ 13.1
PF15-11 09.12.2005 54°20.725´ 10°10.435´ 5.0
PF15-12 09.12.2005 54°20.719´ 10°10.319´ 11.4
PF15-13 09.12.2005 54°20.713´ 10°10.160´ 13.4
PF15-14 09.12.2005 54°20.888´ 10°10.458´ 5.0
PF15-15 09.12.2005 54°20.895´ 10°10.360´ 11.2
PF15-16 08.12.2005 54°20.931´ 10°10.202´ 13.4
PF15-17 08.12.2005 54°24.339´ 10°12.948´ 4.5
PF15-18 08.12.2005 54°24.325´ 10°12.870´ 8.0
PF15-19 08.12.2005 54°24.308´ 10°12.699´ 12.2
PF15-20 08.12.2005 54°27.323´ 10°27.516´ 18.1
PF15-21 09.12.2005 54°21.411´ 10°09.087´ 10.4
PF15-22 10.02.2006 54°19.781´ 10°10.414´ 8.0
PF15-23 10.02.2006 54°19.833´ 10°10.251´ 7.2
PF15-24 10.02.2006 54°19.900´ 10°09.966´ 11.0
PF15-25 10.02.2006 54°19.981´ 10°09.753´ 13.3
PF15-26 17.02.2006 54°21.048´ 10°10.576´ 7.6
PF15-27 17.02.2006 54°21.072´ 10°10.501´ 11.6
PF15-28 17.02.2006 54°21.116´ 10°10.295´ 13.3
PF15-29 10.02.2006 54°21.702´ 10°09.020´ 11.4
PF15-30 10.02.2006 54°21.575´ 10°09.121´ 13.2
PF15-31 10.02.2006 54°21.481´ 10°09.155´ 12.6
PF15-32 10.02.2006 54°21.371´ 10°09.291´ 13.2
PF15-33 10.02.2006 54°21.216´ 10°09.388´ 13.2
PF15-34 17.02.2006 54°21.820´ 10°10.401´ 14.0
PF15-35 10.02.2006 54°20.793´ 10°09.599´ 12.5
PF15-36 10.02.2006 54°19.408´ 10°08.961´ 16.0
PF15-37 17.02.2006 54°23.185´ 10°11.546´ 16.9
PF15-38 17.02.2006 54°25.233´ 10°12.704´ 16.8
PF15-39 10.02.2006 54°20.012´ 10°09.356´ 12.8
PF15-40 10.02.2006 54°23.176´ 10°11.246´ 13.5
PF15-41 10.02.2006 54°23.177´ 10°10.837´ 12.6



Appendix 1. Sampling stations

A2

PF15-42 10.02.2006 54°23.270´ 10°10.837´ 9.5
PF15-43 10.02.2006 54°23.344´ 10°10.856´ 6.2
PF15-44 17.02.2006 54°21.692´ 10°10.609´ 5.7
PF15-45 17.02.2006 54°21.740´ 10°10.496´ 12.6
PF15-46 17.02.2006 54°21.813´ 10°10.127´ 14.3
PF15-47 17.02.2006 54°23.528´ 10°12.464´ 8.8
PF15-48 17.02.2006 54°23.591´ 10°12.288´ 14.9
PF15-49 17.02.2006 54°23.591´ 10°12.429´ 10.5
PF15-50 17.02.2006 54°23.667´ 10°12.383´ 13.0
PF15-51 10.02.2006 54°19.771´ 10°09.752´ 15.3
PF15-52 10.02.2006 54°19.519´ 10°09.314´ 15.2
PF15-53 28.03.2006 54°20.801´ 10°09.933´ 14.8
PF15-54 28.03.2006 54°21.208´ 10°09.907´ 13.8
PF15-55 28.03.2006 54°22.306´ 10°09.944´ 14.1
PF15-56 28.03.2006 54°22.620´ 10°10.128´ 14.2
PF15-57 28.03.2006 54°22.615´ 10°11.557´ 10.9
PF15-58 04.05.2006 54°25.586´ 10°11.843´ 7.4
PF15-59 28.03.2006 54°25.982´ 10°11.664´ 17.5
PF15-60 04.05.2006 54°30.315´ 10°17.532´ 16.2
PF15-61 04.05.2006 54°31.105´ 10°19.063´ 12.5
PF15-62 04.05.2006 54°23.942´ 10°12.388´ 12.4
PF15-63 04.05.2006 54°23.963´ 10°12.277´ 16.3
PF15-64 04.05.2006 54°23.837´ 10°11.990´ 17.3
PF15-65 04.05.2006 54°23.940´ 10°12.762´ 16.2
PF15-66 04.05.2006 54°24.155´ 10°12.239´ 15.3
PF15-67 04.05.2006 54°24.137´ 10°12.256´ 16.6
PF15-68 04.05.2006 54°24.157´ 10°12.001´ 17.1
PF15-69 04.05.2006 54°24.147´ 10°11.740´ 15.4
PF15-70 04.05.2006 54°23.176´ 10°12.293´ 10.2
PF15-71 04.05.2006 54°23.180´ 10°11.991´ 13.5
PF15-72 05.05.2006 54°22.612´ 10°11.241´ 15.3
PF15-73 05.05.2006 54°22.586´ 10°10.865´ 16.0
PF15-74 05.05.2006 54°22.214´ 10°10.420´ 15.0
PF15-75 05.05.2006 54°22.216´ 10°11.464´ 9.6
PF15-76 05.05.2006 54°22.224´ 10°11.400´ 11.6
PF15-77 05.05.2006 54°22.351´ 10°11.317´ 13.6
PF15-78 05.05.2006 54°22.329´ 10°10.667´ 15.3
PF15-79 05.05.2006 54°22.053´ 10°11.522´ 7.0
PF15-80 05.05.2006 54°22.054´ 10°10.688´ 13.3
PF15-81 05.05.2006 54°22.068´ 10°10.222´ 14.5
PF15-82 05.05.2006 54°21.958´ 10°10.983´ 10.8
PF15-83 05.05.2006 54°21.076´ 10°09.265´ 12.1
PF15-84 05.05.2006 54°20.966´ 10°09.205´ 6.9
PF15-85 05.05.2006 54°20.971´ 10°09.416´ 12.4
PF15-86 05.05.2006 54°20.917´ 10°09.896´ 14.5
PF15-87 05.05.2006 54°20.377´ 10°09.754´ 14.1
PF15-88 05.05.2006 54°20.354´ 10°09.575´ 10.7
PF15-89 05.05.2006 54°19.480´ 10°09.444´ 12.0
PF15-90 05.05.2006 54°19.432´ 10°09.347´ 12.2
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APPENDIX 1 .2
Location and depth of sampling stations in Flensburg Fjord

Station Datum Latitude (N) Longitude (E) Depth, m

PF16-01 08.06.2006 54°47.717´ 9°26.142´ 8.5
PF16-02 08.06.2006 54°48.105´ 9°25.818´ 6.3
PF16-03 08.06.2006 54°48.608´ 9°26.322´ 6.5
PF16-04 08.06.2006 54°49:497´ 9°27.270´ 15.1
PF16-05 08.06.2006 54°49.783´ 9°26.204´ 14.6
PF16-06 08.06.2006 54°49.989´ 9°28.822´ 5.1
PF16-07 08.06.2006 54°50.319´ 9°30.021´ 15.4
PF16-08 08.06.2006 54°51.194´ 9°32.711´ 11.8
PF16-09 08.06.2006 54°51.603´ 9°33.896´ 2.8
PF16-10 08.06.2006 54°50.949´ 9°35.858´ 5.8
PF16-11 08.06.2006 54°52.445´ 9°35.909´ 8.3
PF16-12 08.06.2006 54°52.683´ 9°34.325´ 12.6
PF16-13 08.06.2006 54°53.095´ 9°35.444´ 8.9
PF16-14 08.06.2006 54°52.933´ 9°36.753´ 10.5
PF16-15 08.06.2006 54°52.185´ 9°36.842´ 13.6
PF16-16 07.06.2006 54°50.190´ 9°40.886´ 19.4
PF16-17 07.06.2006 54°48.400´ 9°45.639´ 8.1
PF16-18 07.06.2006 54°49.149´ 9°45.367´ 22.3
PF16-19 07.06.2006 54°50.196´ 9°36.839´ 9.6
PF16-20 07.06.2006 54°45.767´ 9°51.551´ 5.6
PF16-21 07.06.2006 54°46.915´ 9°51.263´ 8.5
PF16-22 07.06.2006 54°49.947´ 9°50.230´ 30.5
PF16-23 07.06.2006 54°48.414´ 9°47.937´ 19.1
PF16-24 07.06.2006 54°47.276´ 9°48.864´ 8.8
PF16-25 07.06.2006 54°46.693´ 9°52.843´ 8.1
PF16-26 07.06.2006 54°48.281´ 9°53.493´ 7.5
PF16-27 07.06.2006 54°47.086´ 9°59.976´ 26.0
PF16-28 07.06.2006 54°50.037´ 9°53.369´ 28.1
PF16-29 07.06.2006 54°48.548´ 9°56.306´ 24.7
PF16-30 07.06.2006 54°44.280´ 10°6.087´ 25.8
PF16-31 07.06.2006 54°42.495´ 10°7.345´ 21.5
PF16-32 08.06.2006 54°50.459´ 9°36.608´ 16.0
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Appendix 2. Geochemical data
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APPENDIX 2. GEOCHEMICAL DATA

APPENDIX 2 .1

Concentrations of organic compounds and trace metals in the surface sediments of Kiel

Fjord together with characteristics of near-bottom water during sampling. – indicates



Appendix 2. Geochemical data
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Appendix 2. Geochemical data
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Appendix 2. Geochemical data
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APPENDIX 2 .2

Concentrations of organic compounds and trace metals in the surface sediments

of Flensburg Fjord together with characteristics of near-bottom water during

sampling. – indicates the ansence of data
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Appendix 2. Geochemical data

APPENDIX 2 .3
Concentrations of organic compounds and trace metals in the surface sediments of Flensburg
Fjord in 1972/1973 according to GKFF (1973a)
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06

C
or

g, 
%

TN
, %

C
u,

  µ
g 

g-1

Zn
,   
µg

 g
-1

Pb
,  
µg

 g
-1

0 PF16-01 12 0.8 200 810 200
2 PF16-02 5.5 0.5 110 360 160
3 PF16-03 5.1 0.6 120 330 170
4 PF16-04 3.1 0.3 45 140 54
5 PF16-05 4.9 0.5 89 290 110
6 PF16-06 3.9 0.6 69 210 100
7 PF16-07 7.1 0.8 96 260 120
8 PF16-08 5.1 0.8 67 190 88
11 PF16-11 1.4 0.3 23 98 23
12 PF16-13 3.5 0.5 32 160 45
12a PF16-15 3.5 0.4 29 170 49
18 PF16-10 2.8 0.3 23 120 30
19 PF16-16 2.9 0.4 27 170 42
20 PF16-17 3.7 0.5 32 170 63
21 PF16-18 3.8 0.5 34 200 64
23 PF16-20 0.2 0.1 2.3 12 2.0
24 PF16-21 3.7 0.4 29 180 55
25 PF16-22 3.9 0.5 29 150 56
37 PF16-27 3.0 0.4 20 130 40
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Appendix 2. Geochemical data
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Appendix 2.4

Concentrations of organic compounds, trace and minor metals in core PF1738
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Appendix 2. Geochemical data

Appendix 2.5

Correlation matrix of organic compounds, metals, sand fraction and foraminiferal

relative abundances in surface sediments of Kiel Fjord. Significant correlations

(p<0.05, n=40) are shown with bold font
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Appendix 2. Geochemical data

Appendix 2.6

Correlation matrix of organic compounds, metals and sand fraction in surface

sediments of Flensburg Fjord. Significant correlations (p<0.05, n=40) are shown

with bold font
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Appendix 2.7

Correlation matrix of organic cmpounds, trace and minor metals and sediment size fractions

in core PF738 from the outer Kiel Fjord. Significant correlations (p<0.05, n=25) are shown

with bold font
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Appendix 3. Foraminiferal data

Appendix 3.1
Foraminiferal census data (percentages) of the living assemblages 63-2000 µm, Kiel Fjord

St
at

io
ns

Am
m

on
ia

 b
ec

ca
ri

i

Am
m

oi
um

 c
as

si
s

El
ph

id
iu

m
 a

lb
iu

m
bi

lic
at

um

El
ph

id
iu

m
 e

. c
la

va
tu

m

El
ph

id
iu

m
 e

. e
xc

av
at

um

El
ph

id
iu

m
 in

ce
rt

um

Re
op

ha
x 

de
nt

al
in

ifo
rm

is
 re

gu
la

ri
s

El
ph

iid
iu

m
 g

er
th

i

El
ph

id
iu

m
 w

ill
ia

m
so

ni

El
ph

id
iu

m
 g

un
th

er
i

C
ou

nt
ed

 sp
ec

im
en

s

Po
pu

la
tio

n 
de

ns
ity

. i
nd

.1
0c

m
-3

Te
st

 a
bn

or
m

al
iti

es
. %

Sp
ec

ie
s w

ith
 a

bn
or

m
al

 te
st

s*

P0220-37.2 90.0 10.0 10 3.1 no

P0220-35.2 6.3 2.1 73.7 6.3 1.0 95 29.7 no

PF15-01 0 - -

PF15-02 60.9 39.1 23 10.5 13.0 am, el ex ex

PF15-03 57.8 38.8 3.4 147 272.7 12.0 am, el ex ex

PF15-04 22.6 5.5 66.4 4.8 0.7 146 67.1 1.4 am, el ex ex

PF15-05 51.6 5.4 4.1 41.8 122 125.9 5.7 am, el ex ex

PF15-06 34.7 9.0 56.3 245 1568.0 3.8 am, el ex ex

PF15-07 25.3 2.2 72.2 79 21.0 3.8 am, el ex ex

PF15-08 27.7 2.2 56.9 4.6 10.0 130 135.4 3.1 am, el ex ex

PF15-09 48.6 2.4 49.0 255 868.1 4.7 am, el ex ex

PF15-10 51.5 3.3 28.7 18.1 171 342.0 2.4 am, el ex ex

PF15-11 57.1 3.3 36.7 49 8.2 6.0 am, el ex ex

PF15-12 72.5 2.2 25.1 1.2 0.6 346 424.5 1.4 el ex ex

PF15-13 84.1 11.6 2.9 1.4 138 447.9 2.2 am, el ex cl

PF15-14 55.3 37.4 7.3 179 703.9 3.9 am, el ex ex

PF15-15 58.0 13.0 21.0 8.0 138 581.1 1.4 am, el ex ex

PF15-16 59.9 2.2 12.6 25.3 1.5 269 1484.1 2.6 am

PF15-17 80.2 3.3 15.1 2.4 126 44.2 19.8 am

PF15-18 32.6 13.0 52.2 2.2 92 39.1 4.3 am

PF15-19 68.1 3.6 6.2 21.8 6.2 0.3 385 810.5 7.0
am, el ex ex, el
inc, el ex cl, el al

PF15-20 21.4 9.7 44.7 5.8 17.5 1.0 103 238.8 3.9 am, el ex ex
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PF15-21 46.5 3.5 7.0 36.8 3.5 1.8 114 536.5 2.6
am, el ex ex, el
alb

PF15-22 53.4 7.9 37.6 1.1 189 1314.8 17.5 am, el ex ex

PF15-23 72.5 2.8 20.2 4.6 109 684.4 14.7 am, el ex ex

PF15-24 79.3 3.0 13.6 4.0 198 1413.0 11.1 am, el ex ex

PF15-25 71.0 1.0 24.5 3.5 200 1405.6 6.5
am, el ex ex,
el ger

PF15-26 12.0 6.7 61.3 10.7 1.3 8.0 75 84.6 5.3
am, el ex cl,
el ex ex

PF15-27 79.9 0.7 5.8 12.9 0.7 139 1263.2 4.3 am

PF15-28 68.1 6.7 22.1 3.1 163 3798.5 2.5 am

PF15-29 72.0 12.2 13.3 1.8 0.7 271 2043.6 12.9
am, el ex ex, el
inc

PF15-30 46.0 1.0 15.0 30.0 3.0 3.0 1.0 100 956.6 3.0 am, el ger

PF15-31 43.5 0.8 21.0 27.4 0.8 6.5 124 561.9 3.2
am, el ex ex, el
ger

PF15-32 62.8 0.7 16.0 17.4 2.4 0.7 288 995.2 4.2 am, el ex ex

PF15-33 62.4 0.0 15.1 18.8 1.4 2.3 218 1074.3 5.5
am, el ex cl,
el ex ex

PF15-34 43.2 0.5 51.8 3.2 1.4 220 721.3 4.5 am, el ex ex

PF15-35 56.3 1.0 12.5 26.0 4.2 96 451.8 4.2 am

PF15-36 79.5 20.5 117 260.0 1.7 am, el exc ex

PF15-37 47.1 5.9 36.1 10.9 119 280.0 4.2 am, el ex ex

PF15-38 3.0 12.5 84.5 168 4895.1 4.2 el ex ex

PF15-39 79.4 0.5 3.4 13.7 2.0 1.0 204 2199.8 11.3 am, el ex ex

PF15-40 55.5 0.7 25.5 13.9 4.4 274 550.1 5.1
am, el ex ex, el
inc

PF15-41 47.8 0.5 14.0 37.1 0.5 186 551.2

PF15-42 51.4 0.7 3.4 12.8 29.7 1.4 0.7 148 341.9 6.8 am, el ex ex

PF15-43 34.7 2.0 1.3 45.3 8.0 8.7 150 81.1 3.3 am, el ex ex

PF15-45 70.2 6.0 22.4 1.1 0.3 352 1448.6 5.1 am

PF15-46 44.9 10.8 38.0 6.3 158 239.0 3.2 am, el exc ex

PF15-47 80.3 0.5 7.1 9.8 2.2 183 1255.4 8.7 am, el ex ex

PF15-48 62.9 0.8 0.8 4.4 27.9 1.6 1.6 251 1249.9 6.0
am, el ex ex, el
ger

PF15-49 58.3 1.2 10.4 28.2 0.6 1.2 163 191.8 6.7 am

PF15-50 71.8 6.6 21.2 0.4 241 2298.9 1.2 am

PF15-51 50.8 0.3 8.8 33.1 7.0 329 2117.9 2.1
am, el ex ex, el
inc

PF15-52 76.6 0.8 18.9 1.1 2.6 265 749.7 5.7
am, el ex ex, el
ger

PF15-52 76.6 0.8 18.9 1.1 2.6 265 749.7 5.7
am, el ex ex, el
ger
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PF15-53 35.1 3.1 60.8 1.0 288 332.0 5.2 am, el exc ex

PF15-54 54.2 0.0 2.4 2.4 7.2 0.4 249 1010.2 10.4
am, el ex ex, el
inc, el ger

PF15-55 52.1 1.0 10.0 25.1 4.7 0.9 5.7 211 446.5 6.6
am, el ex ex, el
ger

PF15-56 48.8 1.2 22.8 19.1 6.2 1.9 162 122.0 3.1 am, el ex cl

PF15-57 37.8 4.4 32.8 15.7 7.6 0.3 1.5 344 1151.4 7.0
am, el ex cl, el
inc, el ger

PF15-58 1

PF15-59 3.8 2.2 54.3 32.3 6.5 1.1 186 1454.3 5.4 el ex ex, el ex cl

PF15-60 3.1 1.0 9.3 53.6 32.0 1.0 97 36.8 3.1 el inc

PF15-61 9.8 7.1 21.9 39.9 20.2 0.5 0.5 183 60.9 3.3
am, el inc, el ex
ex, el ex cl

PF15-90 68.8 10.6 13.5 6.5 0.6 170 347.1 5.3 am, el inc

Mean 52.0 19.8 2.6 13.2 31.2 5.5 2.6 2.8 0.6 0.9 174 806.6 5.7

Lutze`s
samples**:

342 (PF15-36) 15.4 80.8 3.8 26 50.0

341 (PF15-35) 12.5 68.8 18.8 16 22.5

340 (PF15-34) 3.5 7.0 57.9 14.0 15.8 1.8 57 11.3

239 (PF15-38) 10.4 3.8 46.2 24.5 13.2 0.9 106 11.0

Mean 0.9 6.6 26.6 58.0 12.5 15.8 1.3 51 23.7
*am indicates the specie Ammonia beccari. el ex ex – Elphidium excavatum excavatum. el ex cl – E. excavatum
clavatum. el inc – E. incertum. el alb – E. albiiumbilicatum. el ger – E. gerthi.

** The bold numbers indicate data taken from the Lutze`s manuscript (Lutze. 1965)

Appendix 3. 2
The living and dead percentages of foraminifera in years 1963 (Lutze. 1965) and 2006, Kiel
Fjord

1963* 2006
Sample Living ind.

%
Dead ind.

%
Living/

Dead ratio
Living ind.

%
Dead ind.

%
Living/

Dead ratio
342 (PF15-36) 15 85 0.2 47 53 0.9
341 (PF15-35) 15 85 0.2 24 76 0.3
340 (PF15-34) 0 100 0.0 40 60 0.7
238 (PF15-37) 20 80 0.3 38 62 0.6
239 (PF15-38) 10 90 0.1 76 24 3.2

mean 12 88 0.2 45 55 1.1
* The living and dead foraminifera percentages in 1963 are taken from Lutze (1965)
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Appendix 3.3
Foraminifera species from Kiel Fjord

PLATE 1. 1-7. Ammonia beccarii. Poorly ornamented spiral sides (1.7). Aperture view (3).
Umbilical view (2. 4-6). 8-13. Elphidium excavatum excavatum. Spiral view (8.11-13).
Aperture view (9). 14-15. Elphidium excavatum clavatum. spiral and aperture view. 16-17.
Elphidium gerthi. spiral and aperture view.  18-19. Elphidium incertum. spiral and aperture
view. 20. Elphidium albiumbilicatum. spiral view.
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Appendix 4
Activities of 210Pb and 137Cs in core PF1738
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0.0-0.5 0.25 1.785 56.78 14.48 17.9 23.95 2.06 8.6 18.86 1.71 9.0
0.5-1.0 0.75 1.304 71.82 19.23 20.6 21.39 2.43 11.4 20.28 2.19 10.8
1.0-1.5 1.25 1.374 56.81 16.65 21.8 19.41 2.18 11.2 20.76 2.00 9.6
1.5-2.0 1.75 1.451 57.64 16.65 21.0 21.61 2.21 10.2 24.94 2.05 8.2
2.0-2.5 2.25 1.462 60.62 16.28 20.5 18.81 2.14 11.4 26.39 2.01 7.6
2.5-3.0 2.75 1.430 63.02 16.60 19.9 20.39 2.23 11.0 26.51 2.09 7.9
3.0-3.5 3.25 1.620 45.12 13.83 19.7 25.06 2.06 8.2 25.61 1.76 6.9
3.5-4.0 3.75 1.641 41.75 12.63 20.7 19.16 1.79 9.4 22.43 1.66 7.4
4.0-4.5 4.25 1.349 46.3 15.44 22.4 22.77 2.14 9.4 24.97 1.99 7.8
4.5-5.0 4.75 1.672 27.28 13.10 24.7 25.83 1.99 7.7 24.49 1.74 7.1
5.0-6.0 5.5 1.385 33.01 15.23 26.7 24.10 2.17 9.0 32.11 2.10 6.5
6.0-7.0 6.5 1.613 34.49 14.53 25.4 22.74 2.09 9.2 26.06 1.96 7.5
7.0-8.0 7.5 1.328 26.69 15.64 30.5 24.62 2.25 9.1 19.17 1.87 9.7
8.0-9.0 8.5 1.429 16.19 15.00 33.4 28.73 2.37 8.3 21.57 1.88 8.7
9.0-10 9.5 1.425 12.92 15.28 34.2 31.77 2.40 7.5 19.50 1.86 9.5
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APPENDIX 5 GRAIN-SIZE DATA

APPENDIX 5 .1
Sand (>63 µm), silt (2-63 µm) and clay (< 2 µm) content, core PF1738, outer Kiel Fjord

Depth, cm >63 µm, % 2-63 µm, % < 2 µm, %
0-0.5 84.6 14.9 0.50

0.5-1.0 84.6 14.9 0.50
1.0-1.5 84.6 14.9 0.50
1.5-2.0 83.1 16.1 0.8
2.0-2.5 83.1 16.1 0.8
2.5-3.0 83.1 16.1 0.8
3.0-3.5 84.4 15.1 0.5
3.5-4.0 84.4 15.1 0.5
4.0-4.5 82.5 16.8 0.7
4.5-5.0 82.5 16.8 0.7
5.0-5.5 85.3 14.3 0.4
5.5-6.0 85.3 14.3 0.4
6.0-6.5 81.0 18.4 0.6
6.5-7.0 81.0 18.4 0.6
7.0-7.5 75.7 33.5 0.8
7.5-8.0 75.7 33.5 0.8
8.0-8.5 35.4 53.2 11.4
8.5-9.0 35.0 53.7 11.3
9.0-9.5 29.1 57.6 13.3

9.5-10.0 27.8 62.3 10.0
10.0-10.5 24.0 64.3 11.7
10.5-11.0 49.1 40.9 10.0
11.0-11.5 26.5 62.1 11.5
11.5-12.0 47.5 44.7 7.8
12.0-12.5 37.8 52.7 9.5
12.5-13.0 33.3 56.4 10.3
13.0-13.5 31.0 57.7 11.2
13.5-14.0 27.5 60.7 11.8
14.0-14.5 13.4 71.1 15.5
14.5-15.0 18.6 64.8 16.5
15.0-15.5 23.6 60.8 15.6
15.5-16.0 19.3 64.9 15.8
16.0-16.5 20.2 65.4 14.4
16.5-17.0 29.0 56.2 14.8
17.0-17.5 22.1 61.9 16.0
17.5-18.0 10.3 71.1 18.6
18.0-18.5 12.1 68.3 19.6
18.5-19.0 10.6 71.5 17.9
19.0-19.5 21.1 63.7 15.1
19.5-20.0 15.6 69.0 15.4
20.0-20.5 14.6 67.4 18.0
20.5-21.0 22.6 62.0 15.5
21.0-21.5 15.2 66.4 18.4
21.5-22.0 20.6 64.2 15.2
22.0-22.5 18.7 64.2 17.2
22.5-23.0 13.1 68.1 18.9
23.0-23.5 13.8 68.7 17.6
23.5-24.0 54.9 37.3 7.8
24.0-24.5 47.9 43.4 8.7
24.5-25.0 50.2 42.0 7.9
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Appendix 5. Grain-size data
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