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Over recent years, several PCR primers have been described to amplify genes
encoding the structural subunits of ammonia monooxygenase (AMO) from
ammonia-oxidizing bacteria (AOB). Most of them target amoA, while amoB and
amoC have been neglected so far. This study compared the nucleotide sequence of
33 primers that have been used to amplify different regions of the amoCAB operon
with alignments of all available sequences in public databases. The advantages and
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First published online 1 February 2008. disadvantages of these primers are discussed based on the original description and

the spectrum of matching sequences obtained. Additionally, new primers to
amplify the almost complete amoCAB operon of AOB belonging to Betaproteo-
bacteria (betaproteobacterial AOB), a primer pair for DGGE analysis of amoA and
specific primers for gammaproteobacterial AOB, are also described. The specificity
of these new primers was also evaluated using the databases of the sequences
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Introduction

Ammonia-oxidizing bacteria (AOB) are chemolithoauto-
trophic Gram-negative proteobacteria that fix CO, with the
reducing power obtained from ammonia oxidation (Prosser,
1989). They belong to two monophyletic lineages: Nitroso-
monas spp. (including Nitrosococcus mobilis) and Nitrosos-
pira spp. (including Nitrosolobus and Nitrosovibrio) form a
closely related clade within the beta phylum (betaproteo-
bacterial AOB) of proteobacteria, whereas Nitrosococcus
oceani is affiliated to the gamma phylum (gammaproteo-
bacterial AOB) of proteobacteria (Head et al., 1993; Purk-
hold et al., 2000; Purkhold et al., 2003).

Characterization of the species composition and diversity
of AOB communities in nature has been hampered for a
long time by difficulties in the isolation and culture of these
microorganisms. Analysis of AOB communities has become
accomplishable by applying culture-independent molecular
approaches, which are based on the amplification of 16S
rRNA genes by PCR (Bothe et al,, 2000; Kowalchuk &
Stephen, 2001) or the detection of 16S rRNA by FISH
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(Wagner et al., 1993, 1995; Mobarry et al., 1996). 16S rRNA
genes are good phylogenetic markers, but are not necessarily
related to the physiology of the target organisms (Kowal-
chuk & Stephen, 2001; Calvo & Garcia-Gil, 2004). There-
fore, functional markers such as the genes encoding for key
enzymes involved in ammonia-oxidation provide an alter-
native in ecological studies (Rotthauwe et al., 1997). Diver-
sity studies of AOB based on the sequence analysis
of one of these genes, amoA, have shown a high resolution
in separating closely related strains (Rotthauwe et al.,
1997; Alzerreca et al., 1999; Aakra et al., 2001; Norton
et al., 2002).

Ammonia monooxygenase (AMO) is a membrane-bound
multiple subunit enzyme responsible for the conversion
of ammonia to hydroxylamine (Hyman & Arp, 1992). The
structural subunits of AMO in AOB are encoded by the
genes amoC, amoA and amoB, which are organized in one
operon (Norton et al,, 2002). The physical organization
of the operon seems to be conserved in all AOB; multiple
copies have been reported for betaproteobacterial AOB
(Norton et al.,, 2002), whereas so far it seems that in
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gammaproteobacterial AOB occurs as a single copy (Alzer-
reca et al., 1999).

Since the publication of the first amoA sequence of
Nitrosomonas europaea (McTavish et al., 1993), the number
of partial and full-length sequences available in public data-
bases has increased significantly. Several PCR primers to
amplify amoA have been published (Holmes et al., 1995;
Sinigalliano et al., 1995; Rotthauwe et al., 1997; Juretschko
et al., 1998; Nold et al., 2000; Purkhold et al., 2000; Hoshino
et al., 2001; Nicolaisen & Ramsing, 2002; Norton ef al., 2002;
Okano ef al., 2004). The analysis of AMO-encoding genes has
been extended to amoC and amoB (Purkhold et al., 2000;
Norton et al., 2002; Calvo & Garcia-Gil, 2004), and more
recently functional genes homologous to those in AOB have
been described in Archaea (Konneke et al., 2005; Treusch
et al., 2005). Some of these primers were designed when only
a few sequences were available. Considering the new sequence
information accumulated in recent years, including the
complete genomes of Nitrosomonas europaea (Chain et al.,
2003), Nitrosococcus oceani (Klotz et al., 2006) and Nitroso-
spira multiformis, sequence analysis can contribute to estimate
the advantages and failures of the available primers, and to
assist the development of new strategies to study the structure
of AOB communities. In this study all available amoCAB
sequences from recognized AOB species, and whenever
possible the sequences from uncultured clones, were used to
characterize the published PCR primers and to propose new
primers for the amplification of the amoCAB operon.

Materials and methods

Sequences and alignments

For in silico analyses, the nucleotide sequences of amo genes
were downloaded from GenBank using EnTREz (http://
www.ncbi.nlm.nih.gov/). Protein sequences were retrieved
from Swissprot using exeasy (http://www.expasy.org). The
analyzed sequences were: (a) 16 sequences of amoC from
both beta- and gammaproteobacterial AOB, (b) eight se-
quences of the related subunit of the particulate methane
monooxygenase (pmoC), (c) one amoC sequence from the
recently described ammonia-oxidizing archaeon Candidatus
Nitrosopumilus maritimus (Konneke et al., 2005), (d) 32
amoB sequences from beta- and gammaproteobacterial
AOB; (e) seven pmoB sequences from methane-oxidizing
bacteria (MOB), (f) two amoB sequences from crenarchaeo-
ta and (g) 2669 sequences of amoA and the related o subunit
of the particulate methane monooxygenase (pmoA) from
cultured and uncultured AOB. Although amoA sequences
from crenarchaeota were considered, they differed widely
and were excluded from the analysis.

The amoC, pmoC, amoB, pmoB, amoA and pmoA
sequences were integrated in arB (Ludwig et al., 2004).
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A database of complete and partial sequences of amoA from
recognized AOB species was also prepared in Ars. Before the
analysis, the sequences were verified manually and those
including STOP codons or erroneous starting points were
omitted. To simplify the presentation of the results,
sequence similarity is shown only for amoA sequences
from cultured AOB (11 different phylogenetic clusters) and
10 pmoA sequences. The complete databases are available
at http://cegg.unige.ch/ammoniaoxigenase. Sequences were
aligned using cLustaw included in Ars.

Primers

To simplify the comparison between primers that had been
designed in different studies, this study proposes a standar-
dized designation system according to the name of the
targeted gene, followed by information on the position and
orientation of the primers. An example of such designation
is as follows: amoA31f in which ‘amoA’ indicates the gene
targeted, ‘31’ the position in the alignment and f the
direction of the primers (forward). Additional letters at the
end of the designation indicate modifications such as short-
er versions (s), wobble positions (IUPAC code), probe for
FISH (p) or primer specific for gammaproteobacterial AOB
(Gam). The new designation is always given in parenthesis
after the original designation of the primer [e.g. AMO-F
(amoA21f)].

Analysis of the primers was carried out using the software
ouico 6.0 (Table 1). The position of each primer was
determined after alignment of all the sequences in ARB.
Specificity was evaluated using BLasT (http://www.ncbi.nlm.
nih.gov/BLAST/) for short, nearly exact matches and also
MATCH PROBE in ARB. Because the different T,, values in the
presence of several mismatches calculated by orico (Table 1)
do not take into account the position of the mismatch,
additional analyses were carried out with MATCH PROBE in
ARB. The MaATCH PROBE subroutine of ArB calculates two
different parameters for specificity: number of mismatches
and weight of the mismatches. The last parameter depends
on the number, position and kind of mismatches. A max-
imum number of five mismatches was allowed in the
analysis. New primers were designed by visual inspection
of the multiple alignments or using the software GENEFISHER
(http://bibiserv.techfak.uni-bielefeld.de/genefisher/).  The
newly designed primers were also analyzed with oo v.6.0
(Table 1).

Results and discussion

Sequence analysis of amoA primers

Sequence matching of the amoA primers was analyzed in
the ARB database prepared in this study. The complete
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alignment extended over 829 nucleotide positions, which
were numbered according to the sequence of Nitrosomonas
europaea (L08050). The majority of the amoA sequences
were found in the region between positions 340 and 802.
Therefore, the comparison of primers annealing outside of
this region was limited to only a few sequences from the
following clusters: Nitrosospira cluster 3, Nitrosomonas
europaea, Nitrosomonas oligotropha, Nitrosomonas cryotoler-
ans, gammaproteobacterial AOB and Methylococcus capsu-
latus (Table 2).

The primer pair AMO-F (amoA21f) and AMO-R
(amoA686r) (Sinigalliano ef al., 1995), which had been
derived from one sequence of Nitrosomonas europaea avail-
able at that time, proved to be highly specific for the
Nitrosomonas europaea cluster (Table 2). In the GenBank
search, the forward primer AMO-F (amoA21f) matched
perfectly sequences from Nitrosomonas europaea. In con-
trast, AMO-F (amoA21f) has three to five mismatches with
some sequences of Nitrosospira cluster 3, and more than five
mismatches with Nitrosospira multiformis, two sequences
from the Nitrosomonas oligotropha cluster, Nitrosomonas
cryotolerans, MOB and gammaproteobacterial AOB. Addi-
tionally, the comparison with clonal sequences from uncul-
tured organisms showed that this primer has five
mismatches to another region of pmoA. The reverse
primer AMO-R (amoA686r) matched perfectly with only
three sequences of the Nitrosomonas europaea cluster,
but possessed two to more than five mismatches with other
sequences of this cluster. AMO-R (amoA686r) also has two
to four mismatches with almost all sequences from cultured
betaproteobacterial AOB, 1190 sequences from uncultured
betaproteobacterial AOB and pmoA from Methylococcus
capsulatus. This primer has more than five mismatches with
all other MOB and amoA of gammaproteobacterial AOB.
According to this study’s sequence analysis (Table 2), the
AMO-F (amoA21f) and AMO-R (amoA686r) pair may be
suitable to amplify AOB closely related to Nitrosomonas
europaea and to exclude other AOB groups under stringent
PCR conditions. An experimental evaluation (Sinigalliano
et al., 1995) had shown that this primer pair can also amplify
amoA from Nitrosomonas cryotolerans and Nitrosococcus
oceani, but this conclusion is not supported by the in silico
evaluation and can only be explained by the use of PCR
conditions favoring low specificity.

The primer pair AMO-F2 (amoA40f) and AMO-R2
(amoA665r) (Juretschko et al., 1998) was published to
increase the sensitivity of amoA detection using a nested
PCR approach from templates prepared with the primers
AMO-F (amoA21f) and AMO-R (amoA686r) (Sinigalliano
et al., 1995), considered above. AMO-F2 (amoA40f)
matches perfectly eight of the 14 sequences analyzed (both
Nitrosospira and Nitrosomonas spp.) and have one mismatch
with Nitrosospira sp. NpAV, two with Nitrosospira multi-
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formis, three with Nitrosomonas cryotolerans, and more than
five with MOB or gammaproteobacterial AOB. The se-
quence analysis suggests that AMO-F2 (amoA40f) may be
suitable to target betaproteobacterial AOB in general. In
contrast, the primer AMO-R2 (amoA665r) seems to match
sequences from the Nitrosomonas europaea cluster (includ-
ing environmental clones), better than other clusters,
matching perfectly only three sequences from the Nitroso-
monas europaea cluster (Table 2). AMO-R2 (amoA665r)
has four high-weighted mismatches to sequences from
the Nitrosospira lineage and one to four mismatches with
different weight with other Nitrosomonas sequences. Be-
cause of the restricted spectrum of matches of AMO-R2
(amoA665r), the authors conclude that AMO-F2
(amoA40f) may be suitable as a general primer for amplify-
ing betaproteobacterial AOB, but it should be combined
with another reverse primer to accomplish this goal.
Although the AMO-F2 (amoA40f) and AMO-R2
(amoA775r) pair was originally designed for nested ampli-
fication from products prepared with the primers AMO-F
(amoA21f) and AMO-R (amoA686r) in order to increase
PCR sensitivity, this approach seems to have limited applic-
ability considering that the primer pair used in the first
round of PCR (AMO-F and AMO-R) appear to be biased
for amplification of Nitrosomonas europaea.

Recently, several regions for primer design have been
identified based on reverse translation of protein alignment
in the amoCAB operon (Norton et al., 2002). The primer
304R (amoA60r) is located near the 5’ end of amoA and
allows, in combination with the primer 305F (amoC763f),
the amplification of the intergenic region between
amoC and amoA. This primer does not perfectly match any
of the amoA sequences of cultured AOB (Table 2), having
three to four mismatches of high weight in all
cases examined. Additionally, the primer 304R (amoA60r)
possesses a very stable loop structure (Table 1), which is not
desirable for PCR. The experimental evaluation (Norton
et al., 2002) showed that 304R (amoA60r), in combination
with 305F (amoC763f), amplified the variable intergenic
region of Nitrosospira sp. NpAv, Nitrosospira briensis,
Nitrosospira sp. 39-19, Nitrosospira tenuis, Nitrosospira
multiformis, Nitrosomonas europaea, Nitrosomonas eutropha,
Nitrosomonas sp. AL212, Nitrosomonas sp. JL21, Nitrosomo-
nas sp. GH22 and Nitrosomonas cryotolerans. However,
according to the sequence analysis, this should be only
possible under low specificity of PCR (Table 1). This
intergenic region can be relevant for community studies
because the size of the products obtained from each
species is different and the nucleotide sequence is highly
variable. However, modification of the primers (for exam-
ple shortening of primers or designing new primers)
might be considered for application with environmental
samples.
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Table 2. Comparison of the primer sequences with the ARB database
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=z
Nitrosospira sp. NI20 AJ298703 4 4
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Table 2. Continued.
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Original designation

[OIN®)
~ Ol |w «l 8 il k
T AN | g (o[
of |9 %] 8| |3]3/3]E5 olyylol 3|33 3|g
= = o —-|o EIEIE|IE|® S|lolo|=|E|E|E|E|la
< < () <™ ©| @ ©f © << < <C|<| ©| @ T| ©T| D
New designation
> [O]N®)
5 YO O O N == [P 1 -4 S O O IO I I <1 <1
g 2 |=gls|8s063B 52885 288882 S S
5 g 190%15/38l5(x|x]5|5]212/22/5| €|2| 25| 2122 12/2| 2
2 I R R R R R R R R R R R R R R
< E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|E|IE|E|E|E|E|E|IE|IE|E
S| ®| T G| C| ST C| S| T ST @ € S T S T | S T TS
Nitrosomonas europaea L08050 ojl2]o 3loft1 2|1 (oMM |1][o0]1 ol2f|1]ojojojof1]o0
Nitrosomonas eutropha AY177932 2(1]|2|1[2 01 2 18|32
Nitrosococcus mobilis AF037108 [0 | 2 | 0 & 1 1 ‘@l 1]1[0 ol2f1]o
« | Nitrosomonas sp. F3 AJ298691 1332
g | Nitrosomonas sp. F6 AJ298693 1]3]3]2
S [ Nitrosomonas sp. GH22 AF327917 | 1| 2| o ol 121210 o1 > olalalalalil1]2]1
; Nitrosomonas sp. Nm93 AF272401 2
2 | Nitrosomonas sp. Nm103 AF272411 ol2li1]o
Nitrosomonas sp. Nm104 AF272409 2
Nitrosomonas sp. Nm107 AF272407 2
Nitrosomonas sp. TK794 AB031869 | 1 | 2 | 0 1|1 |21 [2 8o 1 2 2(8|8|2|2[1]1]2]1
Nitrosomonas communis AF272399 2
'§ Nitrosomonas nitrosa AF272404 5|2|4|4]|4
E Nitrosomonas sp. Nm33 AF272408 2|3 3
8 | Nitrosomonas sp. Nm41 AF272410 1]2
§ Nitrosomonas sp. Nm58 AY123820 2|2
Nitrosomonas sp. Nm148 AY123815 2444
Nitrosomonas aestuarii AF272400 2|1 &
Nitrosomonas marina AF272405 2 3
s Nitrosomonas sp. C-113a AF339042 ofi1]o]|z2 12|20 3|2
‘s | Nitrosomonas sp. C-45 AF339041 ol1]o0]1 1jof2]o0 3
& ["Nitrosomonas sp. Nm51 AF272412 3 2
§ Nitrosomonas sp. NO3W AF339039 ojl1f{of1 1/ol2]o 3|2]|2
Nitrosomonas sp. TA-921-1-NH4 | AF339043 ol2]o]1 1]l2]2]1 2|2
Nitrosomonas sp. URW AF339040 ol1{of1 1/o0]2]0 3
Nitrosomonas oligotropha AF272406 24|22
Nitrosomonas ureae AF272403 414
& | Nitrosomonas sp. AL212 AF327918 0 1121 [2 81 |1[4]2 412 2 2
§ | Nitrosomonas sp. JL21 AF327919 2|0 218 ]1/1 2|1 2 3[3[1[1]2 2
S [Nitrosomonas sp. Nm143 AY123816 222
S ['Nitrosomonas sp. Nm47 AY123830 3|lal3|3
5 Nitrosomonas sp. Nm59 AY123831 2|4(3[4
Nitrosomonas sp. Nm84 AY123818 21311
Nitrosomonas sp. Nm86 AY123819 2|3|2][2
.| Nitrosomonas cryotolerans AF314753 4 ojlofofo ‘M 0 |1]|2]2 22|22 -I
% Nitrosomonas halophila AF272398 3
‘_3 Nitrosomonas halophila AY026907
Z | Nitrosomonas oligotropha AJ298709 3
S [ Nitrosococcus oceani AF047705 0 ofl8]o 1 0 2
§ Nitrosococcus halophilus AF272521 0 3 4
2 Nitrosococcus sp. C-113 AF153344 0 1 1 1 0 2
Methylocaldum gracile U89301 oj2]o 2
Methylocaldum tepidum U89304 ol2]o 8 1
Methylocapsa acidiphila AJ278727 2
Methylococcus capsulatus L40804 oj2]o 3 21|38
o | Methylohalobius crimeensis | AJ581836 3 2
Q [ Methylomicrobium album U31654 3 1
Methylomonas methanica U31653 2
Methylosarcina lacus AY007286 0 0 3 2
Methylothermus thermalis AY829010 3
Methylobacter sp. LW12 AY007285 0 0 2 2

Sequences of beta-AOB were grouped in clusters according to their 165 rRNA phylogeny following the cluster designation of Purkhold et al. (2003).
Sequences not grouped in any cluster are indicated as ‘no cluster’. The number of mismatches is given in each box. Colour coding: grey = no sequence in
this area; black = more than five mismatches; blue gradient =increasing weight of the mismatches (see methods) starting in 0 (white) to more than 4
(dark blue). For the explanation of new primer designation see Table 1 and text. Primers from this study are indicated in bold.

© 2008 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd. All rights reserved

FEMS Microbiol Ecol 64 (2008) 141-152



PCR primers for the ammonia-monooxygenase operon

The primers 301F (amoA154f) and 302R (amoA828r)
were designed as a primer pair to amplify a core region of
675bp from amoA in 14 AOB (Norton et al., 2002). The
primer 301F (amoA154f) matches perfectly Nitrosospira
briensis, Nitrosovibrio tenuis, Nitrosospira sp. 39-19 and
Nitrosomonas cryoloterans, but has one to four mismatches
with all other Nitrosospira and Nitrosomonas sequences,
three to four mismatches with gammaproteobacterial AOB
and two to three mismatches with pmoA (Table 2). The
primer 302R (amoA828r) only targets amoA of gammapro-
teobacterial AOB, because its target region is deleted in the
amoA of gammaproteobacterial AOB. Among betaproteo-
bacterial AOB the primer 302R (amoA828r) matches per-
fectly only the sequences from Nitrosovibrio tenuis and
Nitrosomonas europaea, but has one mismatch of low weight
with Nitrosospira sp. Np 39-19, one to two mismatches of
intermediate weight with Nitrosospira briensis, Nitrosospira
multiformis, Nitrosospira sp. NpAV, Nitrosomonas sp. GH22
and Nitrosomonas sp. TK794, and three to four mismatches
of high weight with Nitrosomonas sp. AL212, Nitrosomonas
sp. JL21 and Nitrosomonas cryotolerans. Because of their
length and base composition, both 301F (amoA154f) and
302R (amoA828r) have a very high T, (Table 1), and
therefore PCR conditions (for example salt and formamide
concentration) have to be modified. Considering that the
forward primer 301F (amoA154f) has potential to match
simultaneously beta- and gammaproteobacterial AOB and
MOB, the shorter version amoAl154fs is suggested as a
modification with lower T, (Table 1) and significantly
higher sequence similarity for all of the sequences (Table 2).

The primer amoA-1FF (amoA187f) (Hoshino et al.,
2001) was originally designed to amplify Nitrosomonas
europaea in combination with the primer amoA-2R
(amoA822r), for in situ PCR. In the sequence analysis,
amoA-1FF (amoA187f) fully matches Nitrosomonas euro-
paea, Nitrosococcus mobilis and Nitrosospira sp. NpAV, and
has one to two mismatches with the other Nitrosomonas and
Nitrosospira sequences (Table 2). The low number of mis-
matches with some sequences from other clusters of both
lineages (Nitrosovibrio tenuis, Nitrosospira sp. Np 39-19,
Nitrosomonas sp. C-113a and also uncultured clones) sug-
gests that the amoA-1FF (amoA187f) is probably not
specific for Nitrosomonas europaea.

The primer combination amoA-3F (amoA310f) and
amoB-4R (amoB44r) was designed to amplify part of amoA
from the gammaproteobacterial AOB Nitrosococcus halophi-
lus (Purkhold et al., 2000). amoa-3F (amoA310f) matches
perfectly only the sequence from this species, has one
mismatch with the two other gammaproteobacterial AOB,
two or three mismatches with MOB and three to four
mismatches of high weight with Nitrosospira multiformis,
Nitrosospira sp. Np 39-19 and the majority of Nitrosomonas
sequences (Table 2). According to the analysis with orico
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(Table 1), highly stringent conditions are needed for reliable
results with amoA-3F (amoA310f).

The primer pair amoA-1F (amoA332f) and amoA-2R
(amoA822r) (Rotthauwe et al., 1997) is the most widely
used to amplify amoA in environmental studies, despite the
differences in the T;, between the primers (Table 1). amoA-
IF (amoA332f) is located in a region conserved in all
betaproteobacterial AOB; it matches perfectly or with one
to two mismatched sequences from betaproteobacterial
AOB, but it does not match sequences from gammaproteo-
bacterial AOB. The primer amoAlF mod (amoA332fHY),
which is a modified version including two wobble positions
to increase sequence identity with cultured betaproteobac-
terial AOB (Stephen et al., 1999), matched the same
spectrum of sequences, but produced differences in the
weight of the mismatches (Table 2) and T;, (Table 1). The
primer amoA-2R (amoA822r) matched only sequences from
betaproteobacterial AOB, but had lower specificity than
302R (amoA828r) (Norton et al., 2002). Several variants of
amoA-2R (amoA822r) have been proposed, including the
primer amoA-2R’ (amoA820r) (Okano et al., 2004), a
shorter version with lower sequence similarity to the target
region and additional unspecific matches in other regions of
amoA from both cultured and uncultured species. Other
variants of amoA-2R (amoA822r) have been proposed
specifically for denaturing gradient gel electrophoresis
(DGGE), in order to reduce the number of wobble positions
that usually generate double bands in denaturing gels. These
include amoA-2R-TC (amoA822rTC) (Nicolaisen & Rams-
ing, 2002) or amoA-2R-TG (amoA822rTG) (Okano et al.,
2004). These primers matched the same sequences as the
original version but showed differences in the weight of the
mismatches (Table 2) and higher T;,, (Table 1).

In addition to the primers described to amplify amoA, the
probe A337 (amoA337p) (Okano et al., 2004) has been
published for FISH. Although this probe has, in most of the
cases, mismatches with sequences from cultures of all
betaproteobacterial AOB clusters, it has fewer than five
mismatches with all sequences from cultured betaproteobac-
terial AOB and all sequences from uncultured clones, sug-
gesting that it is located in a region suitable for the design of
a general primer for detection of betaproteobacterial AOB.

Sequence analysis of primers for simultaneous
detection of amoA and pmoA

The common evolutionary origin of AMO and particulate
methane monooxygenase (pMMO) (Holmes et al., 1995)
suggests the possibility of finding conserved regions for
designing primers that amplify both genes. The primer pair
A189 (amoA151f) and A682 (amoA681r) was used for this
purpose (Holmes et al., 1995). A189 (amoA151f) is located
in the same conserved region as 301F (amoA154f) (Norton
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et al., 2002) and amoA154fs. It has a perfect match with the
majority of sequences from beta- and gammaproteobacterial
AOB and MOB (Table 2). The reverse primer A682
(amoA681r) matches perfectly only sequences from Nitro-
sospira clusters 2 and 0. A further modification of this
primer, A682 mod (amoA680r) (Nold et al., 2000), was
designed to increase the sensitivity for gammaproteo-
bacterial AOB. However, as shown in Table 2, the matches
with cultured AOB improved only slightly.

Sequence analysis of amoC and amoB primers

Both amoB and amoC are likely to be good alternatives as
functional markers for molecular studies on AOB because,
they code for essential parts of the multi-subunit AMO
enzyme, which may be involved in the active site by
extrapolation with the homologous pmoC and pmoB
(Lieberman & Rosenzweig, 2005; Balasubramanian &

P. Junier et al.

Rosenzweig, 2007), and have a suitable size for phyloge-
netic inferences (amoC has around 800 bp and amoB is the
longest of the three genes with more than 1200 bp). How-
ever, compared with amoA, amoB and amoC have been
neglected despite the their potential for additional sequence
information.

Consequently, only a few primers have been described to
amplify these genes. Primer 305F (amoC763f) (Norton
et al., 2002) was designed to be used in combination with
304R (amoA60r) to generate a PCR product encompassing
the 3’ end of amoC, the intergenic region with amoA and
the 5 part of amoA (see Fig. 1). Alignment with amoC
sequences showed that primer 305F (amoC763f) does not
match perfectly any of the sequences analyzed (Fig. 2) and
possesses a significant difference in T, (Table 1) with 304R
(amoA60r). The primer 305F (amoC763f) has between one
and six mismatches with betaproteobacterial AOB and more
than 10 mismatches with gammaproteobacterial AOB and

(a)
il SR amial THAL AT 7E oo | O
- = [S] b -
amoC’ (813—825 bp) _ amad (825—831 bp) amod (1248—-1263 bp)
- - - - -
o AT amisd 350 s M ameFEEDy amol 7%
(b) ameC 763 a3 107 ) im0
=-» 51 - _[.‘32 -
amoC (786 bp) _ amoA (744 bp) = amof (1251-1260 bp)
- - =

Fig. 1. Schematic diagram of the amoCAB operon in beta- (a) and gamma-AOB (b).

primers are shown by arrows. For primer designation see Table 1.

amiEiddr amediidiy amalsl 1

IS, intergenic regions. The position and orientation of the different
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Fig. 2. Alignment using cLustaiw of amoC primers with all sequences available. Matches with the primer sequences are indicated by dots

. Matches in

wobble positions are shown as shaded. The asterisk denotes the amoC copies of Nitrosomonas europaea and Nitrosospira multiformis not belonging to

the amoCAB operon.
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MOB. The two copies of amoC that are not located in the
amoCAB operon of betaproteobacterial AOB had more
mismatches at different positions with the primers (Fig. 2),
suggesting that new primers can be designed to target these
singleton copies specifically.

The primer amoB-4R (amoB44r) (Purkhold et al., 2000),
which was designed to amplify amoAB from Nitrosococcus

149

halophilus in combination with the primer amoA-3F (amoA
310f), does not match perfectly any sequence analyzed
(Fig. 3). This region is not highly conserved either in
gamma- or in betaproteobacterial AOB.

The primer pair amoBMf (amoB160f) and amoBMr
(amoB660r) (Calvo & Garcia-Gil, 2004) has been published
recently in order to use amoB as an alternative molecular

Primms
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Fig. 3. Alignment using cLustaiw of amoB primers with all sequences available. Matches with the primer sequences are indicated by dots. Matches in
wobble positions are shown as shaded. Dashes represent gaps in the alignment.
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marker for AOB. Both primers target regions relatively
conserved in beta- and some gammaproteobacterial AOB
(Fig. 3), but so far they have not been used extensively in
environmental samples. The annealing temperature sug-
gested for this primer pair (Calvo & Garcia-Gil, 2004) is
significantly higher than the calculated values (Table 1).

The primer 308R (amoB506r) (Norton et al., 2002) was
proposed to be combined with 305F (amoC763f) as an
alternative to obtain the full length of the amoA gene and its
flanking regions. In the alignment with amoB sequences
(Fig. 3), this primer had 10-11 mismatches with sequences
from gammaproteobacterial AOB and is therefore probably
suitable only for betaproteobacterial AOB.

Very recently, the amoB sequences from two Archaea have
been deposited in GenBank (Konneke et al., 2005; Treusch
et al., 2005). These partial sequences were too short for
sequence comparison with the majority of primers analyzed
here. The primers amoBMf (amoB160f) and 308R
(amoB506r) presented more than 12 mismatches and are
not expected to target these sequences.

Description of new primers for amplification of
the amoCAB operon

To examine the possibility of amplifying the almost com-
plete amoCAB operon, sequence conservation was inspected
in the few sequences available for the flanking genes amoC
and amoB. The primers amoC58f and amoB1179r (Table 1)
were designed to amplify the largest segment possible of the
operon, which includes the three genes and the intergenic
regions. The size of the PCR product is variable due to
differences in the length of the genes and especially of the
intergenic regions, but should be around 2900 bp. Matching
of the primer amoC58f with the amoC sequences available
in GenBank is shown in Fig. 2. A BLAsT search retrieved only
sequences from betaproteobacterial AOB and did not have
any unspecific match. This primer matched perfectly
the sequences from betaproteobacterial AOB, except for the
amoC copies of Nitrosomonas europaea and Nitrosospira
multiformis that are not located in an operon. These extra
copies of amoC are expected to be excluded from the
amplification because of the difference in the sequence
but also the use of the reverse primer amoB1179r, which
is located at the end of the amoB gene. The primer
amoB1179r matches in a highly conserved region of amoB
from betaproteobacterial AOB and Nitrosococcus halophilus
(Fig. 3). In a BrasT search, it matched all amoB from
betaproteobacterial AOB. In a modification of this primer
(amoB1179rGam) the specificity is shifted to target only
gammaproteobacterial AOB.

The application of amoA for phylogenetic inference is
partially limited due to short length and high conservation
of the fragment analyzed (Purkhold et al., 2003). Therefore,
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one of the main challenges for applying this gene as a
functional molecular marker is the search of primers that
allow the amplification of a longer amoA fragment. Different
conserved positions were detected in the amoA alignment.
The primer amoA34f was designed to target positions close
to the 5 region of the gene that can be used in combination
with primers for the 3’ region of the gene such as amoA-2R
(Rotthauwe et al., 1997) or 302R (Norton et al., 2002) to
amplify almost the whole of amoA. This primer retrieved
sequences from all beta AOB included in this study
(Table 2), and has been already used to characterize
AOB communities in marine environments (Molina et al.,
2007). The wider spectrum of betaproteobacterial AOB
recognized by the primer amoA34f, compared with the
primer amoAF (Sinigalliano et al., 1995), makes amoA34f a
better option for PCR in environments not dominated by
Nitrosomonas-like AOB.

The primers amoA121f and amoA359rC were designed to
amplify an internal fragment from betaproteobacterial AOB
suitable for DGGE. The primer amoA121f matches perfectly
all Nitrosospira spp. and some Nitrosomonas spp. and with
one to four mismatches Nitrosomonas eutropha, Nitrosomo-
nas sp. GH22, Nitrosomonas sp. TK794, Nitrosomonas sp.
AL212, Nitrosomonas sp. JL21. It has more than five mis-
matches with sequences from gammaproteobacterial AOB
(Table 2). The reverse primer amoA359rC, having nine bases
overlap with amoA-1F (amoA332f) (Rotthauwe et al.,
1997), matches perfectly the sequences from all Nitrosospira
clusters and displays high similarity with the Nitrosomonas
clusters. A former version of the primer combination
amoA121fgc-amoA359r, which was originally designated
amoA-3F/amoA-4R, designed in the laboratory was pre-
viously used by other research groups to analyze the impact
of soil management on the diversity of AOB in soil (Webster
et al., 2002). The primer amoA359rC reported in this
manuscript is an improved variant of the original primer
designated amoA4-R, which was used in the DGGE without
wobble positions to avoid artifacts. Besides the use of this
primer combination for DGGE, the size of the expected PCR
product makes it also potentially useful for quantification of
AOB by real-time PCR.

Although the number of amoA sequences from gamma-
proteobacterial AOB is very limited (only two complete
sequences), the primer pair amoA49f and amoA627r was
designed to tentatively amplify a fragment of 559 bp exclu-
sively from gammaproteobacterial AOB. These primers,
when checked in GenBank by BLast, matched only the
sequences used for primer design. Similarly, the evaluation
in ARB showed that the forward primer matches only the two
gammaproteobacterial AOB while the reverse primer has
three mismatches with Nitrosococcus halophilus but no
mismatches with Nitrosococcus oceani. Between one and
three mismatches were recorded with some MOB and more
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than five with all betaproteobacterial AOB (Table 2). These
primers have a similar melting temperature (Table 1),
desirable for specific amplification.

Conclusion

The re-examination of specific primers to amplify the
amoCAB operon carried out in this study by sequence
analyses indicates possible strength and weakness of primers
to study community composition of AOB in environmental
samples. The use of new primers targeting new regions in
the complete operon can contribute to the information on
the evolution and function of the amoCAB operon in AOB.
Additionally, nested amplification offers the possibility of
increasing PCR sensitivity for AOB detection in environ-
mental samples.
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