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Abstract 

We use Confirmatory Factor Analysis (CFA) to derive a unifying measure of 

comparison of scientists based on bibliometric measurements, by utilizing 

the h-index, some similar h-type indices as well as other common measures 

of scientific performance. We use a real data example from nine well-known 

Departments of Statistics (Berkeley, Carnegie Mellon, Chicago, Duke, 

Harvard, Minnesota, Oxford, Stanford and Washington) to demonstrate our 

approach and argue that our combined measure results in a better overall 

evaluation of a researchers’ scientific work.  
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1. INTRODUCTION 

A simple way of measuring scientific research impact is often based on the number 

of publications and the number of citations received by a researcher. 

However, these numbers alone fail to capture aspects of a scientist’s research record, 

making it difficult to distinguish the truly influential scientists.    

The assessment of research performance of scientists based on citation count 

proposed by Hirsch (2005), has become the favourite single metric for assessing and 

validating publication/citation outputs of researchers. Following the introduction of 

the h-index, numerous articles and reports have appeared, either proposing 
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modifications of the h-index, or examining its properties and its theoretical 

background. For an extensive and critical review of the h-index and other similar 

indices see Panaretos and Malesios (2008). 

 In this paper, we use Confirmatory Factor Analysis (CFA) to derive a population 

modulated measure to assess scientific research output and impact, by combining the 

h-index with some of the widely used h-type indices proposed in the literature, as well 

as with other common measures of scientific performance. We demonstrate our 

method using data on researchers, affiliated with nine well-known Departments of 

Statistics (eight in the US and one in the UK) that represent a diverse collection of 

Departments with different strategies. 

The paper is divided into seven parts. Section 2 is a short introduction and overview 

of the h-index and some of the most significant related indices recently proposed in 

the literature. In Section 3 we present the data, the new methodology proposed and a 

review on the related literature. In section 4 we provide some summary statistics on 

the research output of the Departments of Statistics under study. A description of the 

construction of the unifying measure and results of the statistical analysis are 

presented in Section 5, while in Section 6 the results of the analysis on the nine 

Departments of Statistics are presented. In the final section a discussion of the 

findings is provided followed by a summary and the main conclusions of the paper. 

 

2. THE H-INDEX AND SOME OF ITS GENERALIZATIONS/ 
MODIFICATIONS 

 
The h-index is based on the number of publications of a researcher, along with the 

associated citations received by those publications. By definition: 

“A scientist has index h if h of his N papers have at least h citations each, and 

the other (N - h) papers have at most h citations each”.  
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Among the advantages of this index is its simplicity and ease of calculation. It 

attempts to reflect high quality work, since it combines both citation impact (citations 

received) with publication activity (papers published) and is not affected by a single 

paper (or a few papers) that has many citations.  

The h-index is also not sensitive to lowly cited publications, so a simple increase in 

the number of publications does not improve the h-index.  

There are a number of situations however in which the h-index may provide 

misleading information about a scientist's output. For instance, the lack of sensitivity 

of the h-index when it comes to highly-cited papers included in the h-core (the papers 

that received more than h-citations) is a frequently noticed disadvantage of it. Thus, 

various modifications and generalizations of the h-index have been appearing in the 

literature starting almost immediately after its introduction. For full details see 

Panaretos and Malesios (2008).   

In what follows, we briefly present some of the most significant modifications 

associated with the h-index, that are employed for the purposes of our analysis. 

 

The g-index 

The h-index is robust in the sense that it is insensitive to a set of non-cited (or poorly 

cited) papers and also to one, or relatively few, outstandingly highly cited papers. 

That is, once a highly cited article is included in the top h papers of the output of a 

scientist, the actual number of the paper’s citations does not play a role in the h-index, 

and any increase of the papers’ citations does not alter the h-index of the scientist.  

As a remedy, Egghe (2006a, 2006b, 2006c) defined the g-index.  

Definition: “The g-index is the highest number g of articles that together 

received g2 or more citations”  
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This index is increased by a strongly skewed frequency distribution of the citations; 

that is, the higher the number of the citations at the top range, the higher the g-index. 

 

The R- and AR-index 

Jin et al. (2007) introduced two modifications of the h-index, namely the R- and 

AR- indices to eliminate some of the disadvantages of the h-index. The R-index 

measures the h-core’s citation intensity, while the AR-index goes one step further and 

takes into account the age of each publication. This allows these indices to increase or 

decrease over time.  

If we rank the researcher’s articles according to the received citations in decreasing 

order, then the R-index is defined as: 

.
1
∑
=

=
h

j
jCR  

where Cj denotes the number of citations received by the j-th article. It is clear from 

the above definition that always h≤R.  

The AR-index is defined as: 
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where αj denotes the age of the article j. The advantage of the AR-index is that it 

gradually suppresses the contribution from articles that have stopped receiving new 

citations.  

 

The individual index for correcting for co-authorship 

To correct for the presence of many co-authors in a single publication, Batista et al. 

(2005) divided the h-index by the mean number of researchers in the h publications, 

i.e., hNN T /)(= , where )(TN  is the total number of authors in the considered h 
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papers (multiple occurrences of authors are allowed), and calls the devised index the 

hI-index. Similarly, Hirsch (2005) proposed the normalization of the h-index by a 

factor that reflects the average number of co-authors.   

 

3. METHODS AND DATA COLLECTION 
 

Although the use of single metrics based on bibliometric measurements for the 

comparison of scientists has steadily gained popularity in recent years, there is an 

ongoing debate regarding the appropriateness of such “simple” measures of research 

performance to measure such complex activities. A recent report by the joint 

Committee on Quantitative Assessment of Research (Adler et al., 2008) argues 

strongly against the use of citation metrics alone as a tool for assessing quality of 

research, and encourages the use of more complex methods for judging the impact of 

scientists (e.g. an assessment based on combining both citation metrics as well as 

other criteria such as memberships on editorial boards, awards, invitations or peer 

reviews).  

Earlier, along these lines, Egghe (2007) noticed that “the reality is that as time 

passes, it’s not going to be possible to measure an author’s performance using just 

one tool. A range of indices is needed that together will produce a highly accurate 

evaluation of an author’s impact”. An empirical verification of the intuitive view 

expressed by Egghe came recently by Bollen et al. (2009), who - based on the results 

of a principal component analysis on a total number of 39 existing indicators of 

scientific impact - claim that scientific impact is a multi-dimensional notion that 

cannot be effectively reduced to a single indicator. 

In what follows we make an effort to combine the h-index with certain commonly 

used h-type indices already presented in the previous section, along with the total 

number of articles and the total number of citations of a researcher. We use CFA to 
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derive a Population-Modulated measure of bibliometric research output performance. 

We use the term “Population-Modulated” (P-M) because its value for an individual 

scientist depends on the population against which he is being compared.  

There is a steadily increasing literature on applications of factor analysis and 

Principal Component analysis in Scientometrics in the recent years. For example, in a 

comparative study of some of the most important h-type indices proposed in the 

literature, Bornmann et al. (2008a) perform an Exploratory Factor Analysis (EFA) 

using as observed variables nine h-type indicators (including the h-index) in an effort 

to reveal the latent factors causing the latter indices. In addition to the h-index, the g-, 

h(2)-, A-, R-, AR-, hw-, m-quotient and m-indices, all variants of the h-index, have 

been utilized to reduce dimensionality and identify possible subsets among these 

indicators that are more correlated to each other.   

In a follow-up study, Bornmann et al. (2008b) re-ran the aforementioned EFA, 

adding in the previously described h-type indicators the two standard indicators in 

scientometrics, i.e., the total number of articles published and the total number of 

citations received by these articles. As a tool for assessing the research performance 

of scientists, the authors proposed the use of any pair of indicators from the two 

factors, i.e. one indicator that is related to the number of papers in the researcher’s 

productive core and one indicator that is related to the impact of the papers in the 

researcher’s productive core.  

Costas and Bordons (2007), also implemented exploratory factor analysis to 

investigate possible associations of the h-index with other measures of scientific 

research (measures that describe both quality and quantity of the performance of a 

researcher) such as the total number of articles, total number of citations, number of 

citations per article, percentage of highly cited papers, the median impact factor (IF), 
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the normalized position of the publication journal (NPJ), the relative citation rate 

(RCR) and the percentage of papers with an RCR above 1.  

In another recent application of data reduction methodology to bibliometric 

measures, Hendrix (2008) analyzed bibliometric data obtained on the faculty of the 

Association of the American Medical Colleges member schools, covering the period 

between 1997 and 2007, and a total of 123 researchers.  

 

We employ a CFA model in order to derive a unified Population-Modulated 

measure of bibliometric performance of scientists that combines the information 

provided by not only a single bibliometric index but from a series of measures, such 

as the Hirsch index and the Hirsch-type indices as well as two basic measures of 

bibliometric performance (total number of articles and total number of citations) of a 

researcher. We do this, assuming that there exists a latent dimension underlying the 

measurable dimensions expressed through the selected bibliometric indicators. The 

manifest variables are the 6 bibliometric indicators of the researcher’s performance 

and as the latent part of the model we assume a unique underlying factor.  

To do this, we collected data on the faculty members of nine University 

Departments of Statistics: Stanford University, the University of California, Berkeley, 

the University of Minnesota, Harvard University, the University of Oxford, the 

University of Washington, Carnegie Mellon University, Duke University and the 

University of Chicago. The data collection period was between April 2008 and July 

2008 and refers to the total number of publications and citations of the faculty serving 

at the time of the data collection in the nine Departments. We collected information 

on the current faculty from the web pages of the corresponding Departments. Besides 

the faculty affiliated with a single Statistics Department, some of the researchers have 
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joint appointments whereas others are courtesy professors. Before developing our 

methodology we present the data collected, the values of some of the existing indices 

and some of their descriptive characteristics.    

 

 

4. RESEARCH OUTPUT OF NINE OF THE TOP DEPARTMENTS OF 
STATISTICS 

 
The data we have collected are publications and related citations of the faculty 

members of the nine Departments and they are available on the freely accessible 

citation database “Publish or Perish” (Publish or Perish User’s Manual, 2008). The 

data collection period was between April 2008 and July 2008.   

We have accumulated this information for the 238 faculty members of the nine 

Departments. Namely, the Statistics Departments of Stanford University: 30 

researchers (faculty: 18, joint appointments: 4, courtesy appointments: 3, consulting: 

3, emeritus: 2); the University of California, Berkeley: 41 researchers (faculty: 11, 

joint appointments: 17, adjunct: 4, emeritus: 9); the University of Minnesota: 21 

researchers (faculty: 16, emeritus: 5); Harvard University: 20 researchers (faculty: 11, 

joint appointments: 6, adjunct: 1, emeritus: 2); the University of Oxford: 30 

researchers (faculty: 16, joint appointments: 1, adjunct: 10, emeritus: 2, retired: 1); the 

University of Washington: 26 researchers (faculty: 25, emeritus: 1); Carnegie Mellon 

University: 25 researchers (faculty: 22, joint appointments: 1, adjunct: 2); Duke 

University: 20 researchers (faculty: 12, joint appointments: 5, adjunct: 1, emeritus: 2); 

and the University of Chicago: 25 researchers (faculty: 12, joint appointments: 9, 

emeritus: 4). Moreover, we have calculated their h-index values as well as three 

modifications of the h-index, i.e. the g-index, the individual index hI, and the AR-
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index2 from the start of their careers up to the point of the collection period. Along 

with the AR-index, we list the square root of the AR-index (see Tables 1, 2, A1, A2). 

We chose those four bibliometric indices because the h-index is the most commonly 

used index for the comparison of scientists based on bibliometric measures while the 

other three improve on some of the most serious drawbacks of the h-index, such as the 

robustness of the h-index to highly cited articles, the problem of co-authorship and the 

age of the articles. We will use the above information to derive our new Population-

Modulated measure.  

 

Some preliminary findings     

Before defining the new measure we present some descriptive measures of interest 

from the collected data. In the following figure (Figure 1) the averages on the nine 

Departments of Statistics of the six output indicators are plotted. As we observe, the 

index with the least variation is the hI-index, while the g-index is exhibiting 

significant variation among the Departments. This feature of the g-index has been 

already underlined by Egghe (2006b) who noticed that in general the variances of the 

g-indices will be much higher than the one of the h-indices in a group of authors. On 

the other hand, the hI-index values in a group of scientists tend to have less variance 

possibly due to the fact that smaller h-core outputs (fewer articles in the h-core) tend 

to have smaller average number of authors in comparison to larger h-core outputs that 

will probably have a larger average number of authors included in them.  

 

 

 

 

                                                 
2 Specifically, PoP calculates a variant of the AR-index of Jin et al. (2007) that differs from Jin's 
definition in that the citations of all papers are summed instead of only the h-core papers of the author. 
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Figure 1: Mean values of the 6 indicators on the 9 Departments of Statistics 

 
Table 1: Descriptive statistics of citation metrics for the 9 Departments 

Department 
of Statistics 

average 
h-index 

median 
h-index 

average 
g-index 

median 
g-index 

average 
AR-index 

median 
AR-index 

average 
hI-index 

median 
hI-index 

average 
sqrt(AR)-

index 

median 
sqrt(AR)-

index 

Stanford 20.67 21.5 50 52.5 356.51 121.75 9.2 8.18 15.28 11.03 

Berkeley 14.95 12 28.56 26 146.78 48.54 6.56 5.79 9.61 6.97 

Harvard 10.75 9.5 34.30 17.5 179.33 37.92 4.59 3.42 9.54 6.13 

Minnesota 9.71 8 19.38 16 93.96 28.91 4.86 3.52 6.8 5.38 

Oxford 10.37 9 22.73 19.5 80.29 47.3 4.33 3.9 7.65 6.88 

Washington 11.42 10.5 26.11 19 100.06 67.43 4.84 4.65 8.17 8.2 
Carnegie 
Mellon 10.44 8 23.28 20 78.36 43.33 3.9 3.75 7.7 6.58 

Duke 9.85 7 23.05 13 89.72 23.22 3.89 2.5 7.45 4.8 

Chicago 10.28 9 25.2 19 75.62 31.86 5.65 5.4 7.18 5.64 

Total 12.5 10 28.56 20 138.35 45.69 5.51 4.27 9.03 6.76 

 

Comparisons between the mean and the median of the indices for the nine 

Departments of Statistics from Table 1 reveal some interesting information 

concerning the individual and overall picture of the scientists on each Department as 

to what concerns the bibliometric indices under study. The large differences between 

the average and the median index values, appearing in some instances in the table, are 

due to the fact that the significant majority of scientists have small index values, while 
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only a few scientists have very large index values. Let us examine for instance, the 

case of Duke University where the 20 researchers of the Department of Statistics have 

an average h-index of 9.85, while the median h-index is 7. The difference between the 

two measures is due to the fact that most of the scientists in the Department share 

relatively small h-index values (14 scientists with h-index less that 11), while only a 

few scientists have very large h-index values (for instance, A.E. Gelfand, with h-

index: 24 or M. West, with h-index: 27). The same holds in the case of the g-index for 

the faculty of the Department of Statistics of Harvard University, as the large 

differences between the mean and median g-index value of the Department’s staff 

indicate. While the majority of the 20 researchers (16) have g-indices less than 39, 

two of the Department’s researchers (A.P. Dempster, and D.B. Rubin) have index 

values 132 and 135, respectively.   

As one may observe, the results of citation metrics show an advantage of the 

Department of Statistics of Stanford University, followed by the Departments of 

Statistics at Berkeley and Harvard. This is true in all four variables measured, with 

only a few exceptions, such as those of University of Washington when it comes to 

average h-index (11.42), or the Universities of Chicago, Minnesota and Washington 

that outperform the average hI-index of Harvard University.  

In general, the Minnesota, Oxford, Washington, Carnegie Mellon, Duke and 

Chicago Departments of Statistics are very similar in terms of average h-index and 

average g-index. Also, notice that values of the square root of the AR-index are now 

comparable with the other three remaining indices.   

Our findings cannot be compared with the 1995 ranking of the Statistics 

Departments by the National Research Council of the USA (NRC, 1995). The criteria 

taken into account in the NRC study were more general. There were 11 criteria (see, 
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e.g. http://www.nap.edu/readingroom/books/researchdoc/summary.html), only one of 

which was based on publication and citation information of the faculty members of 

the Departments. 

In all, the 238 researchers included in the current study have published (or produced) 

a total of 29703 papers3, and have received 386898 citations, until the end of the data 

collection period (see Tables 2 and A2). In the study period we observe that Stanford 

is in the first place, when it comes to the average number of papers as well as citations 

received. In terms of absolute numbers of papers, Berkeley holds the lead. 

 

Table 2: Descriptive statistics of articles and related citations for the 9 Departments 

    papers citations 

Department 
of Statistics 

N 

average 
number 

of 
papers 

Std. 
Deviation median Min Max 

average 
number 

of 
citations 

Std. 
Deviation median Min Max 

Stanford 30 208.1 140.45 219.5 3 581 3822.37 4106.45 2949 7 17213 

Berkeley 41 160.76 140.59 127 6 553 1530.1 2664.87 849 7 16516 

Harvard 20 109.55 124.35 78.5 2 474 2949.6 6360.76 362.5 4 24130 

Minnesota 21 82.33 69.47 76 5 286 707.05 1250.65 276 19 5522 

Oxford 30 94.67 80.11 63.5 7 300 928.2 1364.63 454 13 5376 

Washington 26 91.42 78.49 67.99 3 337 1230.42 1852.01 431.5 17 6518 
Carnegie 
Mellon 25 101.52 131.65 44 8 635 976.8 1482.42 477,00 32 5957 

Duke 20 118.35 174.29 43.5 6 741 1082.7 1630.48 239 5 5395 

Chicago 25 113.08 137.04 50.99 14 647 1189.2 1916.84 369 15 8566 

Total 238 124.8 128.52 79.5 3 741 1625.62 3006.34 483 4 24130 

 

In an effort to further investigate differences in citations among Departments we 

collected data on the number of highly cited researchers (HCRs) of the nine 

Departments in the study. (Information on the HCRs in Statistics affiliated with the 

Departments in our analysis are available from the Thomson Scientific freely 

accessible database, covering a 20-year period (1981-1999)). We find that the 
                                                 
3 The total numbers of publications derived by Publish or Perish include papers published in journals as 
well as papers that have also been uploaded in web eLibraries (such as arXiv RePEc or SSRN). This 
may augment the number of publications attributed to a specific researcher. So, there may be 
duplications that distort the actual publication record of researchers eventually. This observation, to our 
knowledge, has not been mentioned elsewhere and might be a flaw of the publication/citation databases 
based on the Google Scholar.  
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Stanford Statistics Department has a significantly higher number of highly cited 

statisticians when compared to the other Departments in our study.  

Specifically, among the 30 faculty members of the Statistics Department at 

Stanford, 9 are HCRs, while there are 5 and 4 HCRs in Berkeley and Harvard 

Statistics, respectively (see Table A3). In addition, among the HCRs of Stanford, 3 

HCRs (D.L. Donoho, I.M. Johnstone, IM and R. Tibshirani) are steadily included in 

the listings of most cited researchers in the field of mathematics, available by the 

Thomson Scientific for the years 2003 to 2006 (see http://www.in-

cites.com/top/index.html; Ryan and Woodall, 2005). Table A3 in the appendix 

presents information on the publication output of the nine Departments. As we can see 

in this table, the 9 HCRs at Stanford have published 51.9% of the total articles of the 

Department.  

Table A4 presents the results of citation output for the HCRs and the non-HCRs of 

the nine Departments. As we see, 60.77% of the total number of citations of the 

faculty of Stanford Statistics is attributed to its 9 HCRs. Similarly the HCRs at 

Harvard have received 55.99% of the total citations of the faculty of the Department. 

In the other 7 Departments the contribution of the HCRs ranges between 2.5% and 

38%. The apparent impact of the research work of the HCRs of Stanford is also 

verifiable by the enormous average number of citations per HCR (7742.5), while, for 

instance, the corresponding number for Berkeley is 2142.8. One might be tempted to 

link this to the different hiring policies of the two Departments. Stanford usually hires 

well-established scientists at the senior level while Berkeley opts for younger 

promising ones.     

The number of the HCRs of Stanford, and their publications and citations is 

influencing significantly its standings in the tables. Another interesting observation is 
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that the non-HCRs of the Department of Statistics, UC Berkeley publish more 

frequently in comparison to the non-HCRs of Stanford.       

 

5. A POPULATION-MODULATED MEASURE FOR RESEARCH OUTPUT 
 

In the sequel, we choose the 6 variables (i.e. the total number of articles, the total 

number of citations, the h-index and the related g-, hI- and √AR-indices) as research 

indicators of the researchers of the nine Departments of Statistics, and we assume that 

they are observed outcomes of an underlying indicator, which we call Population-

Modulated measure (P-M measure). We use this name because it tuned to the 

peculiarities of the particular scientific population under study.  

For practical reasons, of comparisons between the h and h-type indices and the 

standard bibliometric measures (number of publications and number of citations), we 

don’t use the raw data on the numbers of publications and numbers of citations. 

Instead, we use the square root of the number of publications and the square root of 

number of citations divided by 2, respectively. This is justified by the fact that the h-

index is proportional to the square root of the number of publications (see Glänzel, 

2006), while it has been found empirically that the number of citations is proportional 

to the square of the h-index (see Hirsch, 2005; van Raan, 2006). In other words 

Ncitations=αh2 approximately, where α is a constant (According to Hirsch the relation 

between the h-index and the number of citations is dependent on the form of the 

particular distribution of the data under study, and he empirically noticed that the 

constant α for the discipline of Physics ranges between 3 and 5, while van Raan 

(2006), employing regression analysis, found the approximate relation h= 

0.42×N0.45
citations, using data from the field of Chemistry).  For our citation data on 

mathematics we use α=2 as a suitable constant of proportionality. Our choice is based 

on the result of a simple regression analysis which suggested the following 
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approximate relation between the h-index and Ncitations: h≈0.4×√N. Other data on 

highly cited mathematicians found in the literature, provide similar results (using data 

from Iglesias and Pecharromán (2007) on Spanish highly cited mathematicians we 

obtained the following relation: h=0.6×√N). Furthermore, 2*g/3 scores were used as 

input data in place of the original g-index values, following Rousseau (2006) who has 

established the latter relationship between the h-index and the g-index for theoretical 

models, in case where the g-index values are relatively large.  

In order to derive the Population-Modulated measure, we assume a one-factor CFA 

model that at the scientist level can be expressed as: 

xij=λj ξ+ δij   (i=1,2,…,238; j=1,2,…,6) 

where xij denotes the jth bibliometric index of the ith scientist, ξ is the (1×1) scalar of 

the (unknown) single common factor, the λj’s terms are the factor loadings to be 

estimated connecting ξ to the the xij’s, and δij is the measurement error in xij (i.e. the 

part of xij that cannot be accounted by the underlying factor ξ). It is further assumed 

that the error terms δij and the common factor ξ have a zero mean and that the 

common and unique factors are uncorrelated, i.e. E(ξ-Εξ)(δij-Εδij)=0, for every i,j. In 

vector notation, to scientist i corresponds a (6×1) vector of bibliometric indices Xi: 

i iξ= +X Λ δ  

where Λ=(λ1, λ2,...,λ6)t, and δ=(δi1, δi2,..., δi6)t.   

In turn, the CFA model based on the complete data set can be written as: 

X=ΞΛt+Δ 

where X is the (238×6) matrix of bibliometric indices for the 238 scientists, ξ=Ξ 1 , 

where boldface 1 is a (238×1) vector of 1’s, Λt is the transpose of the (6×1) vector of 

factor loadings, and finally, Δ denotes the (238×6) matrix of measurement errors.  

Then, the (2382×62) variance-covariance matrix of the data denoted by Σ is given by: 
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where σ2 denotes the (1×1) scalar of the variance of single factor ξ, and Θ denotes the 

(2382×62) variance-covariance matrix of the measurement errors. It is assumed by the 

CFA model that E(ΔtΞ) = 0, E(ΞtΔ) = 0, E(ΔtΔ) = Θ, E(ΞtΞ) = Φ and E(XtX) = Σ. 

The aim is to estimate the unknown elements of Λ, σ2 and Θ. 

Such a model is usually fit by maximum likelihood4. If we denote by S the empirical 

covariance matrix of the matrix of the observed variables X (i.e. the sample variance-

covariance matrix), then to obtain the ML estimates of Λ, σ2 and Θ, one needs to 

maximize the following likelihood function:  

logL(Λ,σ2,Θ) = ( )11 log
2

n tr −⎡ ⎤− +⎣ ⎦Σ SΣ . 

 

In fact, it has been shown (Jöreskog, 1969) that maximizing logL is equivalent to 

minimizing the following function: 

( ) ( )1, , log log 6F tr −= + − −Λ Φ Θ Σ SΣ S , 

where 6 is the order of the vector Θ.  

                                                 
4 The six bibliometric indicators used for the fit of the CFA model are subject to moderate or high non-
normality. Ηowever, a series of studies based on simulated data have shown that ML estimation can 
produce valid results even under non-normal conditions (Jöreskog, 1990; Benson and Fleishman, 
1994). 
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Maximum Likelihood Estimation for our CFA model is carried out using the 

LISREL 8.8 (Jöreskog and Sorbom, 1999) software. The derived estimated CFA 

model is displayed via the path diagram presented in Figure 2. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Figure 2: path diagram of the estimated CFA model. 
[Squares represent the observed variables (h-index, 2*g/3-index, hI-index, square root of AR-
index, square root of number of articles, square root of number of citations/2). The ellipse 
represents the latent factor]. 
 

The above (one-factor) model is displayed as a diagram in which squares represent 

the observed variables and the ellipse represents the latent variable. Single-headed 

arrows are used to imply a direction of assumed causal influence between the latent 

and the observed variables. Numerical values along each arrow correspond to the 

(standardised) factor loadings of each observed variable on the latent variable. 

By observing the path diagram of the model and Table 3 several things are 

immediately apparent. Firstly, all factor loadings are significant at the 5% significance 

level (all unstandardised loadings are at least twice the size of the standard errors of 

P-M index 

(ξ)  

ε2= 0.01 

ε3= 0.35 

ε1= 0.21 

λ1 =0.89 
2*g/3-
index 

hI-index 

√AR-
index

h-index 

 √articles 

λ2 =0.99 

λ3 =0.80 

λ4 =0.91 

λ5 =0.78 

√citations/2 

λ6 =1.00 

ε4= 0.18 

ε5= 0.39 

ε6= 0.01 
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the estimates). Clearly, a large proportion of the variance in each observed variable is 

accounted for by the fitted model as the R2 values of Table 3 reveal (R2 denotes the 

percentage of each one of the manifest variables explained by the CFA model). 

Accordingly, all six observed variables are related to the latent factor. Not all 

variables however are equally related to the P-M measure. Higher loadings are 

observed on the √citations/2 and the g-index (1.00 and 0.99, respectively), whereas 

the lowest loading is observed on the “total number of articles” manifest variable 

(0.78).  

Table 3: Summary statistics of the CFA model fit 

Μanifest 
variables 

Unstandardized 
loadings 

Standard 
error p-value R2 

h-index 8.15 0.46 <0.05 0.79 

2*g/3-index 16.89 0.79 <0.05 0.99 

hI-index 3.47 0.23 <0.05 0.65 

√AR-index 6.85 0.38 <0.05 0.82 

√articles 4.07 0.28 <0.05 0.61 

√citations/2 18.43 0.84 <0.05 0.99 

 

With regards to the model’s adequacy, the fit indices values for the evaluation of the 

goodness-of-fit of the model obtained from LISREL indicate that the factor model 

tested provides a moderate fit to the 6 observed variables: GFI5=0.69, NNFI=0.71, 

NFI=0.83, CFI=0.83 (accepted boundaries for an excellent fit >0.90).  

  

 
The P-M measure as a combination of the h-index and related indices  
 

As already stated, factor analysis models have received a lot of attention both in 

theory and in practice. Within this framework, it has become common practice to 

                                                 
5 GFI: Goodness of fit index, NNFI: Non-Normed fit index, NFI: Normed fit index, CFI: Comparative 
fit index  
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estimate individual factor scores (Bartholomew and Knott, 1999) and utilize them for 

subsequent analyses.  

For instance, factor scores for the latent variables can be first predicted and then 

used as variables in ANOVA and OLS regression (as dependent or explanatory 

variables) (e.g. Urban and Hauser, 1980) or as input data to cluster (e.g. Funkhouser, 

1983) and discriminant analysis (Horton, 1979).  

The CFA model of the analysis fulfils the requirement of strong associations 

between observed and latent variables (with only one exception, where factor loadings 

appear slightly lower). LISREL was used to derive factor scores (Mels, 2004) of the 

first-order CFA model, on the 6 observed variables data. There are several methods 

available for estimating latent variable scores (see, e.g. Bartholomew and Knott, 

1999). LISREL uses the procedure of Anderson and Rubin (1956) as described in 

Jöreskog (2000) for estimating latent variable scores. This procedure has the 

advantage of producing latent variable scores that have the same covariance matrix as 

the latent variables themselves. However, because the mean of the factor is set to 

zero, it is natural that some estimated factor scores are negative and some positive.  

To avoid deriving negative factor scores (and subsequently use these negative scores 

as scientific performance indices), we chose to calculate the component scores instead 

of the factor scores. These were introduced by Bartholomew and Knott (1999) and are 

defined as follows. For any single latent variable and a collection of manifest 

variables, say Xi (i=1,2,…,p), we can produce estimates of the underlying latent 

variable by using a linear combination of the responses, known as the component 

scores, which are given by: 

,
1
∑
=

=
p

i
ii xy λ  
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where λi denotes the factor’s loading on the i-th manifest variable, and the xi is the 

observed value of the i-th manifest variable (i=1,2,…,p).   

The procedure for the calculation of the Population-Modulated (P-M) measure of each 

scientist is as follows: from the fitting of the CFA model, the unstandardised factor 

loadings (which are common to all scientists) are derived for the 6 indicators on the 

underlying factor. These are subsequently utilized as weights indicating the relative 

importance of the different bibliometric variables to take into account.  

The P-M measure for say, scientist i, is essentially the linear combination of the six 

bibliometric variables scores of the specific scientist, using as coefficients the factor 

loadings corresponding to each manifest variable.  

(This linear combination of the individual scores on the manifest variables with the 

overall factor loadings is usually known as the component score).      

Thus, the P-M measure is not identical to the values of the underlying factor that gives 

the factor analysis, but instead uses the obtained loadings of the manifest indicators on 

the hypothesized underlying factor as a way to construct a proxy for the unobservable 

ξ. 

For each of our 6 manifest variables, the estimated (unstandardised) factor loadings 

were: for the h-index 8.15 (0.46), for the 2g/3-index 16.89 (0.79), for the √AR-index 

6.85 (0.38), for the hI-index 3.47 (0.23), for the √articles 4.07 (0.28) and for the 

√citations/2 18.43 (0.84). The values in the parentheses are the corresponding 

standard errors. Thus, the calculation of the P-M index for, say the ith researcher 

(i=1,2,….,238) in our study, will be based on the following equation: 

( ) ( ) ( )
( ) ( ) ( )

8.15 16.89 6.852( ) 30.46 0.79 0.38
3.47 4.07 18.43 / 2 .
0.23 0.28 0.84

i i ii

I i i i

P M h index g index AR index

h index articles citations

− = × − + × − + × − +

+ × − + × + ×
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At this point we have to note that there is not an absolute P-M measure for an 

individual scientist. The measure changes depending on the group we are studying, 

hence the name Population-Modulated measure. 

The advantage is that the measure requires working with a well-defined population 

and prevents comparisons between people in disparate scientific fields. To do 

something like this we need to pool together the two (or more) populations, which 

will reveal the differences between the two fields.  

It also allows for bibliometric comparisons between two different disciplines. It is a 

data-dependent way to see how seriously we should consider one index compared to 

another, for the different fields of research.   

The P-M measure can also help in finding whether a particular index is better suited 

for a particular discipline as opposed to another. In this way, we can quantify 

statements like “the h-index is not suitable for mathematics”. It would also be of 

interest to compute the P-M measure for those who have joint appointments in two 

different Departments (e.g., Statistics and Electrical Engineering and Computer 

science or Statistics and Biostatistics) and see how the P-M measure of these 

scientists changes from one group to another. 

For example, let us say that we have a series of three bibliometric indices x, y and z. 

Then, if we derive the following linear combinations of the three indices (P-M 

measure) for two groups of scientists, one say belonging to Statistics and the other to 

Bibliometrics: 

)(
)(

icsBibliometrzyxa
Statisticszyax

γβ
γβ

′+′+′
++

 

and compare coefficients α with α´, β with β´ and γ with γ´, if α>> α´ then x is taken 

more heavily into account in statistics than in bibliometrics. 
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6. AN APPLICATION OF THE NEW BIBLIOMETRIC MEASURE IN THE 
FIELD OF STATISTICS 

 
In terms of the above, individual component scores (i.e. the P-M scores) were 

derived for the 238 researchers of the nine Statistics Departments in our study. For 

comparisons between the 238 researchers we have divided the component scores by 

100. In this way, the combined P-M measure scores are more comparable to the h-

index values, as well as to the other three h-type indices used in our analysis. 

In the following table (Table 4), descriptive statistics of the derived scores are 

presented for the 9 Departments. We observe that Harvard and Stanford have the 

highest standard deviations. This is again attributed to the presence of a number of 

highly cited researchers. Two of the Department’s researchers at Harvard (D.B. Rubin 

and A.P. Dempster) score quite high in the P-M measure (ranked 2nd and 5th 

respectively), widening in this way the gap in the P-M measures of the Department’s 

researchers. This explains the difference between the average and the median P-M 

measure values. At Sanford also we have a significant number of highly cited 

researchers (9).  

 

Table 4: Average component scores for the 9 Departments 

    P-M Measure 

Department 
of Statistics N 

mean Std. 
Deviation median Min Max 

Stanford 30 25.06 15.02 26.12 1.71 62.85 
Berkeley 41 16.06 11.05 15.19 1.38 62.38 
Oxford 30 12.32 7.68 10.99 2.21 33.5 
Washington 26 13.53 9.51 10.81 2.13 37.96 
Carnegie 
Mellon  25 12.4 8.07 10.7 3.25 34.67 

Chicago 25 13.15 9.16 10.14 2.71 36.43 
Harvard 20 16.07 16.56 9.86 1.23 62.57 
Minnesota 21 10.92 8.21 9.14 2.55 37.76 
Duke 20 12.13 10.02 7.73 1.38 33.8 
Total 238 14.97 11.54 11.32 1.23 62.85 
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A small section of the output obtained by calculating the P-M measure for individual 

scientists is presented in the following table (Table 5) for comparisons between the 

already calculated Hirsch type indices and the newly proposed P-M measure. (The 

number in the parenthesis indicates the ranking for the particular index). 

Table 5: Faculty members ranked by component scores (P-M measure) derived by the 
CFA model 

University Author h-index 2*g/3-
index 

√AR-
index hI-index √papers √citations/2 P-M 

measure 

Stanford         Donoho, D.L.         52 (2) 86 (3) 41.64 (2) 25.75 (1) 24.1 (3) 92.77 (3) 62.85 (1) 

Harvard          Rubin, D.B.           29 (10) 103.33 (1) 39.79 (3) 
12.94 
(15) 14.53 (33) 109.84 (1) 62.57 (2) 

Berkeley         Jordan, M.I.           60 (1) 82.67 (4) 41.85 (1) 21.05 (3) 23.52 (4) 90.87 (4) 62.38 (3) 
Stanford         Tibshirani, R.         40 (3) 75.33 (5) 37.83 (4) 15.53 (7) 17.29 (19) 80.61 (5) 52.56 (4) 

Harvard          Dempster, A.P.     21 (17) 88 (2) 23.21 (12) 
10.02 
(29) 12.57 (42) 93.61 (2) 50.6 (5) 

Stanford         Stork, D.G.            20 (18) 66.67 (6) 32.51 (7) 7.27 (38) 15.97 (24) 71.3 (6) 42.72 (6) 

Stanford         Friedman, J.H.      31 (8) 61.33 (7) 22.92 (13) 
11.31 
(20) 19.1 (12) 67.11 (7) 41.94 (7) 

Stanford         Diaconis, P.           39 (4) 51.33 (9) 20.78 (16) 19.5 (4) 20.32 (7) 58.41 (9) 40.34 (8) 

Washington       Raftery, A.E.         32 (7) 52.67 (8) 24.93 (10) 
12.19 
(18) 14.97 (30) 57.09 (10) 37.96 (9) 

Minnesota        Cook, R.D.            29 (10) 47.33 (13) 34.45 (6) 15.29 (8) 16.91 (20) 52.55 (16) 37.76 (10) 
Stanford         Wong, W-H.          30 (9) 50 (11) 26.16 (9) 9.09 (32) 22.11 (6) 56.22 (11) 37.64 (11) 
Stanford         Hastie, T.J.            25 (13) 48 (12) 36.47 (5) 8.45 (35) 17.41 (17) 52.35 (17) 36.56 (12) 

Chicago          Billingsley, P.        15 (23) 61.33 (7) 14.37 (36) 
14.06 
(11) 10.95 (47) 65.44 (8) 36.43 (13) 

Stanford         Efron, B.                28 (11) 50 (11) 19.77 (19) 15.68 (6) 16.25 (22) 54.5 (14) 35.9 (14) 

Harvard          Liu, J.S.                 29 (10) 48 (12) 23.77 (11) 
10.13 
(26) 19.44 (9) 53.4 (15) 35.76 (15) 

Berkeley         Aldous, D.J.          34 (5) 41.33 (16) 16.9 (33) 24.6 (2) 19.31 (10) 47.96 (24) 34.95 (16) 

Carnegie Mellon  Lehoczky, J.P.      28 (11) 50.67 (10) 18.08 (26) 
10.05 
(28) 14.66 (32) 54.58 (13) 34.67 (17) 

Duke             West, M.                27 (12) 42 (15) 20.72 (17) 9.23 (30) 27.22 (1) 49.93 (23) 33.8 (18) 

Oxford           Cox, D.R.              32 (7) 40 (18) 19.29 (21) 
13.84 
(13) 17.32 (18) 51.02 (20) 33.5 (19) 

Duke             Gelfand, A.E.        24 (14) 48 (12) 19.59 (20) 9 (33) 14.18 (34) 51.94 (18) 32.86 (20) 
Washington       Stuetzle, W.          20 (18) 51.33 (9) 19.95 (18) 4.6 (47) 13.49 (38) 54.92 (12) 32.82 (21) 

Washington       Bookstein, F.L.      22 (16) 47.33 (13) 17.54 (29) 
10.08 
(27) 13.93 (36) 51.01 (21) 31.92 (22) 

Carnegie Mellon  Fienberg, S.          23 (15) 46 (14) 17.14 (31) 9.12 (31) 15.65 (26) 50.48 (22) 31.73 (23) 
Oxford           Lauritzen, S.          21 (17) 48 (12) 17.09 (32) 9 (33) 12.57 (42) 51.85 (19) 31.62 (24) 

Stanford         Chui, C.K.             29 (10) 38.67 (20) 16.81 (34) 
14.75 
(10) 15.87 (25) 44.32 (28) 30.69 (25) 

Stanford         Lavori, P.               33 (6) 40.67 (17) 19.1 (22) 7.07 (41) 11.92 (44) 44.49 (27) 30.54 (26) 

Chicago          Goodman, L.A.      25 (13) 38.67 (20) 12.32 (44) 
13.89 
(12) 25.44 (2) 44.68 (26) 30.51 (27) 

Stanford         Anderson, T.W.     25 (13) 41.33 (16) 10.24 (49) 17.86 (5) 14.7 (31) 45.52 (25) 29.93 (28) 
Stanford         Johnstone, I.M.     22 (16) 38 (21) 29.63 (8) 8.2 (37) 14.53 (33) 41.75 (34) 29.87 (29) 

Stanford         Dembo, A.             25 (13) 39.33 (19) 18.05 (27) 
10.96 
(22) 15.56 (27) 43.88 (29) 29.63 (30) 

Berkeley         Pitman, J.W.         30 (9) 32 (24) 17.67 (28) 15 (9) 19.92 (8) 41.51 (35) 29.61 (31) 

Stanford         Cover, T.M.           28 (11) 38.67 (20) 12.98 (42) 
12.85 
(16) 15.03 (29) 42.7 (32) 29.06 (32) 

Berkeley         Speed, T.P.           21 (17) 40 (18) 22.14 (15) 7.11 (40) 14 (35) 43.49 (30) 28.91 (33) 
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Chicago          Niyogi, P.              24 (14) 37.33 (22) 22.43 (14) 8.73 (34) 13.34 (39) 40.72 (36) 28.47 (34) 

Stanford         Olkin, I.                  23 (15) 39.33 (19) 11.12 (48) 
10.37 
(24) 15.26 (28) 43.36 (31) 27.79 (35) 

Berkeley         Peres, Y.               28 (11) 28 (29) 17.19 (30) 
10.59 
(23) 19.16 (11) 37.16 (41) 26.58 (36) 

Berkeley         Bartlett, P.L.          25 (13) 31.33 (25) 18.47 (24) 8.45 (35) 18.08 (15) 36.64 (42) 26.4 (37) 
Chicago          Stephens, M.         14 (24) 38 (21) 13.49 (41) 6.76 (42) 18.38 (13) 41.8 (33) 25.9 (38) 
Berkeley         Stone, C.J.            24 (14) 35.33 (23) 11.92 (46) 8.23 (36) 12.69 (41) 38.9 (38) 25.58 (39) 
Berkeley         Rice, J.                  18 (20) 32 (24) 14.62 (35) 5.79 (46) 23.15 (5) 38.84 (39) 25.43 (40) 

Oxford           Silverman, B.        25 (13) 31.33 (25) 13.56 (40) 
10.59 
(23) 16.64 (21) 35.6 (43) 25.4 (41) 

Duke             Sacks, J.               21 (17) 35.33 (23) 12.77 (43) 7.23 (39) 13.6 (37) 38.9 (38) 25.18 (42) 
Harvard          Chernoff, H.          18 (20) 37.33 (22) 8.34 (50) 12 (19) 11.62 (45) 40.28 (37) 25.01 (43) 

Stanford         Lai, T-L.                 25 (13) 26 (31) 12.27 (45) 
13.59 
(14) 17.75 (16) 34.73 (44) 24.45 (44) 

Oxford           Snijders, T.            14 (24) 35.33 (23) 18.2 (25) 6.13 (45) 9.33 (48) 37.83 (40) 23.9 (45) 

Minnesota        Geyer, C.              17 (21) 30.67 (26) 13.91 (38) 
10.32 
(25) 13.11 (40) 34.07 (45) 23.02 (46) 

Berkeley         Dudoit, S.              18 (20) 30 (27) 18.72 (23) 6.23 (44) 11.27 (46) 33.11 (46) 22.82 (47) 
Washington       Richardson, T.       19 (19) 28 (29) 14.15 (37) 6.33 (43) 18.36 (14) 33.08 (47) 22.78 (48) 

Duke             Clark, J.S.             16 (22) 28.67 (28) 13.63 (39) 
11.13 
(21) 16.09 (23) 33.04 (48) 22.69 (49) 

Minnesota        Hawkins, D.M.       24 (14) 26.67 (30) 11.88 (47) 
12.26 
(17) 12.41 (43) 30.87 (49) 22.52 (50) 

 
 

The authors appearing in the output have been ranked according to their P-M 

indices, derived by the CFA model (the top 50 authors). All other 6 bibliometric 

measures are included in the table for comparisons.  

As is easily seen, ranking of bibliometric performance of scientists according to the 

P-M measure is slightly different when compared to the h-index ranking. Let us take 

for example, D. Donoho of Stanford University and M. Jordan of the University of 

California, Berkeley. Donoho has an h-index of 52, while Jordan has an h-index of 60. 

However, when it comes to P-M measure bibliometric comparison, D. Donoho is 

ranked slightly higher (P-M measure: 62.85 compared to a 62.38 of M. Jordan).  

Indeed, if we observe the number of articles published and citations received we see 

that D. Donoho with 581 articles (√articles=24.1) has 17213 citations 

(√citations/2=92.77), while M. Jordan with 553 articles (√articles=23.52) has 16516 

citations (√citations/2=90.87). Further, as concerns the g-index, which is a measure of 

the h-core’s citation intensity, the values are 127 for D. Donoho and 124 for M. 
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Jordan. Also, when comparing the hI-index which is a measure of normalization for 

the co-authorship, D. Donoho has hI=25.75 and M. Jordan 21.05. Finally, as concerns 

the √AR-index, the two have roughly equal values (41.85, compared to 41.64).   

Another example is provided by the output research comparison between F. 

Bookstein, of University of Washington and I. Johnstone, of Stanford University. 

Bookstein has a P-M measure value of 31.92 while Johnstone’s is 29.87. F. Bookstein 

has a lead in three out of six metrics (the g-index, the hI-index and the number of 

citations) while I. Johnstone has higher √AR-index and a higher total number of 

published papers. Both share the same h-index. Overall, L. Booksteins’s h-core papers 

are more cited, he has less recent work, and has published fewer papers with fewer 

co-authors that have received a higher number of citations.  

Thus, one may argue that rating bibliometric performance according to the new 

combined index results in a better overall evaluation of the researchers’ work, since it 

takes into account not just one index (such as the h-index), or any other single 

bibliometric measure (e.g. total number of citations), but is a combination of the main 

indices that measure different aspects of the overall work of the researcher.     

 

 

7. CONCLUSIONS AND DISCUSSION 
 

An important consideration in evaluating research performance of a scientist is the 

multiple manifestations of his/her work. So, as many authors have argued, the use of 

indices to assess only a component of a scientist’s work (e.g. citations) is unfair to 

scientists (see, e.g. Adler et al., 2008; Kelly and Jennions, 2006; Sanderson, 2008). 

Measuring the research performance of a scientist by using only his/hers bibliometric 

data is already more or less restrictive by default, let alone by measuring the citation 

performance with only a single one of the metrics already described. 
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Our results indicate that the method of rating scientific performance based on 

bibliometric measurements introduced in this paper enhances the index ranking based 

on measuring a single characteristic. Our measure provides a more general picture of 

the scientist’s activity, by combining h-type indices proposed in the literature with 

older bibliometric measures, such as the total number of articles and total number of 

citations. 

Moreover, the new measure provides some additional discriminatory power for 

research output comparisons, and we argue that ranking according to the P-M 

measure is perhaps more fair, when compared to the ranking of scientists based on 

each one of the single bibliometric/citation metrics (new and old ones), separately. 

Of course, this measure is cumbersome to calculate. In addition, there does not exist 

an absolute and single P-M measure for an individual scientist, since the measure can 

change, depending on the specific population of researchers selected for its 

calculation. The magnitude of the value of the P-M measure of a scientist is relative to 

the P-M measures of the other scientists under study. It does allow though one to 

produce a ranking for a given set of scientists irrespective of their fields.  

However, given that single indices fail to capture important aspects of research 

performance, measures such as the P-M are useful when comparisons of scientists 

based on bibliometric parameters alone are necessary.  

Besides the obvious use of the P-M measure as a tool for the assessment of the 

overall performance of a researcher, it can also be utilized for interdisciplinary 

comparisons; by analyzing two (or more) sets of researchers of different fields of 

research, we can derive useful information associated with the magnitude of 

effectiveness of each one of the bibliometric indices on the specific scientific field 

and provide insight about the behavior of citation data in each discipline using the 
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calculated composite measure. In this way, the strong and weak performance of the 

single bibliometric indicators on each scientific field of research can be identified and 

we can quantify statements, until now only intuitively imposed, such as “the x-index 

is (or is not) suitable for the y discipline”, or “the x-index is accounted more largely in 

the y discipline than in the z discipline”. 

The P-M measure could also produce valid results when implemented for the 

comparisons between different sub-fields of the same discipline (i.e. comparisons of 

the P-M measure and the single indicators performance in Biostatistics, applied 

Statistics and Statistical theory).  

The choice of the specific indicators to be included in the calculation of the P-M 

measure is of significant importance too, and will be the subject of future research. 

Revising some of the already included indicators for calculation of the P-M measure 

or expanding the list of the six indicators with new single metrics could enhance the 

accuracy of the performance of the proposed measure by covering other aspects of the 

researcher’s work, not depicted by the already considered indicators. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



 28

BIBLIOGRAPHY 

 

[1] Adler, R., Ewing, J. and Taylor, P. (2008). Citation Statistics. Joint 
IMU/ICIAM/IMS-Committee on Quantitative Assessment of Research. 
(available at: http://www.mathunion.org/fileadmin/IMU/Report/CitationStatistics.pdf) 
[2] Anderson, T.W. and Rubin, H. (1956). Statistical Inference in Factor Analysis, 
in: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and 
Probability V, 111-150.  
[3] Bartholomew, D. & Knott, M. (1999). Latent Variable Models and Factor 
Analysis, Arnold, London. 
[4] Batista, P.D., Campiteli, M.G., Kinouchi, O. and Martinez, A.S. (2005). 
Universal behaviour of a research productivity index. arXiv: physics, v1, 1–5. 
(available at: http://arxiv.org/ftp/physics/papers/0509/0509048.pdf.). 
[5] Benson, J. and Fleishman, J.A. (1994). The Robustness of Maximum Likelihood 
and Distribution-free Estimators to Non-normality in Confirmatory Factor Analysis. 
Quality & Quantity, 28, 117-136. (available at: http://dx.doi.org/10.1007/BF01102757) 
[6] Bollen, J., Van de Sompel, H., Hagberg, A. and Chute, R. (2009). A Principal 
Component Analysis of 39 Scientific Impact Measures. CoRR, Vol. abs/0902.2183. 
(available at: http://arxiv.org/abs/0902.2183) 
[7] Bornmann, L., Mutz, R. and Daniel, H.D. (2008a).  Are There Better Indices for 
Evaluation Purposes than the h-index? A Comparison of Nine Different Variants of 
the h Index Using Data from Biomedicine. Journal of the American Society for 
Information Science and Technology, 59(5), 1-8. (available at: 
http://dx.doi.org/10.1002/asi.20806) 
[8] Bornmann, L., Mutz, R. and Daniel, H.D. (2008b).  Do we Need the H-index 
and its Variants Besides Standard Bibliometric Measures? (Accepted for publication 
in the Journal of the American Society for Information Science and Technology). 
(available at: http://www.lutz-bornmann.de/icons/BornmannRevised3.pdf) 
[9] Costas, R. and Bordons, M. (2007). The h-index: Advantages, Limitations and 
its Relation with Other Bibliometric Indicators at the Micro Level. Journal of 
Informetrics, 1, 193-203. 
(available at: http://dx.doi.org/10.1016/j.joi.2007.02.001) 
[10] Egghe, L. (2006a). How to improve the h-index. The Scientist, 20(3), 14.  
(available at: http://www.accessmylibrary.com/coms2/summary_0286-
14029249_ITM)  
[11] Egghe, L. (2006b). An improvement of the H-index: the G-index. ISSI 
Newsletter, 2(1), 8-9.  
(available at: https://wiki-
sop.inria.fr/wiki/pub/Ce/IndicateurEvaluation/animprovement.pdf) 
[12] Egghe, L. (2006c). Theory and practice of the g-index. Scientometrics, 69(1), 
131-152. (available at: http://dx.doi.org/10.1007/s11192-006-0144-7) 
[13] Egghe, L. (2007). From h to g: The evolution of citation indices. Research 
Trends, 1(1). 
[14] Funkhouser, G.R. (1983). A Note on the Reliability of Certain Clustering 
Algorithms. Journal of Marketing Research, 20, 99- 102. 
[15] Glanzel, W. (2006). On the h-index – A mathematical approach to a new 
measure of publication activity and citation impact. Scientometrics, 67(2), 315-321. 



 29

(available at: 
http://www.citebase.org/fulltext?format=application%2Fpdf&identifier=oai%3Aeprin
ts.rclis.org%3A9535) 
[16] Hendrix, D.H. (2008). An Analysis of Bibliometric Indicators, National 
Institutes of Health Funding, and Faculty Size at Association of American Medical 
Colleges Medical Schools, 1997-2007. Journal of Medical Library Association, 96(4), 
324-334. 
(available at: http://dx.doi.org/10.3163/1536-5050.96.4.007) 
[17] Hirsch, J.E. (2005). An index to quantify an individual’s scientific research 
output. Proceedings of the National Academy of Sciences, USA, 102(46), 16569-
16572. 
(available at: http://arxiv.org/PS_cache/physics/pdf/0508/0508025v5.pdf)   
[18] Horton, R.L. (1979). Some relationships between personality and consumer 
decision making. Journal of Marketing Research, 16, 233-246. 
[19] Iglesias, J.E., and Pecharromán, C. (2007a). Scaling the h-index for Different 
Scientific ISI Fields. Scientometrics, 73(3), 303-320. 
(available at: http://arxiv.org/ftp/physics/papers/0607/0607224.pdf)  
[20] Jin, B-H., Liang, L., Rousseau, R. and Egghe, L. (2007). The R- and AR- 
indices: Complementing the h-index. Chinese Science Bulletin, 52, 855-863.  
(available at: http://dx.doi.org/10.1007/s11434-007-0145-9)  
[21] Jöreskog, K.G. (1969). A General Approach to Confirmatory Maximum 
Likelihood Factor Analysis. Psychometrika, 34, 183–202.   
[22] Jöreskog, K.G. (1990). New Developments in LISREL: Analysis of Ordinal 
Variables Using Polychoric Correlations and Weighted Lest Squares. Quality & 
Quantity, 24, 387-404. (available at: http://dx.doi.org/10.1007/BF00152012) 
[23] Jöreskog, K.G. (2000). Latent Variable Scores and Their Uses. Lincolnwood, 
IL: Scientific Software International  
(available at: http://www.ssicentral.com/lisrel/corner.htm) 
[24] Jöreskog, K.G & Sörbom, D. (1999). LISREL 8 User’s Reference Guide. 
Scientific Software International, Lincolnwood, IL. 
[25] Kelly, C. D. and Jennions, M.D. (2006). The h index and career assessment by 
numbers. Trends in Ecology and Evolution, 21(4), 167–170. 
(available at: http://dx.doi.org/10.1016/j.tree.2006.01.005) 
[26] Mels, G. (2004). The Student Edition of LISREL 8.7 for Windows: Getting 
Started Guide Scientific Software International, Lincolnwood, IL.  
[27] National Research Council (1995). National science education standards. 
Washington, DC: National Academy Press. 
[28] Panaretos, J. and Malesios, C.C. (2008). Assessing scientific research 
performance and impact with single indices. Scientometrics (to appear). (available at:  
http://arxiv.org/ftp/arxiv/papers/0812/0812.4542.pdf) 
[29] Publish or Perish User's Manual (2008). (available at: 
http://www.harzing.com/resources.htm#/pop.htm) 
[30] Rousseau, R. (2006). Simple models and the corresponding h- and g-index. E-
LIS: ID6153. (available at: http://eprints.rclis.org/archive/00006153/)  
[31] Ryan, T.P. and Woodall, W.H. (2005). The most-Cited Statistical Papers. 
Journal of Applied Statistics, 32(5), 461-474. 
(available at: http://www.biostat.jhsph.edu/~yonchen/most.cited.stat.papers.pdf) 
[32] Sanderson, M. (2008). Revisiting h measured on UK LIS academics. Journal of 
the American Society for Information Science and Technology, 59(7), 1184-1190.  
(available at: http://dx.doi.org/10.1002/asi.20771) 



 30

[33] Urban, J.L. and Hauser, J.R. (1980). Design and Marketing of New Products, 
Englewood Cliffs. 
[34] Van Raan, A.F.J. (2006). Comparison of the Hirsch-index with standard 
bibliometric indicators and with peer judgment for 147 chemistry research groups. 
Scientometrics, 67(3): 491-502. (available at: http://www.cwts.nl/cwts/Hirsch.pdf) 
 
 
 



 31

APPENDIX 
 

Table A1: Descriptive statistics of citation metrics for the 9 Departments 
 

    h-index g-index hI-index AR-index 

Department 
of Statistics N 

mean Std. 
Deviation median Min Max mean Std. 

Deviation median Min Max mean 
Std. 

Deviat
ion 

median Min Max mean 
Std. 

Deviat
ion 

median Min Max 

Stanford 30 20.67 12.16 21.5 2 52 50 32.71 52.5 2 129 9.2 6 8.18 1 25.7
5 356.51 470.99 121.75 0.44 1733.49 

Berkeley 41 14.95 10.74 12 2 60 28.56 21.77 26 1 124 6.56 5.04 5.79 0.33 24.6 146.78 282.65 48.54 0.14 1751.05 

Harvard 20 10.75 8.56 9.5 1 29 34.3 41.99 17.5 2 155 4.59 3.97 3.42 0.5 12.9
4 179.33 367.78 37.92 1 1583.07 

Minnesota 21 9.71 6.9 8 2 29 19.38 15.93 16 3 71 4.86 3.73 3.52 1.5 15.2
9 93.96 254.82 28.91 1.91 1186.81 

Oxford (UK) 30 10.37 6.61 9 2 32 22.73 16.45 19.5 3 72 4.33 2.86 3.9 1 13.8
4 80.29 97.61 47.3 1.07 372.08 

Washington 26 11.42 7.19 10.5 2 32 26.11 21.75 19 3 79 4.84 2.78 4.65 0.4 12.1
9 100.06 142.95 67.43 2.33 621.36 

Carnegie 
Mellon 25 10.44 6.76 8 3 28 23.28 17.63 20,00 4 76 3.9 2.6 3.75 1 10.0

5 78.36 87.45 43.33 2.59 326.8 

Duke 20 9.85 7.67 7 1 27 23.05 21.12 13 2 72 3.89 3.2 2.5 0.44 11.1
3 89.72 125.9 23.22 0.12 429.45 

Chicago 25 10.28 6.32 9 2 25 25.2 21.49 19 2 92 5.65 3.74 5.4 0.75 14.0
6 75.62 109.47 31.86 3.01 503.26 

Total 238 12.79 8.79 11 1 60 27.6 20.73 22 1 155 5.66 4.15 4.66 0.33 25.7
5 115.34 200.41 46.47 0.12 1751.05 
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Table A2: Descriptive statistics of articles, square root of articles, citations and square root of citations divided by 2 for the 9 Departments 
 

    
papers citations √papers √citations/2 

Department of 
Statistics N 

total 
number 

of 
papers 

average 
number 

of 
papers 

total 
number 

of 
citations 

average 
number 

of 
citations 

total 
number 

of 
√papers 

average 
number 

of 
√papers 

total 
number of 
√citations/2 

average 
number of 
√citations/2

Stanford  30 6243 208.1 114671 3822.37 401.1 13.37 1119.62 37.32 

Berkeley 41 6591 160.76 62734 1530.1 470.63 11.48 924.56 22.55 

Harvard 20 2191 109.55 58992 2949.6 180.24 9.01 506.08 25.3 

Minnesota 21 1729 82.33 14848 707.05 173.47 8.26 314.03 14.95 

Oxford  30 2840 94.67 27846 928.2 267.2 8.9 535.46 17.85 

Washington 26 2377 91.42 32003 1230.88 227.49 8.75 511.15 19.66 

Carnegie Mellon 25 2538 101.52 24420 976.8 219.01 8.76 454.31 18.17 

Duke 20 2367 118.35 21654 1082.7 179.42 8.97 352.47 17.62 

Chicago 25 2827 113.08 29730 1189.2 234.49 9.38 481.52 19.26 

Total 238 29703 124.8 386898 1625.62 2353.06 9.89 5199.2 21.84 
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Table A3: Results on the published articles output of the 9 Departments of statistics  

Department 
of Statistics 

Number 
of 

faculty 

Total 
number 

of 
articles 

Average 
number 

of 
articles 

Number 
of non-
HCRs 

Total 
number 

of 
articles 
(non-
HCRs) 

Average 
number 

of 
articles 
(non-
HCRs) 

percentage 
of total 

number of 
articles 
(non-
HCRs) 

Number 
of 

HCRs 

Total 
number 

of 
articles 
(HCRs) 

Average 
number 

of 
articles 
(HCRs) 

percentage 
of total 

number of 
articles 
(HCRs) 

Stanford  30 6243 208.1 21 3003 143 48.1% 9 3240 360 51.9% 

Berkeley  41 6591 160.76 36 5509 153.03 83.58% 5 1082 216.4 16.42% 

Harvard 20 2191 109.55 16 1047 65.44 47.8% 4 1144 286 52.21% 

Minnesota  21 1729 82.33 20 1443 72.15 83.46% 1 286 286 16.54% 

Oxford  30 2840 94.67 28 2382 85.07 83.87% 2 458 229 16.13% 

Washington 26 2377 91.42 24 2064 86 86.83% 2 313 156.5 13.17% 
Carnegie 
Mellon 25 2538 101.52 24 2448 102 96.45% 1 90 90 3.55% 

Duke 20 2367 118.35 18 1997 110.94 84.37% 2 370 185 15.63% 

Chicago 25 2827 113.08 24 2673 111.38 94.55% 1 154 154 5.45% 

Total 238 29703 124.8 211 22566 106.95 75.97% 27 7137 264.33 24.03% 
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Table A4: Results on the citations output of the 9 Departments of statistics  

Department 
of Statistics 

Number 
of 

faculty 

Total 
number 

of 
citations 

Average 
number 

of 
citations

Number 
of non-
HCRs 

Total 
number 

of 
citations 

(non-
HCRs) 

Average 
number 

of 
citations 

(non-
HCRs) 

percentage 
of total 

number of 
citations 

(non-
HCRs) 

Number 
of 

HCRs 

Total 
number 

of 
citations 
(HCRs) 

Average 
number 

of 
citations 
(HCRs) 

percentage 
of total 

number of 
citations 
(HCRs) 

Stanford  30 114671 3822.37 21 44988 2142.29 39.23% 9 69683 7742.56 60.77% 

Berkeley  41 62734 1530.1 36 52020 1445,00 82.92% 5 10714 2142.8 17.08% 

Harvard 20 58992 2949.6 16 25963 1622.69 44.01% 4 33029 8257.25 55.99% 

Minnesota  21 14848 707.05 20 9326 466.3 62.81% 1 5522 5522 37.19% 

Oxford  30 27846 928.2 28 17263 616.54 61.99% 2 10583 5291.5 38.01% 

Washington 26 32003 1230.88 24 22857 952.38 71.42% 2 9146 4573 28.58% 
Carnegie 
Mellon 25 24420 976.8 24 22409 933.71 91.76% 1 2011 2011 8.24% 

Duke 20 21654 1082.7 18 14827 823.72 68.47% 2 6827 3413.5 31.53% 

Chicago 25 29730 1189.2 24 28976 1207.33 97.46% 1 754 754 2.54% 

Total 238 386898 1625.62 211 238629 1130.94 61.68% 27 148269 5491.44 38.32% 

 
 
 

 


