
Open Source Software in
Libraries: A Workshop

by Eric Lease Morgan

Open Source Software in Libraries: A Workshop
by Eric Lease Morgan

This text/handout is a part of a hands-on workshop for teaching people in libraries about open
source software.

This text/handout is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either version 2 of
the License, or (at your option) any later version. It is also distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should
have received a copy of the GNU General Public License along with this manual if not, write to
the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Copyright Eric Lease Morgan, October 2003

For possibly more up-to-date information about the workshop, see:
http://infomotions.com/musings/ossnlibraries-workshop/
[http://infomotions.com/musings/ossnlibraries-workshop/] .

url(http://infomotions.com/musings/ossnlibraries-workshop/)

Table of Contents
1. Introduction ..

Purpose and scope of this text/workshop 1
2. Open Source Software in Libraries

Introduction...5
What is OSS .. 5
Techniques for developing and implementing OSS 6
OSS Compared to Librarianship .. 7
Prominent OSS Packages ... 10
State of OSS in Libraries .. 10

National leadership .. 11
Mainstreaming, workshops, and training 11
Usability and packaging .. 11
Economic viability ... 11
Redefining the ILS ... 11
Open source data ... 12

Conclusion and next steps .. 12
Notes..13

3. Gift Cultures, Librarianship, and Open Source Software Development
Gift Cultures, Librarianship, and Open Source Software Development ... 15
Acknowledgements...17
Notes..17

4. Comparing Open Source Indexers ..
Abstract...19
Indexers...19

freeWAIS-sf..19
Harvest..19
Ht://Dig...20
Isite/Isearch..20
MPS..20
SWISH..21
WebGlimpse...22
Yaz/Zebra..22

Local examples ... 23
Summary and information systems 23
Links..24

5. Selected OSS ..
Introduction...25
Apache...25
CVS..25
DocBook stylesheets .. 26
FOP..26
GNU tools .. 26
Hypermail..26
Koha...27
MARC::Record...27
MyLibrary..27
MySQL..28
Perl...28
swish-e..28
xsltproc...29
YAZ and Zebra .. 29

6. Hands-on activities ...
Introduction...30
Installing and running Perl .. 31
Installing MySQL ... 32
Installing Apache .. 33
CVS..34
Hypermail..34
MARC::Record...36

iv

swish-e..37
YAZ..38
Koha...39
MyLibrary..39
xsltproc...40

7. GNU General Public License ..
Preamble...42
GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBU-
TION AND MODIFICATION .. 42
NO WARRANTY .. 45

Open Source Software in Libraries: A Work-
shop

v

Chapter 1. Introduction

[./ossnlibraries-workshop.png]

Purpose and scope of this text/workshop

This text is a part of a hands-on workshop intended to describe and illustrate
open source software and its techniques to small groups of librarians. Given
this text, the accompanying set of software, and reasonable access to a (Unix)
computer, the student should be able to read the essays, work through the ex-
ercises, and become familiar with open source software especially as it per-
tains to libraries.

I make no bones about it, this text is the combination of previous essays I've
written about open source software as well as a couple of other newer items.
For example, the second chapter is the opening chapter I wrote for a LITA
Guide in 2002 ("Open Source Software for Libraries," in Karen Coyle, ed., Open
Source Software for Libraries: An Open Source for Libraries: Chicago: American
Library Association, 2002 pg. 7-18.). The third chapter comparing open source
software, gift cultures, and librarianship was originally formally published
as a book review for Information Technology and Libraries (volume 19, number
2, March 2000). The chapter on open source software indexers is definitely
getting old. It was presented at the O'Reilly Open Source Convention, San
Diego, CA July 23-27, 2001. The following section is built from the content of
a 2001 American Libraries Association Annual Conference presentation. The new
materials are embodied in the list of selected software and the hands-on ac-
tivities.

I believe open source software is more about building communities and less
about computer programs. It is more about making the world a better place and
less about personal profit. Allow me to explain.

I have been giving away my software ever since Steve Cisler welcomed me into
the Apple Library Of Tomorrow (ALOT) folds in the very late 1980's. Through my
associations with Steve and ALOT I came to write a book about Macintosh-based
HTTP servers as well as an AppleScript-based CGI script called email.cgi in
1994.

This simple little script was originally developed for two purposes. First and
foremost it was intended to demonstrate how to write an AppleScript Common
Gateway Interface (CGI) application. Second, it was intended to fill a gap in
the Web browsers of the time, namely the inability of MacWeb to support mailto
URL's. Since then the script has evolved into an application taking the con-
tents of an HTML form, formatting it, and sending the results to one or more
email addresses. It works very much like a C program called cgiemail. As TCP

1

utilities have evolved over the years so has email.cgi, and to this date I
still get requests for technical support from all over the world, but almost
invariably the messages start out something like this. "Thank you so very much
for email.cgi. It is a wonderful program, but..." That's okay. The program
works and it has helped many people in many ways -- more ways than I am able
to count because the vast majority of people never contacted me personally.

As I was bringing this workbook together I thought about Steve Cisler again,
and I remembered a conference Apple Computer sponsored in 1995 called Ties
That Bind: Converging Communities. (A pretty bad travel log documenting my ex-
periences at this conference is available at
http://infomotions.com/travel/ties-that-bind-95/.) In the conference we shared
and discussed ideas about community and the ways technology can help make com-
munities happen. In between a session Cisler displayed the original piece of
art that became the motif for the conference. He noted that he got the paint-
ing in Australia some time the previous year. He liked it for its simplicity
and connectivity. The painting is acrylic, approximately 1' 6" X 2" 6", and is
composed of many simple dots of color.

The image at the top of the page is that piece of art, and it is significant
today. It too is "a lot" (all puns intended) like open source software and the
"the Unix way." The value of open source software is measured in terms of its
simplicity and connectivity. The simpler and more connective the software, the
more it is valued. The Unix way is a philosophy of computing. It posits that a
computer program will take some input, do some processing, and provide some
output. There is very little human interface to these sorts of programs be-
cause they get their input from a thing called standard input (STDIN) and send
the output to a thing called standard output (STDOUT). If errors occur, errors
are sent to standard error (STERR). Since the applications are expected to get
their input from STDIN and send it to STOUT it is possible to string many to-
gether to create a working application. Connectivity. Such a design philosophy
allows tiny programs to focus on one thing, and one thing only. Simplicity.
This modular approach allows for the creation of new applications by adding or
deleting older modules from the string.

The motif brought to my attention by Cisler is a lot like stringing together
open source software applications. Each individual dot does not do a whole lot
on its own, but strung together they form a pattern. The pattern's whole is
greater than the sum of its parts. This is true of communities as well. Indi-
viduals bring something to the community, and the community is made better for
the contribution. The open source community exists because of individuals.
These individuals have particular strengths (and weaknesses). As people add
what they can to the community, the community is strengthened. The rewards for
these contributions are rarely monetary. Instead, the contributions are paid
for with respect. People who give freely of themselves and their time are re-
warded by the community as experts whose opinions are to be taken seriously.
True, participation in open source software activities does not always put
food on the table, but neither do other community-based activities our society
values to one degree or another such as participation in community theater,
helping out at the local soup kitchen, being involved in church activities,
picking up litter, giving directions to a stranger, supporting charities, par-
ticipating in fund-raisers, etc. Open source software is about communities,
communities that have been easier to create with the advent of globally net-
worked computers. As described later, it is about "scratching an itch" to
solve a problem, but it is also about giving "freely" to the community in the
hopes that the community will be better off for it in the end.

A few years after writing email.cgi, I participated in another application
called MyLibrary. This portal application grew out of a set of focus group in-
terviews where faculty of the NC State University said they were suffering
from information overload. In late 1997, when these interviews were taking
place, services like My Yahoo, My Excite, My Netscape, and My DejaNews were
making their initial appearance. In the Digital Library Initiatives Depart-
ment, where I worked Keith Morgan and Doris Sigl, we thought a similar appli-

Chapter 1. Introduction

2

cation based on library content (bibliographic databases, electronic journals,
and Internet resources) organized by subjects (disciplines) might prove to be
a possible solution to the information overload problem. By prescribing sets
of resources to specific groups of people we (the Libraries) could offer fo-
cused content as well as provide access to the complete world of available in-
formation.

Since I relinquished my copyrights to the University and the software has been
distributed under the GNU Public License the software has been downloaded
about 350 times, mostly from academic libraries. The specific number of active
developers is unknown, but many institutions who have downloaded the software
have used it as a model for their own purposes. In most cases these institu-
tions have taken the system's database structure and experimented with various
interfaces and alternative services. Such institutions include, but are not
limited to the University of Michigan, the California Digital Library, Wheaton
College, Los Alamos Laboratory, Lund University (Sweden), the University of
Cattaneo (Italy), and the University of New Brunswick. Numerous presentations
have been given about MyLibrary including venues such as Harvard University,
Oxford University, the Alberta Library, the Canadian Library Association, the
ACRL Annual Meeting, and ASIS.

As I see it, there are three or four impediments restricting greater success
of the project: system I/O, database restructuring, and technical expertise.
MyLibrary is essentially a database application with a Web front-end. In order
to distribute content data must be saved in the database. The question then
is, "How will the data be entered?" Right now it must be done by content
providers (librarians), but the effort is tedious and as the number of biblio-
graphic databases and electronic journals grow so does the tedium. Lately I
have been experimenting with the use of RDF as an import/export mechanism. By
relying on some sort of XML standard the system will be able to divorce itself
from any particular database application such as an OPAC and the system will
be more able to share its data with other portal applications such as uPortal,
My Netscape, or O'Reilly's Meerkat through something like RSS. Yet, the prob-
lem still remains, "Who is going to do the work?" This is a staffing issue,
not necessarily a technical one.

In order to facilitate the needs a wider audience, the underlying database
needs to be restructured. For example, the databases contains tables for bib-
liographic databases, electronic journals, and "reference shelf" items. Each
of the items in these tables are classified using a set of controlled vocabu-
lary terms called disciplines. Many institutions want to create alternative
data types such as images, associations, or Internet resources. Presently, do
accomplish this task oodles of code must be duplicated bloating the underlying
Perl module. Instead a new table needs to be created to contain a new con-
trolled vocabulary called "formats". Once this table is created all the infor-
mation resources could be collapsed into a single table and classified with
the new controlled vocabulary as well as the disciplines. Furthermore, a third
controlled vocabulary -- intended audience -- could be created so the re-
sources could be classified even further. Given such a structure the system
could be more exact when it comes to initially prescribing resources and al-
lowing users to customize their selections. Again, the real problem here is
not necessarily technical but intellectual. Librarians make judgments about
resources in terms of the resource's aboutness, intended audience, and format
all the time but rarely on such a large scale, systematic basis. Our present
cataloging methods do not accommodate this sort of analysis, and how will such
analysis get institutionalized in our libraries?

The comparitavly low level of technical expertise in libraries is also a bar-
rier to wider acceptance of the system. MyLibrary runs. It doesn't crash nor
hang. It does not output garbage data. It works as advertised, but to install
the program initially requires technical expertise beyond the scope of most
libraries. It requires the installation of a database program. MySQL is the
current favorite, but there are all sort of things that can go wrong with a
MySQL installation. Similarly, MyLibrary is written in Perl. Installing Perl

Chapter 1. Introduction

3

from source usually requires answering a host of questions about your com-
puter's environment, and in all nine or ten years of compiling Perl I still
don't know what some of those questions mean and I simply go with the de-
faults. Then there are all the Perl modules MyLibrary requires. They are a
real pain to install, and unless you have done these sorts of installs before
the process can be quite overwhelming. In short, getting MyLibrary installed
is not like the Microsoft wizard process; you have to know a lot about your
host computer before you can even get it up and running and most libraries do
not employ enough people with this sort of expertise to make the process com-
fortable.

This workbook brings together much of my experience with open source software.
It describes sets of successful open source software projects and tries to
enumerate the qualities of successful project. The workbook has been in the
hopes people will read it, give the exercises a whirl, learn from the experi-
ence, and share their newly acquired expertise with the world at large.
Through this process I hope we can make the world we live in just a little bit
better place. Idealist? Maybe. A worthy goal? Definitely.

Chapter 1. Introduction

4

Chapter 2. Open Source Software in
Libraries
Introduction

This guide is an introduction to open source software in libraries, with de-
scriptions of a variety of software packages and successful library projects.
But before we get to the software itself, I want to describe the principles
and techniques of open source software (OSS) and explain why I advocate the
adoption of OSS in the implementation of library services and collections.

As you will see, there are many shared principles between OSS and librarian-
ship, especially the free and equal access to information. Because of the
freedom we gain with the use of OSS is it possible to have greater control
over the ways computers function and therefore greater control over how li-
braries operate. Anybody who works with computers on a daily basis can con-
tribute to OSS because things like information architecture, usability test-
ing, documentation, and staffing are key skills required for successful
projects, and these skills are inherent in the people who use computers as a
primary tool in their work. The implementation of OSS in libraries represents
a method for improving library services and collections.

What is OSS

OSS is both a philosophy and a process. As a philosophy it describes the in-
tended use of software and methods for its distribution. Depending on your
perspective, the concept of OSS is a relatively new idea being only four or
five years old. On the other hand, the GNU Software Project -- a project advo-
cating the distribution of "free" software -- has been operational since the
mid '80's. Consequently, the ideas behind OSS have been around longer than you
may think. It begins when a man named Richard Stallman worked for MIT in an
environment where software was shared. In the mid '80's Stallman resigned from
MIT to begin developing the GNU -- a software project intended to create an
operating system much like Unix. (GNU is pronounced "guh-NEW" and is a recur-
sive acronym for GNU's Not Unix.) His desire was to create "free" software,
but the term "free" should be equated with freedom, and as such people who use
"free" software should be:

1. free to run the software for any purpose

2. free to modify the software to suit their needs

3. free to redistribute of the software gratis or for a fee

4. free to distribute modified versions of the software

Put another way the term "free" should be equated with the Latin word "lib-
erat" meaning to liberate, and not necessarily "gratis" meaning without return
made or expected. In the words of Stallman, we should "think of 'free' as in
'free speech,' not as in 'free beer.'"[1]

Fast forward to the late '90's after Linus Torvalds successfully develops
Linux, a "free" operating system on par with any commercial Unix distribution.
Fast forward to the late '90's when globally networked computers are an every
day reality and the .com boom is booming. There you will find the birth of the
term "open source" and it is used to describe how software is licensed:

• the license shall not restrict any party from selling or giving away soft-

5

ware

• the program shall include source code and must allow distribution of the
code

• the license shall allow modifications and derived work of the software

• the license may restrict redistribution only if patches (fixes) are in-
cluded

• the license may not discriminate against any person or group of persons

• the license may not restrict how the software is used

• the rights attached to the program must apply to all whom the software is
redistributed

• the license must not be specific to a product

• the license must not contaminate other software by place restrictions on it
[2]

Techniques for developing and implementing OSS

OSS is also a process for the creation and maintenance of software. This is
not a formalized process, but rather a process of convention with common char-
acteristics between software projects. First and for most, the developer of a
software project almost always is trying to solve a specific computer problem
commonly called "scratching an itch." The developer realizes other people may
have the same problem(s), and consequently the developer makes the project's
source code available on the 'Net in the hopes other people can use it too.

If there seems to be a common need for the software, a mailing list is usually
created to facilitate communication, and the list is hopefully archived for
future reference. Since the software is almost always in a state of flux, de-
velopers need some sort of version control software to help manage the
project's components. The most common version control software is called CVS
(Concurrent Versions System). Co-developers then "hack away" at the project
adding features they desire and/or fixing bugs of previous releases. As these
features and fixes are created the source code's modifications, in the form of
"diff" files -- specialized files explicitly listing the differences between
two sets of programming code -- are sent back to the project's leader. The
leader examines the diff files, assesses their value, and decides whether or
not to integrate them into the master archive. The cycle then begins anew.
Much of a project's success relies on the primary developer's ability to fos-
ter communication and a sense of community around a project. Once accomplished
the "two heads are better then one" philosophy takes effect and the project
matures.

Writing computer programs is only one part of the software development. Soft-
ware development also requires things such as usability testing, documenta-
tion, beta-testing, and a knowledge of staff issues. Consequently, in any en-
vironment where computers are used on a daily basis are places where the tech-
niques of OSS can be practiced. Knowledge of computer programming is not nec-
essary. In fact, a lack of computer programming is desireable. You do not have
to know how to write computer programs in order to participate in OSS develop-
ment.

Anybody who uses computers on a daily basis can help develop OSS. For example,
you can be a beta-tester who tries to use the software and finds its faults.
You can write documentation instructing people how to use the software. You
can conduct usability tests against the software discovering how easy the

Chapter 2. Open Source Software in Li-
braries

6

software is to use or not use, and how it meets people's expectations. If com-
puter software is intended to make our lives easier, you can evaluate the use
of the software and see what sorts of things can be eliminated or how re-
sources can be reallocated in order to run operations more efficiently. All of
these things have nothing to do with computer programming, but rather, the use
of computers in a work place.

OSS Compared to Librarianship

One the most definitive sets of writings describing OSS is Eric Raymond's The
Cathedral and the Bazaar.[3] These texts, available online as well as in book
form, compare and contrast the software development processes of monolithic
organizations (Cathedrals) with the software processes of less structured,
more organic collections of "hackers" (Bazaars).[4] The book describes the en-
vironment of free software and tries to explain why some programers are will-
ing to give away the products of their labors. It describes the "hacker mi-
lieu" as a "gift culture":

Gift cultures are adaptations not to scarcity but to abundance.
They arise in populations that do not have significant material
scarcity problems with survival goods. We can observe gift cul-
tures in action among aboriginal cultures living in ecozones with
mild climates and abundant food. We can also observe them in cer-
tain strata of our own society, especially in show business and
among the very wealthy.[5]

Raymond alludes to the definition of "gift cultures", but not enough to sat-
isfy my curiosity. The literature, more often than not, refers to information
about "gift exchange" and "gift economies" as opposed to "gift cultures."
Probably one of the earliest and more comprehensive studies of gift exchange
was written by Marcell Mauss.[6] In his analysis he says gifts, with their
three obligations of giving, receiving, and repaying, are in aspects of almost
all societies. The process of gift giving strengthens cooperation, competi-
tiveness, and antagonism. It reveals itself in religious, legal, moral, eco-
nomic, aesthetic, morphological, and mythological aspects of life.[7]

As Gregory states, for the industrial capitalist economies, gifts are nothing
but presents or things given, and "that is all that needs to be said on the
matter." Ironically for economists, gifts have value and consequently have im-
plications for commodity exchange.[8] He goes on to review studies about gift
giving from an anthropological view, studies focusing on tribal communities of
various American indians, cultures from New Guinea and Melanesia, and even an-
cient Roman, Hindu, and Germanic societies:

The key to understanding gift giving is apprehension of the fact that things
in tribal economics are produced by non-alienated labor. This creates a spe-
cial bond between a producer and his/her product, a bond that is broken in a
capitalistic society based on alienated wage-labor.[9]

Ingold, in "Introduction To Social Life" echoes many of the things summarized
by Gregory when he states that industrialization is concerned:

exclusively with the dynamics of commodity production. ... Clearly in non-
industrial societies, where these conditions do not obtain, the significance
of work will be very different. For one thing, people retain control over
their own capacity to work and over other productive means, and their activi-
ties are carried on in the context of their relationships with kin and commu-
nity. Indeed their work may have the strengthening or regeneration of these
relationships as its principle objective.[10]

In short, the exchange of gifts forges relationships between partners and em-
phasizes qualitative as opposed to quantitative terms. The producer of the

Chapter 2. Open Source Software in Li-
braries

7

product (or service) takes a personal interest in production, and when the
product is given away as a gift it is difficult to quantify the value of the
item. Therefore the items exchanged are of a less tangible nature such as
obligations, promises, respect, and interpersonal relationships.

As I read Raymond and others I continually saw similarities between librarian-
ship and gift cultures, and therefore similarities between librarianship and
OSS development. While the summaries outlined above do not necessarily mention
the "abundance" alluded to by Raymond, the existence of abundance is more than
mere speculation. Potlatch, a ceremonial feast of the American Indians of the
northwest coast marked by the host's lavish distribution of gifts or sometimes
destruction of property to demonstrate wealth and generosity with the expecta-
tion of eventual reciprocation, is an excellent example.

Libraries have an abundance of data and information. I won't go into whether
or not they have an abundance of knowledge or wisdom of the ages. That is an-
other essay. Libraries do not exchange this data and information for money;
you don't have to have your credit card ready as you leave the door. Libraries
don't accept checks. Instead the exchange is much less tangible. First of all,
based on my experience, most librarians just take pride in their ability to
collect, organize, and disseminate data and information in an effective man-
ner. They are curious. They enjoy learning things for learning's things sake.
It is a sort of Platonic end in itself. Librarians, generally speaking, just
like what they do and they certainly aren't in it for the money. You won't get
rich by becoming a librarian.

Even free information is not without financial costs. Information requires
time and energy to create, collect, and share, but when an information ex-
change does take place, it is usually intangible, not monetary, in nature. In-
formation is intangible. It is difficult to assign information a monetary
value, especially in a digital environment where it can be duplicated effort-
lessly:

An exchange process is a process whereby two or more individuals (or groups)
exchange goods or services for items of value. In Library Land, one of these
individuals is almost always a librarian. The other individuals include tax
payers, students, faculty, or in the case of special libraries, fellow employ-
ees. The items of value are information and information services exchanged for
a perception of worth -- a rating valuing the services rendered. This percep-
tion of worth, a highly intangible and difficult thing to measure, is some-
thing the user of library services "pays", not to libraries and librarians,
but to administrators and decision-makers. Ultimately, these payments manifest
themselves as tax dollars or other administrative support. As the perception
of worth decreases so do tax dollars and support. [11]

Therefore when information exchanges take place in libraries librarians hope
their clientele will support the goals of the library to administrators when
issues of funding arise. Librarians believe that "free" information ("think
free speech, not free beer") will improve society. It will allow people to
grow spiritually and intellectually. It will improve humankind's situation in
the world. Libraries are only perceived as beneficial when they give away this
data and information. That is their purpose, and they, generally speaking, do
this without regards to fees or tangible exchanges.

In many ways I believe OSS development, as articulated by Raymond, is very
similar to the principles of librarianship. First and foremost with the idea
of sharing information. Both camps put a premium on open access. Both camps
are gift cultures and gain reputation by the amount of "stuff" they give away.
What people do with the information, whether it be source code or journal ar-
ticles, is up to them. Both camps hope the shared information will be used to
improve our place in the world. Just as Jefferson's informed public is a ne-
cessity for democracy, OSS is necessary for the improvement of computer appli-
cations.

Chapter 2. Open Source Software in Li-
braries

8

Second, human interactions are a necessary part of the mixture in both librar-
ianship and open source development. Open source development requires people
skills by source code maintainers. It requires an understanding of the problem
the computer application is trying to solve, and the maintainer must assimi-
late patches with the application. Similarly, librarians understand that in-
formation seeking behavior is a human process. While databases and many "digi-
tal libraries" house information, these collections are really "data stores"
and are only manifested as information after the assignment of value are given
to the data and inter-relations between datum are created.

Third, it has been stated that open source development will remove the neces-
sity for programers. Yet Raymond posits that no such thing will happen. If
anything, there will an increased need for programmers. Similarly, many li-
brarians feared the advent of the Web because they believed their jobs would
be in jeopardy. Ironically, librarianship is flowering under new rubrics such
as information architects and knowledge managers.

OSS also works in a sort of peer review environment. As Raymond states, "Given
enough eyeballs, all bugs are shallow." Since the source code to OSS is avail-
able for anybody to read, it is possible to examine exactly how the software
works. When a program is written and a bug manifests itself, there are many
people who can look at the program, see what it is doing, and offer sugges-
tions or fixes.

Instead of relying on marketing hype to promote an application, OSS relies on
its ability to satisfy particular itches to gain prominence. The better a
piece of software works, the more people are likely to use it. User endorse-
ments are usually the way OSS is promoted. The good pieces of software float
to the top because they are used the most often. The ones that are poorly
written or do not satisfy enough itches sink to the bottom.

In a peer review process many people look at an article and evaluate its va-
lidity. During this evaluation process the reviews point out deficiencies in
the article and suggest improvements. The reviewers are usually anonymous but
authoritative. The evaluation of OSS often works in the same vein. Software is
evaluated by self-selected reviewers. These people examine all aspects of the
application from the underlying data structures, to the way the data is manip-
ulated, to the user interface and functionality, to the documentation. These
people then offer suggestions and fixes to the application in an effort to en-
hance and improve it.

Some people may remember the "homegrown" integrated library systems developed
in the '70's and '80's, and these same people may wonder how OSS is different
from those humble beginnings. There are two distinct differences. The first is
the present-day existence of the Internet. This global network of computers
enables people to communicate over much greater distances and it is much less
expensive than twenty-five years ago. Consequently, developers are not as iso-
lated as they once were, and the flow of ideas travels more easily between de-
velopers -- people who are trying to scratch that itch. Yes, there were tele-
phone lines and modems but the processes for using them was not as seemlessly
integrated into the computing environment (and there were always long-distance
communications charges to contend with.[12])

Second, the state of computer technology and its availability has dramatically
increased in the past twenty-five years. Twenty-five years ago computers, es-
pecially the sorts of computers used for large-scale library operations, were
almost always physically large, extremely expensive, remote devices whose ac-
cess was limited to a group of few specialized individuals. Now-a-days, the
computers on most people's desktops have enough RAM, CPU horsepower, and disk
space to support the college campus of twenty-five years ago.[13]

In short, the OSS development process is not like the homegrown library sys-
tems of the past simply because there are more people with more computers who
are able to examine and explore the possibilities of solving more computing

Chapter 2. Open Source Software in Li-
braries

9

problems. In the times of the homegrown systems people were more isolated in
their development efforts and more limited in their choice of computing hard-
ware and software resources.

Prominent OSS Packages

There are quite a number of mainstream OSS applications. Many of these appli-
cations literally run the Internet or are used for back-end support. The
Apache Project is one of the more notable (www.apache.org). Apache is a World
Wide Web (HTTP) server. It started out its life in the mid '90's as NCSA's
httpd application, the Web server beneath the first graphical Web browser. The
name for the application -- Apache -- is a play on words. It has nothing to do
with indians. Instead, in an effort to write a more modular computer program,
the original httpd application was rewritten as a set of parts, or patches,
and consequently the application is called "a patchy server." Few experts
would doubt the popularity of the Apache server. According to Netcraft, more
HTTP servers are Apache HTTP server than any other kind. [14]

MySQL is a popular relational database application. It is very often used to
support database-driven websites. It adhears to the SQL standard while adding
a number of features of its own (as does Oracle and other database vendors).
MySQL is known for its speed and stability. The canonical address for MySQL is
www.mysql.org.

Sendmail is an email (SMTP) server used on the vast majority of Unix comput-
ers. This application, developed quite a number of years ago is responsible
for trafficing much of the email messages sent throughout the world. Sendmail
is a good example of an application supported by both a commercial institution
as well as a non-profit organization. There is a free version of sendmail,
complete with source code, as well as a commercial version that comes with
formal support. See www.sendmail.org.

BIND is an acronym for the Berkeley Internet Name Domain, a program converting
Internet Protocol (IP) numbers, such as 17.112.144.32 into human-readable
names such as www.apple.com. It is a sort like an old fashioned switchboard
operator associating telephone numbers with the telephones in people's homes.
BIND is supported by the Internet Software Consortium at www.isc.org.

Perl is a programming language written by Larry Wall in the late '80's. It too
runs much of the Internet since it is used as the language of many common
gateway interface (CGI) scripts of the internet. Wall originally created Perl
to help him do systems administration task, but the language worked so well
others adopted it and it has grown significantly. Perl is supported at
www.perl.com.

Linux is the most familiar OSS application. This program is really an operat-
ing system -- a program directly responsible converting human-readable com-
mands into computer (machine) language. It is the software that really makes
computers run. Linux was originally conceived by Linus Torvols in the late
'80's because he wanted to run a Unix-sort of operating system on Intel-based
computer. Linux is becoming increasingly popular with many information tech-
nology (IT) professionals as an alternative to Windows-based server applica-
tions or proprietary versions of Unix. See www.linux.org.

State of OSS in Libraries

Daniel Chudnov has been the library profession's OSS evangelist for the past
three or four years. He is also the original author of the open source program
jake (jointly administered knowledge environment). Chudnov has done a lot to
raise the awareness of OSS in libraries. To that end he and others help main-
tain a website called OSS4Lib (www.oss4lib.org). The site lists library-re-
lated applications including applications for document delivery, Z39.50
clients and servers, systems to manage collections, MARC record readers and

Chapter 2. Open Source Software in Li-
braries

10

writers, integrated library system, and systems to read and write bibliogra-
phies. For more information visit OSS4Lib and subscribe to the mailing list.

The state of OSS in libraries is more than sets of computer programs. It also
includes the environment where the software is intended to be used -- a so-
cio-economic infrastructure. Any computing problem can be roughly divided into
20% technology issues and 80% people issues. It is this 80% of the problem
that concerns us here. Given the current networked environment, the affinity
of OSS development to librarianship, and the sorts of projects enumerated
above what can the library profession do to best take advantage of the cur-
rently available OSS? I posed this question to the OSS4Lib mailing list in
April and May of 2000 and it generated a lively discussion. [15] A number of
themes presented themselves, each of which are elaborated upon below.

National leadership

One of the strongest themes was the need for a national leader. It was first
articulated by David Dorman as the OSLN (Open Source Library Network). Karen
Coyle and Aaron Trehab elaborated on this idea by suggesting organizations
such as ALA/LITA, the DLF, OCLC, or RLG help fund and facilitate methods for
providing credibility, publicity, stability, and coordination to library-based
OSS projects.

Mainstreaming, workshops, and training

Along theses same lines was the expressed desire for the mainstreaming of OSS
articulated by Carol Erkens, Rachel Cheng, and Peter Schlumpf. This main-
streaming process would include presentations, workshops, and training ses-
sions on local, regional, and national levels. These activities would describe
and demonstrate open sources software for libraries. They would enumerate the
advantages and disadvantages of open sources software. They would provide ex-
tensive instructions on the staffing, installation, and maintenance issue of
OSS.

Usability and packaging

In its present state, open sources software is much like microcomputer comput-
ing of the '70's as stated by Blake Carver. It is very much a build it your-
self enterprise; the systems are not very usable when it comes to installa-
tion. This point was echoed by Cheng who recently helped facilitate a NERCOMP
workshop on OSS. Peter Schulmpf points to the need for easier installation
methods so maintainers of the system can focus on managing content and not
software. Using OSS should not be like owning an automobile in the 1920's. "I
shouldn't necessarily need to know how to fix it in order to make it go."

Economic viability

OSS needs to be demonstrated as an economically viable method of supporting
software and systems. This was pointed out by Eric Schnell and David Dorman.
Libraries have spent a lot of time, effort, and money on resource sharing. Why
not pool these same resources together to create software satisfying our pro-
fessional needs? OSS is not like the "homegrown" systems. Spaghetti code and
GOTO statements should be a thing of the past. More importantly, a globally
networked computer environment provides a means of sharing expertise in a man-
ner not feasible twenty-five years ago. We need to demonstrate to administra-
tors and funding sources that money spent developing software empowers our
collective whole. It is an investment in personnel and infrastructure. OSS is
not a fad, yet is will not necessarily replace commercial software. On the
other hand, OSS offers opportunities not necessarily available from the com-
mercial sector.

Redefining the ILS

Chapter 2. Open Source Software in Li-
braries

11

There are many open source library application available today. Each satisfies
a particular need. Maybe each of these individual applications can be brought
together into a collective, synergistic whole as described by Jeremy Frumkin
and we could redefine the integrated library system. Presently our ILS's man-
age things like books pretty well. With the addition of 856 fields in MARC
records they are beginning to assist in the management of networked resources,
but libraries are more than books and networked resources. Libraries are about
services too: reserves, reading lists, bibliographies, reader advisory ser-
vices of many types, current awareness, reference, etc. Maybe the existing OSS
can be glued together to form something more holistic resulting in a sum
greater than its parts. This is also an opportunity, as described by Schnell,
for vendors to step in and provide such integration including installation,
documentation, and training.

Open source data

OSS relates to data as well as systems as described by Krichel. The globally
networked computer environment allows us to share data as well as software.
Why not selectively feed URL's to Internet spiders to create our own, sub-
ject-specific indexes? Why not institutionalize services like the Open Direc-
tory Project or build on the strength of INFOMINE to share records in a manner
similar to the manner of OCLC?

Conclusion and next steps

This essay has described what OSS is and it compared OSS to the principles of
librarianship. The balance of the book details particular systems of OSS for
libraries. After reading this book I hope you go away understanding at least
one thing. OSS provides the means for the profession to take greater control
over the ways computers are used in libraries. OSS is free, but it is free in
the same way freedom exists in a democracy. With freedom comes choice. With
freedom comes the ability to manifest change. At the same time, freedom comes
at a price, and that price is responsibility. OSS puts its users in direct
control of computer operations, and this control costs in terms of account-
ability. When the software breaks down, you will be responsible for fixing it.
Fortunately, there is a large network at your disposal, the Internet, not to
mention the creator of the software who has the same problems you do and has
most likely previously addressed the same problem. Open source provides the
means to say, "We are not limited by our licensed software because we have the
ability to modify the software to meet our own ends." Instead of blaming ven-
dors for supporting bad software, instead of confusing the issues with con-
tractual agreements and spending tens of thousands of dollars a year for ser-
vices poorly rendered, OSS offers an alternative. Be realistic. OSS is free,
but not without costs.

This being the case, what sorts of things need to happen for OSS to become a
more viable computing option in libraries? What are the next steps? The steps
fall into two categories: 1) making people more aware of OSS and 2) improving
the characteristics of OSS.

Librarians need to become more aware of the options OSS provides. This can be
done in a number of ways. For example, a formal study analyzing the desirabil-
ity and feasibility of libraries making a formal commitment to OSS might
demonstrate to other libraries the benefits of OSS. Library boards and direc-
tors need feel comfortable commiting funds to OSS installation and develop-
ment, but before doing so the boards and directors need to know what OSS is
and how its principles can be applied in libraries. By mentoring existing li-
brarians to become more computer literate the concepts of OSS will become eas-
ier to understand. Similarly, by mentoring librarians to be more aware of the
ways of administration these same librarians will have more authority to make
decisions and direct energies to OSS development. All librarians should not be
afraid of the idea of open sources software because they think computer pro-
gramming experience is necessary. There is much more to software development

Chapter 2. Open Source Software in Li-
braries

12

than writing computer programs. Simple training exercises will also make more
people aware of the potential of open sources software. Finally, communication
-- testimonials -- will help disseminate the successes, as well as failures,
of OSS.

OSS itself needs to be improved. The installation processes of OSS are not as
simple as the installation procedures of commercial software. This is area
that needs improvement, and if done, fewer people would be intimidated by the
installation process. Additionally, there are opportunities for commercial in-
stitutions to support OSS. These institutions, like Red Hat or O'Reilly & As-
sociates, could provide services installing, documenting, and trouble shooting
OSS. These institutions would not be selling the software itself, but services
surrounding the software.

The principles of OSS of very similar to the principles of librarianship.
Let's take advantage of these principles and use them to take more control of
over our computing environments.

Notes

1. The ideas behind GNU software and its definition as articulated by Richard
Stallman can be found at http://www.gnu.org/philosophy/free-sw.html. Accessed
April 25, 2002.

2. Much of the preceeding section was derived from Dave Bretthaur's excellent
article, "OSS: A History" in Information Technology and Libraries 21(1) March,
2002. pg. 3-10.

3. The Cathedral and the Bazaar is also available online at
http://www.tuxedo.org/~esr/writings/cathedral-bazaar/. Accessed April 25,
2002.

4. It is important to distinguish here the difference between a "hacker" and a
"cracker". As defined by Raymond, a hacker is person who writes computer pro-
grams because they are "scratching an itch" -- trying to solve a particular
computer problem. This definition is contrasted with the term "cracker" denot-
ing a person who maliciously tries to break computer systems. In Raymond's
eyes, hacking is a noble art, cracking is immoral. It is unfortunate, the dis-
tinction between hacking and cracking seems to have been lost on the general
population.

5. Raymond, E.S., The cathedral and the bazaar: musings on Linux and open
source by an accidental revolutionary. 1st ed. 1999, [Sebastopol, CA]:
O'Reilly. pg. 99.

6. Mauss, M., The gift; forms and functions of exchange in archaic societies.
The Norton library, N378. 1967, New York: Norton.

7. Lukes, S., Mauss, Marcel, in International encyclopedia of the social sci-
ences, D.L. Sills, Editor. 1968, Macmillan: [New York] volume 10, pg. 80.

8. Gregory, C.A, "Gifts" in Eatwell, J., et al., The New Palgrave : a dictio-
nary of economics. 1987, New York: Stockton Press. volume 3, pg. 524.

9. Ibid.

10. Ingold, T., Introduction To Social Life, in Companion encyclopedia of an-
thropology, T. Ingold, Editor. 1994, Routledge: London ; New York. p. 747.

11. Morgan, E.L., "Marketing Future Libraries",
http://www.infomotions.com/musings/marketing/. Accessed April 25, 2002.

12. As an interesting aside, read "Stalking the wily hacker" by Clifford Stoll

Chapter 2. Open Source Software in Li-
braries

13

in the Communications of the ACM May 1988 31(5) pg. 484. The essay describes
how Clifford tracked a hacker via a 75 cent error in his telephone bill. It is
on the Web in many places. Try http://eserver.org/cyber/stoll2.txt. Accessed
April 25, 2002

13. It is believed a past chairman of IBM, Thomas Watson, said in 1943, "I
think there is a world market for maybe five computers."

14. See http://www.netcraft.com for more information. Accessed April 25, 2002.

15. An archive of the oss4lib mailing list is available at this URL
http://www.geocrawler.com/lists/3/SourceForge/6067/0/. Accessed April 25,
2002.

Chapter 2. Open Source Software in Li-
braries

14

Chapter 3. Gift Cultures,
Librarianship, and Open Source
Software Development
Gift Cultures, Librarianship, and Open Source Soft-
ware Development

This short essay examines more closely the concept of a "gift culture" and how
it may or may not be related to librarianship. After this examination and with
a few qualifications, I still believe my judgments about open source software
and librarianship are true. Open source software development and librarianship
have a number of similarities -- both are examples of gift cultures.

I have recently been reading a book about open source software development by
Eric Raymond. [1] The book describes the environment of free software and
tries to explain why some programers are willing to give away the products of
their labors. It describes the "hacker milieu" as a "gift culture":

Gift cultures are adaptations not to scarcity but to abundance. They arise in
populations that do not have significant material scarcity problems with sur-
vival goods. We can observe gift cultures in action among aboriginal cultures
living in ecozones with mild climates and abundant food. We can also observe
them in certain strata of our own society, especially in show business and
among the very wealthy. [2]

Raymond alludes to the definition of "gift cultures", but not enough to sat-
isfy my curiosity. Being the good librarian, I was off to the reference de-
partment for more specific answers. More often than not, I found information
about "gift exchange" and "gift economies" as opposed to "gift cultures."
(Yes, I did look on the Internet but found little.)

Probably one of the earliest and more comprehensive studies of gift exchange
was written by Marcell Mauss. [3] In his analysis he says gifts, with their
three obligations of giving, receiving, and repaying, are in aspects of almost
all societies. The process of gift giving strengthens cooperation, competi-
tiveness, and antagonism. It reveals itself in religious, legal, moral, eco-
nomic, aesthetic, morphological, and mythological aspects of life. [4]

As Gregory states, for the industrial capitalist economies, gifts are nothing
but presents or things given, and "that is all that needs to be said on the
matter." Ironically for economists, gifts have value and consequently have im-
plications for commodity exchange. [5] He goes on to review studies about gift
giving from an anthropological view, studies focusing on tribal communities of
various American indians, cultures from New Guinea and Melanesia, and even an-
cient Roman, Hindu, and Germanic societies:

The key to understanding gift giving is apprehension of the fact that things
in tribal economics are produced by non-alienated labor. This creates a spe-
cial bond between a producer and his/her product, a bond that is broken in a
capitalistic society based on alienated wage-labor.[6]

Ingold, in "Introduction To Social Life" echoes many of the things summarized
by Gregory when he states that industrialization is concerned:

exclusively with the dynamics of commodity production. ... Clearly in non-
industrial societies, where these conditions do not obtain, the significance
of work will be very different. For one thing, people retain control over
their own capacity to work and over other productive means, and their activi-
ties are carried on in the context of their relationships with kin and commu-

15

nity. Indeed their work may have the strengthening or regeneration of these
relationships as its principle objective. [7]

In short, the exchange of gifts forges relationships between partners and em-
phasizes qualitative as opposed to quantitative terms. The producer of the
product (or service) takes a personal interest in production, and when the
product is given away as a gift it is difficult to quantify the value of the
item. Therefore the items exchanged are of a less tangible nature such as
obligations, promises, respect, and interpersonal relationships.

As I read Raymond and others I continually saw similarities between librarian-
ship and gift cultures, and therefore similarities between librarianship and
open source software development. While the summaries outlined above do not
necessarily mention the "abundance" alluded to by Raymond, the existence of
abundance is more than mere speculation. Potlatch, "a ceremonial feast of the
American Indians of the northwest coast marked by the host's lavish distribu-
tion of gifts or sometimes destruction of property to demonstrate wealth and
generosity with the expectation of eventual reciprocation", is an excellent
example. [8]

Libraries have an abundance of data and information. (I won't go into whether
or not they have an abundance of knowledge or wisdom of the ages. That is an-
other essay.) Libraries do not exchange this data and information for money;
you don't have to have your credit card ready as you leave the door. Libraries
don't accept checks. Instead the exchange is much less tangible. First of all,
based on my experience, most librarians just take pride in their ability to
collect, organize, and disseminate data and information in an effective man-
ner. They are curious. They enjoy learning things for learning's things sake.
It is a sort of Platonic end in itself. Librarians, generally speaking, just
like what they do and they certainly aren't in it for the money. You won't get
rich by becoming a librarian.

Information is not free. It requires time and energy to create, collect, and
share, but when an information exchange does take place, it is usually intan-
gible, not monetary, in nature. Information is intangible. It is difficult to
assign it a monetary value, especially in a digital environment where it can
be duplicated effortlessly:

An exchange process is a process whereby two or more individuals (or groups)
exchange goods or services for items of value. In Library Land, one of these
individuals is almost always a librarian. The other individuals include tax
payers, students, faculty, or in the case of special libraries, fellow employ-
ees. The items of value are information and information services exchanged for
a perception of worth -- a rating valuing the services rendered. This percep-
tion of worth, a highly intangible and difficult thing to measure, is some-
thing the user of library services "pays", not to libraries and librarians,
but to administrators and decision-makers. Ultimately, these payments manifest
themselves as tax dollars or other administrative support. As the perception
of worth decreases so do tax dollars and support. [9]

Therefore when information exchanges take place in libraries librarians hope
their clientele will support the goals of the library to administrators when
issues of funding arise. Librarians believe that "free" information ("think
free speech, not free beer") will improve society. It will allow people to
grow spiritually and intellectually. It will improve humankind's situation in
the world. Libraries are only perceived as beneficial when they give away this
data and information. That is their purpose, and they, generally speaking, do
this without regards to fees or tangible exchanges.

In many ways I believe open source software development, as articulated by
Raymond, is very similar to the principles of librarianship. First and fore-
most with the idea of sharing information. Both camps put a premium on open
access. Both camps are gift cultures and gain reputation by the amount of
"stuff" they give away. What people do with the information, whether it be

Chapter 3. Gift Cultures, Librarianship,
and Open Source Software Development

16

source code or journal articles, is up to them. Both camps hope the shared in-
formation will be used to improve our place in the world. Just as Jefferson's
informed public is a necessity for democracy, open source software is neces-
sary for the improvement of computer applications.

Second, human interactions are a necessary part of the mixture in both librar-
ianship and open source development. Open source development requires people
skills by source code maintainers. It requires an understanding of the problem
the computer application is trying to solve, and the maintainer must assimi-
late patches with the application. Similarly, librarians understand that in-
formation seeking behavior is a human process. While databases and many "digi-
tal libraries" house information, these collections are really "data stores"
and are only manifested as information after the assignment of value are given
to the data and inter-relations between datum are created.

Third, it has been stated that open source development will remove the neces-
sity for programers. Yet Raymond posits that no such thing will happen. If
anything, there will an increased need for programmers. Similarly, many li-
brarians feared the advent of the Web because they believed their jobs would
be in jeopardy. Ironically, librarianship is flowering under new rubrics such
as information architects and knowledge managers.

It has also been brought to my attention by Kevin Clarke
(kevin_clarke@unc.edu) that both institutions use peer-review:

Your cultural take (gift culture) on "open source" is interesting. I've been
mostly thinking in material terms but you are right, I think, in your assess-
ment. One thing you didn't mention is that, like academic librarians, open
source folks participate in a peer-review type process.

All of this is happening because of an information economy. It sure is an ex-
citing time to be a librarian, especially a librarian who can build relational
databases and program on a Unix computer.

Acknowledgements

Thank you to Art Rhyno (arhyno@server.uwindsor.ca) who encouraged me to post
the original version of this text.

Notes

1. Raymond, E.S., The cathedral and the bazaar : musings on Linux and open
source by an accidental revolutionary. 1st ed. 1999, [Sebastopol, CA]:
O'Reilly.

2. Ibid. pg. 99.

3. Mauss, M., The gift; forms and functions of exchange in archaic societies.
The Norton library, N378. 1967, New York: Norton.

4. Lukes, S., Mauss, Marcel, in International encyclopedia of the social sci-
ences, D.L. Sills, Editor. 1968, Macmillan: [New York] volume 10, pg. 80.

5. Gregory, C.A, "Gifts" in Eatwell, J., et al., The New Palgrave : a dictio-
nary of economics. 1987, New York: Stockton Press. volume 3, pg. 524.

6. Ibid.

7. Ingold, T., Introduction To Social Life, in Companion encyclopedia of an-
thropology, T. Ingold, Editor. 1994, Routledge: London ; New York. p. 747.

8. Merriam-Webter Online Dictionary,
http://search.eb.com/cgi-bin/dictionary?va=potlatch

Chapter 3. Gift Cultures, Librarianship,
and Open Source Software Development

17

9. Morgan, E.L., Marketing Future Libraries,
http://www.lib.ncsu.edu/staff/morgan/cil/marketing/

Chapter 3. Gift Cultures, Librarianship,
and Open Source Software Development

18

Chapter 4. Comparing Open Source
Indexers
Abstract

This text compares and contrasts the features and functionality of various
open source indexers: freeWAIS-sf, Harvest, Ht://Dig, Isite/Isearch, MPS,
SWISH, WebGlimpse, and Yaz/Zebra. As the size of information systems increase
so does the necessity of providing searchable interfaces to the underlying
data. Indexing content and implementing an HTML form to search the index is
one way to accomplish this goal, but all indexers are not created equal. This
case study enumerates the pluses and minuses of various open source indexers
currently available and makes recommendations on which indexer to use for what
purposes. Finally, this case study will make readers aware that good search
interfaces alone to not make for good information systems. Good information
systems also require consistently applied subject analysis and well structured
data.

Indexers

Below are a few paragraphs about each of the indexers reviewed here. They are
listed in alphabetical order.

freeWAIS-sf

Of the indexes reviewed here, freeWAIS-sf is by far the grand daddy of the
crowd, and the predecessor Isite/Isearch, SWISH, and MPS. Yet, freeWAIS-sf is
not really the oldest indexer because it owes its existence to WAIS originally
developed by Brewster Kahle of Thinking Machines, Inc. as long ago as 1991 or
1992.

FreeWAIS-sf supports a bevy of indexing types. For example, it can easily in-
dex Unix mbox files, text files where records are delimited by blank lines,
HTML files, as well as others. Sections of these text files can be associated
with fields for field searching through the creation "format files" -- config-
uration files made up of regular expressions. After data has been indexed it
can be made accessible through a CGI interface called SFgate, but the inter-
face relies on a Perl module, WAIS.pm, which is very difficult to compile. The
interface supports lots o' search features including field searching, nested
queries, right-hand truncation, thesauri, multiple-database searching, and
Boolean logic.

This indexer represents aging code. Not because it doesn't work, but because
as new incarnations of operating systems evolve freeWAIS-sf get harder and
harder to install. After many trials and tribulations, I have been able to get
it to compile and install on RedHat Linux, and I have found it most useful for
indexing two types of data: archived email and public domain electronic texts.
For example, by indexing my archived email I can do free text searches against
the archives and return names, subject lines, and ultimately the email mes-
sages (plus any attachments). This has been very helpful in my personal work.
Using the "para" indexing type I have been able to index a small collection of
public domain literature and provide a mechanism to search one or more of
these texts simultaneously for things like "slave" to identify paragraphs from
the collection.

Harvest

Harvest was originally funded by a federal grant in 1995 at the University of
Arizona. It is essentially made up of two components: gatherers and brokers.
Given sets of one or more URLs, gatherers crawl local and/or remote file sys-

19

tems for content and create surrogate files in a format called SOIF. After one
or more of the SOIF collections have been created they can be federated by a
broker, an application indexing them and makes them available though a Web in-
terface.

The Harvest system assumes the data being indexed is ephemeral. Consequently,
index items become "stale", are automatically removed from retrieval, and need
to be refreshed on a regular basis. This is considered a feature, but if your
content does not change very often it is more a nuisance than a benefit.

Harvest is not very difficult to compile and install. It comes with a decent
shell script allowing you to set up rudimentary gatherers and brokers. Config-
uration is done through the editing of various text files outlining how output
is to be displayed. The system comes with a Web interface for administrating
the brokers. If your indexed content is consistently structured and includes
META tags, then it is possible to output very meaningful search results that
include abstracts, subject headings, or just about any other fields defined in
the META tags of your HTML documents.

The real strength of the Harvest system lies in its gathering functions. Ide-
ally system administrators are intended to create multiple gatherers. These
gatherers are designed to be federated by one or more brokers. If everybody
were to index their content and make it available via a gatherer, then a few
brokers can be created collecting the content of the gatherers to produce sub-
ject- or population-specific indexes, but alas, this was a dream that came to
fruition.

Ht://Dig

This is nice little indexer, but just doesn't have the features of some of the
other available distributions. Configuring the application for compilation is
not too tricky, but unless you set paths correctly you may create a few broken
links. Like SWISH, to index your data you feed the application a configuration
file and it then creates gobs of data. Many indexes can be created and they
then have to be combined into a single database for searching. Not too hard.

The indexer supports Boolean queries, but not phrase searching. It can apply
an automatic stemming algorithm, but upon doing so you might give the unsus-
pecting user information overload. The search engine does not support field
searching, and a rather annoying thing is that the indexer does not remove du-
plicates. Consequently, index.html files almost always appear twice in search
results. On the other hand, one nice thing Ht://Dig does do that the other en-
gines don't do (except WebGlimpse) is highlight query terms in a short blurb
(a pseudo-abstract) of the search results. Ht://Dig is a simple tool. Consid-
ering the complexity of some of the other tools reviewed here, I might rank
this one as #2 after SWISH.

Isite/Isearch

Isite/Isearch is one of the very first implementations based on the WAIS code.
Like Yaz/Zebra, it is intended to support the Z39.50 information retrieval
protocol. Like freeWAIS (and unlike Yaz/Zebra) it supports a number of file
formats for indexing. Unfortunately, Isite/Isearch no longer seems to be sup-
ported and the documentation is weak. While it comes with a CGI interface and
is easily installed, the user interface is difficult to understand and needs a
lot of tweaking before it can be called usable by today's standards. If you
require Z39.50 compliance and for some reason Yaz/Zebra does not work for you,
then give Isite/Isearch a whirl.

MPS

MPS seems to be the zippiest of the indexers reviewed here. It can create more
data in a shorter period of time than all of the other indexers. Unlike the

Chapter 4. Comparing Open Source Indexers

20

other indexers MPS divides the indexing process into two parts: parser and in-
dexer. The indexer accepts what is called a "structured index stream", a spe-
cialized format for indexing. By structuring the input the indexer expects it
is possible to write output files from your favorite database application and
have the content of your database indexed and searchable by MPS. You are not
limited to indexing the content of databases with MPS. Since it too was origi-
nally based on the WAIS code it indexes many other data types such as mbox
files, files where records are delimited by blank lines (paragraphs), as well
as a number of MIME types (RTF, TIFF, PDF, HTML, SOIF, etc.). Like many of the
WAIS derivatives, it can search multiple indexes simultaneously, supports a
variant of the Z39.50 protocol, and a wide range of search syntax.

MPS also comes with a Perl API and an example CGI interface. The Perl API
comes with the barest of documentation, but the CGI script is quite extensive.
One of the neatest features of the example CGI interface is its ability to al-
low users to save and delete searches against the indexes for processing
later. For example, if this feature is turned on, then a user first logs into
the system. As the user searches the system their queries are stored to the
local file system. The user then has the option of deleting one or more of
these queries. Later, when the user returns to the system they have the option
of executing one or more of the saved searches. These searches can even be de-
signed to run on a regular basis and the results sent via email to the user.
This feature is good for data that changes regularly over time such a news
feeds, mailing list archives, etc.

MPS has a lot going for it. If it were able to extract and index the META tags
of HTML documents, and if the structured index stream as well as the Perl API
were better documented, then this indexer/search engine would ranking higher
on the list.

SWISH

SWISH is currently my favorite indexer. Originally written by Kevin Hughes
(who is also the original author of hypermail), this software is a model of
simplicity. To get it to work for you all that needs to be done is to down-
load, unpack, configure, compile, edit the configuration file, and feed the
file to the application. A single binary and a single configuration file is
used for both indexing and searching. The indexer supports Web crawling. The
resulting indexes are portable among hosts. The search engine supports phrase
searching, relevance ranking, stemming, Boolean logic, and field searches.

The hard part about SWISH is the CGI interface. Many SWISH CGI implementations
pipe the search query to the SWISH binary, capture the results, parse them,
and return them accordingly. Recently a Perl as well as PHP modules have been
developed allowing the developer to avoid this problem, but the modules are
considered beta software.

Like Harvest, SWISH can "automagically" extract the content of HTML META tags
and make this content field searchable. Assume you have a META tag in the
header of your HTML document such as this:

<META NAME="subject" CONTENT="adaptive technologies; CIL (Computers In Libraries);">

The SWISH indexer would create a column in its underlying database named "sub-
ject" and insert into this column the values "adaptive technologies" and "CIL
(Computers In Libraries)". You could then submit a query to SWISH such as
this:

subject = "adaptive technologies"

Chapter 4. Comparing Open Source Indexers

21

This query would then find all the HTML documents in the index whose subject
META tag contained this value resulting in a higher precision/recall ratio.
This same technique works in Harvest as well, but since the results of a SWISH
query are more easily malleable before they are returned to the Web browser,
other things can be done with the SWISH results; SWISH results can easily be
sorted by a specific field, or more importantly, SWISH results can be marked
up before they are returned. For example, if your CGI interface supports the
GET HTTP method, then the content of META tags can be marked up as hyperlinks
allowing the user to easily address the perennial problem of "Find me more
like this one."

WebGlimpse

WebGlimpse is a newer incarnation of the original Harvest software. Like Har-
vest, WebGlimpse relies on Glimpse to provide an indexing mechanism, but un-
like Harvest, WebGlimpse does not provide a means to federate indexes through
a broker. Compilation and installation is rather harmless, and the key to us-
ing this application effectively is the ability to edit a small configuration
file that is used by the indexer (archive.cfg). Once edited correctly, another
binary reads this file, crawls a local or remote file system, and indexes the
content. The index(es) are then available through a simple CGI interface. Un-
fortunately, the output of the interface is not configurable unless the com-
mercial version of the software is purchased. This is a real limitation, but
on the other hand, the use of WebGlimpse does not require a separate pair of
servers (a broker and/or a gatherer) running in order to operate. WebGlimpse
reads Glimpse indexes directly.

Yaz/Zebra

The Yaz/Zebra combination is probably the best indexer/search engine solution
for librarians who want to implement an open source Z39.50 interface. Z39.50
is an ANSI/NISO standard for information retrieval based on the idea of
client/server computing before client/server computing was popularized:

It specifies procedures and structures for a client to search a database pro-
vided by a server, retrieve database records identified by a search, scan a
term list, and sort a result set. Access control, resource control, extended
services, and a "help" facility are also supported. The protocol addresses
communication between corresponding information retrieval applications, the
client and server (which may reside on different computers); it does not ad-
dress interaction between the client and the end-user. -
-http://lcweb.loc.gov/z3950/agency/markup/01.html

Put another way, Z39.50 tries to facilitate a "query once, search many" inter-
face to indexes in a truly standard way, and the Yaz/Zebra combination is
probably the best open source solution to this problem.

Yaz is a toolkit allowing you to create Z39.50 clients and servers. Zebra is
an indexer with a Z39.50 front-end. To make these tools work for you the first
thing to be done is to download and compile the Yaz toolkit. Once installed
you can feed documents to the Zebra indexer (it requires a few Yaz libraries)
and make the documents available through the server. While the Yaz/Zebra com-
bination does not come with a Perl API, you there are at least a couple of
Perl modules available from CPAN providing Z39.50 interfaces. There is also a
module called ZAP! (http://www.indexdata.dk/zap/) allowing you to embed a
Z39.50 client into Apache.

There is absolutely nothing wrong with the Yaz/Zebra combination. It is well
documented, standards-based, as well as easy to compile and install. The dif-
ficulty with this solution is the protocol, Z39.50. It is considered overly
complicated and therefore the configuration files you must maintain and the
formats of the files available for indexing are rather obtuse. If you require
Z39.50, then this is the tool for you. If not, then something else might be

Chapter 4. Comparing Open Source Indexers

22

better suited to your needs.

Local examples

A number of local implementations of the various indexers reviewed here have
been created. Use these links to play and see how well they work:

• freeWAIS-sf (plain text files where each "record" is delimited by a blank
line)

• Harvest (plain text and HTML files across the Internet)

• Ht://Dig (HTML pages containing HTML META tags)

• Isite/Isearch (HTML pages containing HTML META tags)

• MPS (plain text files on the local file system)

• SWISH (HTML pages containing HTML META tags)

• WebGlimpse (HTML pages containing HTML META tags)

Summary and information systems

Indexers provide one means for "finding a needle in a haystack" but don't rely
on it to satisfy people's information needs; information systems require
well-structured data and consistently applied vocabularies in order to be
truly useful.

Information systems can be defined as organized collections of information. In
order to be accessed they require elements of readability, browsability,
searchability, and finally interactive assistance. Readability is another word
for usability. It connotes meaningful navigation, a sense of order, and a sys-
tematic layout. As the size of an information system increases it requires
browsability -- an obvious organization of information that is usually embod-
ied through the use of a controlled vocabulary. The browsable categories of
Yahoo! are a good example. Searchability is necessary when a user seeks spe-
cific information and when the user can articulate their information need.
Searchability flattens browsable collections. Finally, interactive assistance
is necessary when an information system becomes very large or complex. Even
though a particular piece of information exists in a system, it is quite
likely a person will not find that information and may need help. Interactive
assistance is that help mechanism.

By creating well-structured data you can supplement the searchability aspects
of your information system. For example, if the data you have indexed is HTML,
then insert META tags into your documents and use a controlled vocabulary -- a
thesaurus -- to describe those documents. If you do this then you can use
SWISH or Harvest to extract these tags and provide canned field searching ac-
cess to your documents; freetext searches rely too much on statistical analy-
sis and can not return as high precision/recall ratios as field searches. If
your content is saved in a database, then it is an easy process to create your
HTML and include META tags. Such a process is described in more detail in "Cre-
ating 'Smart' HTML pages with PHP"
(http://www.infomotions.com/musings/smart-pages/).

The indexers reviewed here have different strengths and weaknesses. If your
content is primarily HTML pages, then SWISH is most likely the application you
would want to use. It is fast, easy to install, and since it comes with no
user interface you can create your own with just about any scripting language.

Chapter 4. Comparing Open Source Indexers

23

If your content is not necessarily HTML files, but structured text files such
database dumps, then MPS or the Yaz/Zebra combination may be something more of
what you need. Both of these applications support a wide variety of file for-
mats for indexing as well as the incorporation of standards.

Links

Here is a list of URL's pointing to the indexers reviewed in this text.

• freeWAIS-sf -
http://ls6-www.informatik.uni-dortmund.de/ir/projects/freeWAIS-sf/

• Harvest - http://harvest.sourceforge.net/

• Ht://Dig - http://www.htdig.org/

• Isite/Isearch - http://www.etymon.com/Isearch/

• MPS - http://www.fsconsult.com/products/mps-server.html

• SWISH - http://sunsite.berkeley.edu/SWISH-E/

• WebGlimpse - http://webglimpse.net/

• Yaz/Zebra - http://indexdata.dk/zebra/

Chapter 4. Comparing Open Source Indexers

24

Chapter 5. Selected OSS
Introduction

Below is a list of open source software especially useful in libraries and
open source software in general. This list is not intended to be comprehensive
but selective instead. It is representative of the types of open source soft-
ware available and the most used tools.

A more comprehensive lists of open source software especially designed for li-
braries can be found at OSS4Lib (http://www.oss4lib.org/). There you will also
find the archives of the OSS4Lib mailing list, a low-traffic but ongoing dis-
cussion surrounding the issues of open source software in libraries. For an
even more comprehensive list of software, check out SourceForge
(http://sourceforge.net/). There you will find just about any type of open
source software you desire.

Apache

Link: http://httpd.apache.org/

Apache is the most popular Web (HTTP) server on the Internet and a standard
open source piece of software. It's name doesn't really have anything to do
with American Indians. Instead, it's name comes from the way it is built. It
is "a patchy" server, meaning that it is made up of many modular parts to cre-
ate a coherent whole. This design philosophy has made the application very ex-
tensible. For example, there are the core modules that make up the server's
ability to listen for connections, retrieve files, and return them to the re-
questing client (the "user agent" in HTTP parlance). There are other modules
dealing with logging transactions and CGI (common gateway interface) script-
ing. Other modules allow you to rewrite incoming requests, manage email, im-
plement the little-used HTTP PUT method, write other modules in Perl, or
transform XML files using XSLT. Apache is currently at version 2.0, but for
some reason many people are still using the 1.3 series. I don't really know
why. I have not upgraded my Apache servers to version 2.0 because I do not
want to loose the functionality of AxKit, an XML transformation engine. Apache
is a part of LAMP (Linux Apache MySQL Perl/PHP), a term coined by RedHat to
denote the core open source applications dealing with stuff Web.

CVS

Link: http://www.cvshome.org/

CVS is an acronym for Concurrent Versions System. It is the way open source
software is shared by developers. It consists of a client and server applica-
tion. The server is set up and points to a directory where one or more
projects are saved. Usernames and passwords are created, and the server sits
and waits for connections. For the most part, the CVS client is command-line
driven. On the command-line you specify the location of a CVS server, the pro-
tocol you are going to use to connect to the server, and your username/pass-
word. Once logged in you give CVS various commands used to download remote
projects. You then spend your time hacking away at the source code. When you
think you have created the latest and great hack, you issue the CVS diff com-
mand to create a diff file. This file lists the changes you made to the origi-
nal source. By sending this diff file to the project's maintainer, your hack
can be incorporated into the next release. Alternatively, you might be granted
write access to the remote project. In which case you issue CVS commit com-
mand, and your hacks are automatically incorporated. If you are going to do
any open source software development, then you must get acquainted with CVS.
Luckily, it comes pre-installed with many Unix variants, but it is just as
easily compiled.

25

DocBook stylesheets

Link: http://docbook.sourceforge.net/projects/xsl/

Given a set of XML/DocBook files, the DocBook stylesheets, and/or an XSL pro-
cessor such as xsltproc or FOP, you can transform your DocBook files into PDF
documents, HTML documents, XHTML documents, or a few other file types. When
you download the stylesheets, but sure to download the XSL sheets and not
other types. You would need other processors to use the other types. The
stylesheets are configurable by setting a number of parameters. Through this
means you can specify a cascading stylesheet to be incorporated into your
XHTML/HTML files. The stylesheets are thorough but do not allow you to change
very much of the resulting output. If you don't like the way the stylesheets
format your XML, you can always write your own stylesheets, but I'm willing to
bet you have better things to do with your time. As a person who is interested
in open source software, learning how to write DocBook files is a skill that
will come in handy in the future.

FOP

Link: http://xml.apache.org/fop/

FOP is an implementation of the Formating Objects standards for transforming
XML documents into documents intended for printing. It is mentioned here, not
because it a primary open source software application, but because it is a
Java application and represents a nice way to create PDF documents. For exam-
ple, given an Java virtual machine, a DocBook file, the DocBook stylesheets,
and FOP, you can create PDF versions of your DocBook documents. I have only
had success with version 0.20.3 but it has proven indispensible a number of
times. Writing FO stylesheets is not easy, and that is why I have relied on
the DocBook FO stylesheets. Learning how to use FOP will give you good experi-
ence with Java as well as XML files.

GNU tools

Link: http://www.gnu.org/directory/

The GNU family of tools is wide and varied. Probably the most important one is
gcc, a C compiler. Ironically, you can not compile the compiler unless you
haves a compiler. Crazy. Consequently, beginning the process of software de-
velopment is an sort of chicken and egg problem. For example, while you might
be able to download the gcc distribution, but you will need gunzip and tar to
uncompress the distribution, and you can't build gunzip nor tar without the
compiler. No worry, many operating systems now come with an "unzipper" and a
"de-tarrer". Frequently flavors of Unix (including Linux) come with a version
of gcc pre-installed, allowing you to upgrade accordingly. Besides gcc, gun-
zip, and tar, there are a number of other very useful GNU tool including
Berkeley DB (database library), binutils (miscellaneous binary utilities espe-
cially a linker and assembler), bison (alternative to yacc), curl (Internet
user agent), emacs (text editor), fileutils (miscellaneous file utilities such
as cp, mv, and rm), less (alternative to more), make (a sort of scripting lan-
guage used to build source files), OpenSSH and OpenSSL (implementations of se-
cure socket transactions), patch (applies diff files to source files), proc-
mail (mail filter), sendmail (mail transfer agent), and wget (Internet user
agent). By the way, and interesting discussion can be had by comparing the
philosophy of "open source software" and GNU software.

Hypermail

Link: http://www.hypermail.org/

Hypermail converts email messages into sets of HTML files browsable by author,
subject, date, thread, and attachment for the purpose of creating a mailing

Chapter 5. Selected OSS

26

list archive. As alluded to earlier, open source software is about communi-
ties. Email mailing lists are one of the primary, if not the primary, communi-
cation channels in the open source software world. As you develop open source
software and manage a mailing list to keep everybody up-to-date, don't lets
those valuable pieces of information go to Big Byte Heaven. Capture those
"Perls" of wisdom by maintaining a mailing list archive with Hypermail. Hyper-
mail is a C program driven by a number of configuration files and/or command
line switches. Pass Hypermail raw, SMTP messages (Unix mbox files) and it will
create sets fo browsable HTML files. The look, feel, and some functionality of
the archives can be changed through templates and the configuration files. The
only thing Hypermail does not support is searching the resulting archive. For
that functionality you need an indexer, preferably an indexer that can index
mbox files, but you usually end up using an indexer that can index HTML files.

Koha

Link: http://www.koha.org/

Koha is an integrated library system with a growing user community. Written in
Perl and using MySQL as the underlying database, Koha makes it simple to cre-
ate and manage a small integrated library system. Equipped with acquisitions,
cataloging, circulation, and searching modules it provides much of the func-
tionality of traditional online catalogs. With the recent implementation of
its Z39.50 interface, it is easy to enter ISBN numbers into the system, locate
MARC records, and have those records added. The user and system interfaces are
simple and unencumbered, but alas, not very customizable. For many libraries,
the catalog is the center piece of the operation. Koha represents a major step
in providing a catalog that is functional and usable for small libraries. As
long as support continues, I expect Koha to be more viable option for medium
and possibly large library collections. The obstacle is not technology. The
obstacle is time and effort.

MARC::Record

Link: http://marcpm.sourceforge.net/

This Perl module is the Perl module to use when reading and writing MARC
records. It is very well supported on the Perl4Lib mailing list, and a testa-
ment to the module's abilities is its incorporation into things like Koha and
Net::Z3950. If you are not familiar with object oriented programing techniques
in Perl, then MARC::Record might take a bit of getting used to. On the other
hand, learning to use MARC::Record will not only improve your programming
abilities but it will educate you on the intricacies of the MARC record data
structure, a structure that was designed in an era of scarce disk space, non-
relational databases, and little or no network connectivity.

MyLibrary

Link: http://dewey.library.nd.edu/mylibrary/

MyLibrary is a user-driven, customizable interface to sets of library re-
sources -- a portal. Technically, MyLibrary is a database-driven website ap-
plication written in Perl. It requires a relational database application as
foundation, and it currently supports MySQL and PostgreSQL. MyLibrary grew out
of a number of focus group interviews where people said they were suffering
from information overload. To address this problem, MyLibrary takes three es-
sential components of librarianship (resources, patrons, and librarians) and
tries to create relationships between them through the use of common con-
trolled vocabularies such as a list of subject terms. Like a library catalog,
MyLibrary provides the means to create collections of resources and classify
these resources with a controlled vocabulary. Unlike a library catalog, the
system also allows librarians as well as patrons to be classified in this man-

Chapter 5. Selected OSS

27

ner. By sharing a common set of controlled vocabulary terms relationships be-
tween resources, patrons, and librarians can be made thus addressing things
like, "If you are like this, then these resources may be of interest", or "If
you have this interest, then your librarian is...", or "These people have ex-
pressed an interest this, therefore your patrons are...", or potentially even
doing Amazon-like things such as "People like you also used...".

MySQL

Link: http://www.mysql.com/

MySQL is a relational database application, pure and simple. Billed as "The
World's Most Popular Open Source Database" MySQL certainly has a wide support
in the Internet community. Many people think MySQL can't be very good because
it is free, especially Oracle database administrators. True, it does not have
all the features of Oracle, nor does it require a specially trained person to
keep it up and running. A part of the LAMP suite, MySQL compiles easily on a
multitude of platforms. It comes as a pre-compiled binary for Windows. It has
been used to manage millions of records and gigabytes of data. Fast and ro-
bust, it supports the majority of people's relational database needs. On its
down side, it does not currently support triggers, transactions, nor roll-
backs. Nor does it have a GUI interface. At the same time, a program called
phpMyAdmin, a set of PHP scripts, can be used to manage, manipulate, and query
MySQL database through a Web browser window. If there were one technical skill
I could teach the library profession, it would be the creating and maintenance
of relational databases, and I would teach them how to use MySQL.

Perl

Link: http://www.perl.com/

Perl is a programming language. Originally written to handle various systems
administration tasks, Perl's strength lies in its ability to manipulate
strings (text). Perl matured through the era of Gopher but really started be-
coming popular with the advent to CGI scripting. Perl has been ported to just
about any computer operating system, has one of the largest numbers of support
forums, and has been written about in more books than you can count. Perl can
be compiled into Apache making it possible to run Perl scripts as fast as C
programs. It easily connects to database applications through a module called
DBI. It can be run from the command line. It can listen and respond to net-
working connections. It can call many aspects of your computer's operating
system. In short, Perl is mature and very robust. Other very good programming
languages exist and can do much of what Perl can do. Examples include other
"P" languages such as PHP and Python. These languages are becoming increas-
ingly popular, especially PHP, but at the risk of starting a religious war, I
advocate Perl because of its very large support base and its cross-platform
functionality.

swish-e

Link: http://www.swish-e.org/

Swish-e is an uncomplicated indexer/search engine. Once built you feed the
swish-e binary a configuration file and/or a set of command line switches to
index content. This content can be individual files on a file system, files
retrieved by crawling a website, or a stream of content from another applica-
tion such as a database. The indexing half of swish-e is able to index specif-
ically marked up text in XML and HTML as fields for searching later. The in-
dexes created by swish-e are portable from file system to file system. The
same binary that creates the indexes can be used to search the indexes.
Swish-e supports relevance ranking, Boolean operations, right-hand truncation,
field searching, and nested queries. Later versions of swish-e come with a C

Chapter 5. Selected OSS

28

and Perl API allowing developers to create CGI interfaces to these indexes.
Swish-e is an unsung hero. It's inherently open nature allows for the creation
of some very smart search engines supporting things like spelling correction,
thesaurus intervention, and "best bets" implementations. Of all the different
types of information services librarians provide, access to indexes is one of
the biggest ones. With swish-e librarians could create their own indexes and
rely on commercial bibliographic indexers less and less.

xsltproc

Link: http://xmlsoft.org/XSLT/

Xsltproc and its companion program, xmllint, are very useful applications for
processing XML files with XSL. Both applications are built from a C library
that is becoming increasingly popular for parsing and processing XML docu-
ments. By feeding xsltproc an XSL stylesheet and an XML data file you can
transform the XML data file into any one of a number of text files whether
they be SQL, (X)HTML, tab-delimited files, or even plain text files intended
for printing. Xmllint is a syntax checker. Given an XML file, xmllint will
check the validity of your XML files against a DTD. By first installing the C
library and mod_perl, you will be able to incorporate AxKit into your Apache
HTTP server allowing you to transform XML data on the fly and serve it accord-
ingly. Swish-e desires the C library. It is easy to use the DocBook
stylesheets with xsltproc to create XHTML versions of your DocBook files. With
xsltproc and a plain o' text editor, you can learn a whole lot about XML.

YAZ and Zebra

Link: http://www.indexdata.dk/yaz/ and http://www.indexdata.dk/zebra/

YAZ is a C library and resulting binary application implementing a Z39.50/SRW
client. Zebra is an indexer and Z39.50 server. The yaz-client is a straight-
forward terminal application. Zebraidx is the indexer, and requires bunches o'
configuration files. It is not as straight-forward as other indexers, but its
data can be served by zebrasrv. Since the client is built on a library, it can
(and has) been compiled into other tools such as PHP and Apache. The YAZ API
also has a Perl interface. YAZ/Zebra are definitely worth your time exploring
if you want to make your collections available through Z39.50. Yes, you will
spend time learning the in's and out's of Z39.50 in the process, but that ex-
perience can be taken forward and applied on other venues where Z39.50 is
needed.

Chapter 5. Selected OSS

29

Chapter 6. Hands-on activities
Introduction

This part of the manual outlines the hands-on aspects of the workshop.

The activities outlined below were selected based on the software's popular-
ity, the installation techniques they represent, the length of time and exper-
tise they require, and their applicability to a library setting. This is not a
comprehensive list of activities. A glaring omittion may be the installation
of a number of GNU Tools, specifically, some sort of text editor, the compiler
gcc, and make. Consequently, these activities assume the hosting (your) com-
puter is duly equipped or the activities can be accomplished on top of Windows
or Unix/Linux operating systems without compilation.

For the most part, the activities are listed in priority order; many times you
must install a previous package before a subsequent package can be installed,
but this is not always the case. All the packages to be installed in these ex-
ercises are included on the CD. Thus acquiring the software is a matter using
the copy command (cp) from the CD to your home directory, or acquiring the
software from the distribution site. The choice is yours.

The installation of open source and GNU software follows a pattern. You usu-
ally:

1. download the software

2. uncompressess and un-tar the package

3. run some sort of configuration program prior to compilation

4. compile (make) the software

5. test it

6. install it

Downloading the software is usually done through an FTP or HTTP interface. I
like to get the URL of the remote file and feed it to a program called wget
which then does all the work.

Uncompressing and un-tarring the is the work of gunzip and tar, respectively.

To configure for compilation there is usually some sort of file called config-
ure or in the case of Perl modules you run the command "perl Makefile.PL". In
either case the script examines the contents of your downloaded package to
make sure it is complete, examines your computer's hardware and software to
make sure you have the necessary tools installed, and finally builds some sort
of a "make" file which is a script used to actually make the software. The
most often used configuration is "--prefix". This configuration denotes where
the software will eventually be installed. By default, most software gets in-
stalled in /usr/local. This is usually a good place, but circumstances are not
always the same from person to person, so running a configuration like this,
./configure --prefix=/disk1/local, might be just what you need. When in doubt,
try ./configure --help for a complete list configuration options.

In almost all cases the next step is to run make and the software is built. If
there are problems, then you can usually run "make clean" to remove the mis-
takes, re-run the configuration script, and try make again.

Once the program is built, hopefully without errors, you might be able to run

30

"make test" which will examine whether or not program works.

Finally, you can run "make install" to put the program onto your file system.
Access to /usr/local/bin, /usr/local/man, /usr/local/lib, /usr/local/etc, and
/usr/local/include is usually restricted to root-level users. Consequently,
you might need root privileges for this last step, but remember the --prefix
configuration option. Using this option allows you to save the installation in
your home directory. (Hint, hint!)

Installing and running Perl

In this exercise you will install Perl.

1. Acquire the Perl distribution by copying it from the CD, another location
on your file system, or from the Internet. Save the distribution in your
home directory.

2. Unzip the distribution with this command: gunzip perl-5.8.0.tar.gz.

3. Un-tar the distribution with this command: tar xvf perl-5.8.0.tar.

4. Change directories to the newly created distribution: cd perl-5.8.0.

5. Configure the build process with this command: ./Configure.

6. The configuration script will ask you lots o' questions. Accept the de-
fault answers to all of them except when it comes to where Perl and its
supporting files will be installed. When asked these questions, specify
your home directory like this: /home/[username] where [username] is
your... username.

7. The configuration process takes a few minutes to complete, but when it is
done simply run make by typing make at the command line.

8. The make process takes a number of minutes as well. Perl is very well
written and will most likely make (compile) without any problems.

9. Test the make process using "make test".

10. Install the software by running "make install".

11. To verify that everything worked correctly, you should be able to type
"perl -V" from the command line to see how things got built and where they
got saved.

You can now run your first Perl script.

1. Copy the file named hello-world.pl from the extras directory of the CD to
your home directory.

2. Examine the contents of the file with this command: more hello-world.pl.

3. Run the script like this: perl hello-world.pl

4. Open the script with pico, a text editor: pico hello-world.pl.

5. Change the contents of the print command.

6. Save your changes by pressing: ctrl-X

Chapter 6. Hands-on activities

31

7. Go to Step #3 until satisfied.

Ta da! You have successfully installed Perl and run a Perl program.

Installing MySQL

Installing MySQL is the goal of this exercise. Be patient.

1. Acquire the distribution from the CD, Internet, or local file system.

2. Uncompress and untar it: gunzip mysql-4.0.13.tar.gz; tar xvf mysql-
4.0.13.tar.

3. Change to the newly created directory: cd mysql-4.0.13.

4. Configure the installation and use many configuration options: ./configure
--prefix=/home/[username]/mysql -
-with-unix-socket-path=/home/[username]/mysql/var/mysql.sock -
-with-tcp-port=[portnumber] --with-mysqld-user=[username] where [username]
is your username and [portnumber] is a TCP port number assigned to you.

5. Compile the application: make.

6. Install the application: make install.

7. Initialize MySQL with this command: ./scripts/mysql_install_db

8. Give the root user of MySQL a password: /
home/[username]/mysql/bin/mysqladmin -u root password [username] where
[username] is your username.

9. Change directories to the location of your MySQL installation and start
the server: cd ~/mysql; ./bin/mysqld_safe &. (To stop the server run:
~/mysql/bin/mysqladmin -uroot -p shutdown.)

In this exercise you will install some sample data into MySQL.

1. Make sure the MySQL server is running: ps -u[username] where [username] is
your username.

2. Create a new database: mysqladmin -uroot -p create mylibrary. You will be
prompted for a password, and use the password from the previous exercise.

3. Change directories to the extras directory of the CD and take a look some
sample data: more mylibrary.sql.

4. Import the sample data into the new database: mysql -uroot -p mylibrary <
mylibrary.sql.

5. Run the terminal-based MySQL client to begin to see the fruits of your
labors: mysql -uroot -p mylibrary.

6. Once given the MySQL client prompt (mysql>), you can issue any of the fol-
lowing commands:

• SELECT * from librarians;

Chapter 6. Hands-on activities

32

• SELECT name, email_address FROM librarians ORDER BY name;

• EXPLAIN disciplines;

• SELECT discipline_name FROM disciplines;

• EXPLAIN items4librarians;

• SELECT name, discipline_name FROM librarians, items4librarians, disci-
plines WHERE librarians.librarian_id = items4librarians.librarian_id AND
items4librarians.discipline_id = disciplines.discipline_id ORDER BY dis-
cipline_name;

Installing Apache

Here the basics of installing Apache are outlined.

1. Acquire the Apache software from the CD, local file system, or the Inter-
net.

2. Unzip the distribution: gunzip apache_1.3.27.tar.gz.

3. Un-tar the archive: tar xvf apache_1.3.27.tar.

4. Change into the newly created directory: cd apache_1.3.27.

5. Run the configuration script making sure you specify your home directory
as the prefix. In this case, it is also a good idea to put Apache in its
own, separate directory like this: ./configure --with-port=[portnumber]
where [portnumber] is the port number assigned to you -
-prefix=/home/[username]/apache where [username] is your username

6. After the configuration files are created, make the server: make.

7. Finally, install: make install.

8. Should now be able to start the server: ~/apache/bin/apachectl start.

9. Verify that the server is working by connecting to it with your Web
browser. The server's URL will be a combination of the IP address of your
hosting computer and the value of Port described in Step #5, such as:
http://127.0.0.1:8080/.

Now, create your own home page.

1. Copy the file named home.htm from the CD's extras directory to Apache's
htdocs directory. The command will look something like this: cd home.html
~/apache/htdocs.

2. Take a look at the new file: more home.html.

3. View the home page in your Web browser with a URL looking something like
this: http://127.0.0.1:8080/home.html.

4. Open home.html with your text editor: pico home.html.

Chapter 6. Hands-on activities

33

5. Season (edit) it to taste and save the changes: ctrl-X.

6. Reload the home page: http://127.0.0.1:8080/home.html.

CVS

In this exercise you will install CVS.

1. Acquire the CVS "distro" from the Internet, CD, or local file system.

2. Use the usual technique for unpacking, making, and installing the applica-
tion: gunzip cvs-1.12.1.tar.gz; tar xvf cvs-1.12.1.tar; cd cvs-1.12.1;
./configure --prefix=/home/[username] where [username] is your username;
make; make install.

While the syntax is a bit confusing, retrieving a CVS repository is not too
difficult.

1. Log into a repository, such as the one for MyLibrary: cvs -d
:pserver:anonymous@dewey.library.nd.edu:/usr/local/cvsroot login

2. When prompted for a password, simply press return because the user anony-
mous does not have a password.

3. Download the repository: cvs -d
:pserver:anonymous@dewey.library.nd.edu:/usr/local/cvsroot checkout MyLi-
brary.

4. In this exercise you will edit a file from the repository and create a
"patch".

5. Use your favorite editor to change the contents of any text file in the
repository: pico ChangeLog.

6. Save your changes: ctrl-X.

7. Create a "diff" file or patch: cvs diff -u ChangeLog > patch.txt

8. Take a look at the patch. It is the file you would send to the developer
for inclusion into the repository: more patch.txt.

Hypermail

In this exercise you will create and install Hypermail. The process is pretty
standard.

1. Download or copy the hypermail archive from the Internet or CD to your
home directory: cp hypermail-2.1.8.tar.gz ~/.

2. Unzip the archive: gunzip hypermail-2.1.8.tar.gz.

3. Untar the archive: tar xvf hypermail-2.1.8.tar.

4. Change to the newly created directory: cd hypermail-2.1.8.

5. Configure the make process making sure to specify your home directory as

Chapter 6. Hands-on activities

34

the prefix: ./configure --prefix=/home/[username] where [username] is your
username.

6. Compile the program: make.

7. Install the program: make install.

8. You should now be able to run the program and read a simple help text: hy-
permail --help.

Do this exercise to create a browsable archive from a standard mail box file.

1. Make sure you have installed Apache, and make sure it is running.

2. Create a new directory under your Apache file system as a place to save
your archive: mkdir ~/apache/htdocs/colldev.

3. From the extras directory of the CD, copy the supplied mail box file to
the colldev directory: cp colldev.mbox ~/apache/htdocs/colldev.

4. Create a browsable index of the mail box with the following (long) com-
mand: hypermail -d ~/apache/htdocs/colldev -m
~/apache/htdocs/colldev/colldev.mbox -M.

5. Change directories to and list the items in the newly create directory.
You should see bunches o' files as well as an index.html file: cd
~/apache/htdocs/colldev/; ls.

6. Finally, view the fruits of your labors in your Web browser:
http://127.0.0.1:8080/colldev/.

If you have previously installed swish-e, then you can do this exercise where
you will create a searchable index of your browsable archive.

1. Install swish-e.

2. Copy from the extras directory of the CD a swish-e configuration file to
the colldev directory: cp swish-colldev.cfg ~/apache/htdocs/colldev.

3. Take a quickie look at the file. It contains extra instructions for the
indexer (swish-e): more swish-colldev.cfg

4. Create an index: swishe-e -c ./swish-colldev.cfg -i /
home/[username]/apache/htdocs/colldev/0*.html where [username] is your
username.

5. You should now be able to search the index with simple swish-e commands:
swish-e -w books.

6. Install a CGI script from the extras directory allowing you to search the
index: cp swish-colldev.cgi ~/apache/cgi-bin.

7. Edit the script making sure its very first line points to your Perl bi-
nary: pico ~/apache/cgi-bin/swish-colldev.cgi. The very first line should
look something like this: #!/home/[username]/bin/perl where [username] is
your username.

8. Edit the line in the script that defines where the index resides. The line
should read something like this: my $index = '/
home/[username]/apache/htdocs/colldv/index.swish-e'; where [username] is

Chapter 6. Hands-on activities

35

your username.

9. Make the script executable: chmod +x swish-colldev.cgi.

10. 1Finally, give the script a whirl:
http://127.0.0.1/cgi-bin/swish-colldev.cgi. Because Hypermail created
structured data with meta tags, and because swish-e was configured to ex-
tract the meta tags and save them to specific fields, it is possible to do
field searching against this email archive using queries like "subject =
book".

MARC::Record

In this exercise you will install MARC::Record.

1. Obtain the MARC::Record distribution from the CD, local file system, or
Internet.

2. Unzip it: gunzip MARC-Record-1.29.tar.gz.

3. Uncompress it: tar xvf MARC-Record-1.29.tar

4. Change into the newly created directory: cd MARC-Record-1.29.

5. Do the standard Perl installation procedure: perl Makefile.PL; make; make
test; make install.

6. Take a look at the Perl documentation: perldoc MARC::Record.

I wish they were all this straight forward.

Next, you will use MARC::Record to extract author and title information from a
set of MARC records.

1. Copy the files named marc-read.pl and marc-records.mrc from the extras di-
rectory of the CD to your home directory: cp marc-read.pl ~/ and cp marc-
records.mrc ~/.

2. Take a peek at both of the files: more marc-read.pl and more marc-
records.mrc. The first file is a simple Perl script to read author, title,
and subject data from a file such as the second file.

3. Give the marc-read.pl script a whirl: perl ./marc-read.pl marc-records.mrc
| more.

MARC::Record can also write MARC records. Here is an example demonstrating
how:

1. Copy the files named marc-write.pl from the extras directory of the CD to
your home directory: cp marc-write.pl ~/.

2. Take a look at the insides of the file: more marc-write.pl.

3. Run the script: perl marc-write.pl. (While doing your data-entry, you
might have to press crtl-h to backspace and correct any mistakes you
make.)

Chapter 6. Hands-on activities

36

4. Go to Step #3 until you get tired.

5. Examine the fruits of your labors by feeding your marc-write.pl output
file to marc-read.pl.

If you have installed YAZ, then you can do the following exercise to download
MARC records from the Library of Congress.

1. Make sure you have installed the YAZ tool kit.

2. Install the Perl modules named Event and Net-Z395They are found on the CD.
Both of these modules install in the normal Perl fashion: gunzip, untar,
Perl Makefile.PL, make, make test, make install.

3. Copy the file named marc-get.pl from the extras directory of the CD to
your home directory: cp marc-get.pl ~/.

4. Take a look at the file's insides: more marc-get.pl and notice how the re-
mote database, server, and port are defined.

5. Equip yourself with a few ISBN numbers and feed them to marc-get.pl: perl
marc-get.pl 0156005492 0812862279 0803272103 > catalog.mrc.

6. Browse your newly created catalog: perl marc-read.pl catalog.mrc.

swish-e

Use this process to install swish-e.

1. Acquire the swish-e distribution from the CD, file system, or Internet.

2. Uncompress and untar the distribution: gunzip swish-e-2.4.0-pr1.tar.gz;
untar xvf swish-e-2.4.0-pr1.tar.

3. Change to the newly created directory: cd swish-e-2.4.0-pr1.

4. Configure the make process being sure to specify your home directory as
the prefix: ./configure --prefix=/home/[username] where [username] is your
username.

5. Compile, test, and install it: make; make test; make install.

6. Verify that things worked by running the newly created executable:
~/bin/swish-e -h. You should see a bunch o' command line switches that
swish-e can use.

Now, let's index and search some data.

1. Copy the file named alawon.tar.gz from the extras directory to your home
directory: cp alawon.tar.gz ~/.

2. Uncompress and untar the archive: guzip alawon.tar.gz; tar xvf alawon.tar.

3. Change to the newly created directory and examine any of the files using
the more command. Each of the files is a little newsletter regularly put
out by the American Library Association.

Chapter 6. Hands-on activities

37

4. Make sure you are in the alawon directory and index the newsletter like
this: swish-e -i *.txt.

5. Swish-e will output some diagnostic information. When it is complete list
the contents of the alawon directory and notice the newly created files
named index.swish-e and index.swish-e.prop. Combined, these files are your
index.

6. Search the index with like this: swish-e -w [term] where [term] is a word
or quoted phrase such as books or "library of congress". Swish-e should
return a list of scores, file names, "titles", and sizes for each file
that match your query.

While swish-e can be run from the command line, its real power is demonstrated
though one of its programming interfaces. In this exercise you will install
swish-e's Perl module and search the index with a Perl script.

1. Change into swish-e's distribution directory: cd ~/swish-e-2.4.0-pr1.

2. Change into the distributions's Perl directory: cd perl.

3. Use the standard Perl installation technique: Perl Makefile.PL; make; make
test; make install. When complete you should be able to read the Perl doc-
umentation for swish-e: perldoc SWISH::API.

4. Return to the alawon directory: cd ~/alawon.

5. Copy the file named swish-alawon.pl from the extras directory of your CD
to the alawon directory: cd swish-alawon.pl ~/alawon.

6. Take a look at the script: more swish-alawon.pl.

7. Run the script using queries you tried in the previous exercise: perl
swish-alawon.pl. The resulting output should be a bit prettier.

YAZ

Here you will compile and install YAZ.

1. Acquire the "distro" from the CD, file system, or Internet.

2. Uncompress and untar the distribution: gunzip yaz-2.0.3.tar.gz; tar xvf
yaz-2.0.3.tar.

3. Change directories to the newly created directory: cd yaz-2.0.3

4. Configure making sure to specify your home directory as the prefix:
./configure --prefix=/home/[username] where [username] is your username.

5. Make the application: make.

6. Install it: make install.

In this exercise you will search a Z39.50 target with the YAZ client.

1. Run the YAZ client: yaz-client.

Chapter 6. Hands-on activities

38

2. Open a connection to the Library of Congress: open
tcp:z3950.loc.gov:7090/voyager.

3. Do a simple free text search: f origami.

4. Display the first record: show 1.

5. Do a simple phrase search: f "structures of experience"

6. Show the first record: show 1

7. Do an ISBN search: f @attr 1=7 0156005492

Koha

In this exercise you will explore Koha.

1. Open your Web browser to the patron URL given to you in the workshop. Sim-
ply explore and play with the interface searching for items, reading de-
tailed records, and creating an account for yourself.

2. Open your Web browser to the librarian URL given to you in the workshop.
Notice the components that are available. Play with the librarian inter-
face, specifically the acquisitions module, and try adding a few records
via the Z39.50 interface or batch MARC records load process. (Remember,
you might have a set of MARC records to play with from a previous exer-
cise.)

3. Return to the patron interface and search for the items you added to the
collection in Step #2.

MyLibrary

In this exercise you will explore MyLibrary.

1. Open your Web browser to the patron URL given to you in the workshop. Ex-
plore the interface noticing how the searching, browsing, and account cre-
ation/customization features operate.

2. In a second browser window, open the administrative interface with the URL
given to you in the workshop.

3. Select the Global Message option from the Administrative interface, and
use the resulting form to edit/submit the content of a global message.

4. Make the patron interface active by selecting your first browser window
and reload the page. You should see the edits you made in the administra-
tive interface.

5. Return to the administrative interface and use the Message from the Li-
brarian option. Create edit/submit the content of the same discipline you
chose when creating a MyLibrary account in Step #1.

6. Return to the patron interface, reload the page, and notice how the con-
tent of your page changes.

7. Return to the administrative interface and create a link to a new informa-
tion resource by using the Reference Shelf, Databases, or Electronic Jour-
nals menu options.

Chapter 6. Hands-on activities

39

8. Again, return to the patron interface, customize the content of your page,
and notice how the resource you just added in the administrative interface
is now an option in the patron interface.

9. Make the administrative interface active, and use the Create Static Pages
option to create browsable lists of the information resources in the un-
derlying MyLibrary database.

10. Make the patron interface active, and browse the newly created lists by
using the All Resources link.

11. Make the administrative interface active, and use the Discipline Defaults
menu option to create the defaults for a discipline of your choice.

12. Make the patron interface active. Log out. create a new account making
sure you select the discipline you just modified, and notice how the de-
faults you created are manifested.

xsltproc

In this exercise you will install libxml2 and libxslt, the libraries necessary
to run xsltproc. The process adheres pretty much to the standard GNU installa-
tion process: configure, make, make install.

1. Acquire the libxml2 library from the CD, local file system, or Internet
and save it in your home directory.

2. Uncompress the distribution: gunzip libxml2-2.5.8.tar.gz.

3. Un-tar the distribution: tar xvf libxml2-2.5.8.tar

4. Change directories accordingly: cd libxml2-2.5.8.

5. Configure the build process remembering to specify your home directory as
the prefix: ./configure --prefix=/home/[username] where [username] is
your... username.

6. Build the library: make

7. Install the library: make install. When you are finished with this step
there ought to be directory in your home directory named lib, and lib
should contain a file named libxml2.

Now you will make a binary application that uses the libxml2 library, xstl-
proc.

1. Acquire the libxslt distribution from the CD, local file system, or the
Internet and save it in your home directory.

2. Uncompress the distribution: gunzip libxslt-1.0.31.tar.gz.

3. Un-tar the distribution: tar xvf libxslt-1.0.31.tar.

4. Change into the newly created directory: cd libxslt-1.0.31.

5. Configure, making sure to specify your home directory as the prefix:
./configure --prefix=/home/[username] where [username] is your username.

6. Compile like this: make.

Chapter 6. Hands-on activities

40

7. Install like this: make install.

8. When you are done you should have a binary named xsltproc in the bin di-
rectory of your home directory. You can run the command like this: xslt-
proc.

In this exercise you will transform an XML document into some other type of
document using an XSL stylesheet and xsltproc.

1. Copy the files named hello-world.xml and hello-world.xsl from the extras
directory of the CD to your home directory.

2. Take a look at the files like this: more hello-world.xml and more hello-
world.xsl.

3. Do an XML transformation like this: xsltproc hello-world.xsl hello-
world.xml.

4. Open hello-world.xml in a text editor: pico hello-world.xml.

5. Add a new message to the file and exit the editor by pressing ctrl-X.

6. Go to Step #3 until satisfied.

You can get a lot of use out of xsltproc, but the fact that it is distributed
as a library than can be compiled into other applications make it even more
powerful.

Chapter 6. Hands-on activities

41

Chapter 7. GNU General Public
License

Version 2, June 1991

Copyright (c) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute
verbatim copies of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public License applies to
most of the Free Software Foundation's software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish),
that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restric-
tions translate to certain responsibilities for you if you distribute copies
of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) of-
fer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author's protection and ours, we want to make certain that ev-
eryone understands that there is no warranty for this free software. If the
software is modified by someone else and passed on, we want its recipients to
know that what they have is not the original, so that any problems introduced
by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will individu-
ally obtain patent licenses, in effect making the program proprietary. To pre-
vent this, we have made it clear that any patent must be licensed for every-
one's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR
COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice

42

placed by the copyright holder saying it may be distributed under the terms of
this General Public License. The "Program", below, refers to any such program
or work, and a "work based on the Program" means either the Program or any
derivative work under copyright law: that is to say, a work containing the
Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included with-
out limitation in the term "modification".) Each licensee is addressed as
"you".

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program is
not restricted, and the output from the Program is covered only if its con-
tents constitute a work based on the Program (independent of having been made
by running the Program). Whether that is true depends on what the Program
does.

1. You may copy and distribute verbatim copies of the Program's source code as
you receive it, in any medium, provided that you conspicuously and appropri-
ately publish on each copy an appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and give any other recipients of the Program a copy
of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such modifi-
cations or work under the terms of Section 1 above, provided that you also
meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such inter-
active use in the most ordinary way, to print or display an an-
nouncement including an appropriate copyright notice and a notice
that there is no warranty (or else, saying that you provide a war-
ranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as sep-
arate works. But when you distribute the same sections as part of a whole
which is a work based on the Program, the distribution of the whole must be on
the terms of this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise the
right to control the distribution of derivative or collective works based on
the Program.

Chapter 7. GNU General Public License

43

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage or
distribution medium does not bring the other work under the scope of this Li-
cense.

3. You may copy and distribute the Program (or a work based on it, under Sec-
tion 2) in object code or executable form under the terms of Sections 1 and 2
above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software inter-
change; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete ma-
chine-readable copy of the corresponding source code, to be dis-
tributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is al-
lowed only for noncommercial distribution and only if you received
the program in object code or executable form with such an offer,
in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installa-
tion of the executable. However, as a special exception, the source code dis-
tributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on)
of the operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the
source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Pro-
gram or its derivative works. These actions are prohibited by law if you do
not accept this License. Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate your acceptance of this Li-
cense to do so, and all its terms and conditions for copying, distributing or
modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to
copy, distribute or modify the Program subject to these terms and conditions.
You may not impose any further restrictions on the recipients' exercise of the
rights granted herein. You are not responsible for enforcing compliance by

Chapter 7. GNU General Public License

44

third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement or otherwise) that contra-
dict the conditions of this License, they do not excuse you from the condi-
tions of this License. If you cannot distribute so as to satisfy simultane-
ously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example,
if a patent license would not permit royalty-free redistribution of the Pro-
gram by all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to refrain
entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any par-
ticular circumstance, the balance of the section is intended to apply and the
section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this
section has the sole purpose of protecting the integrity of the free software
distribution system, which is implemented by public license practices. Many
people have made generous contributions to the wide range of software dis-
tributed through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing to dis-
tribute software through any other system and a licensee cannot impose that
choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License. 8. If the distribution and/or use of
the Program is restricted in certain countries either by patents or by copy-
righted interfaces, the original copyright holder who places the Program under
this License may add an explicit geographical distribution limitation exclud-
ing those countries, so that distribution is permitted only in or among coun-
tries not thus excluded. In such case, this License incorporates the limita-
tion as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the
General Public License from time to time. Such new versions will be similar in
spirit to the present version, but may differ in detail to address new prob-
lems or concerns.

Each version is given a distinguishing version number. If the Program speci-
fies a version number of this License which applies to it and "any later ver-
sion", you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Founda-
tion. If the Program does not specify a version number of this License, you
may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing and reuse of
software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PRO-
GRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-

Chapter 7. GNU General Public License

45

CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Chapter 7. GNU General Public License

46

