
Žarko Mijajlović, Boško Jovanović,
Filip Marić, Miroslav Marić
(Matematički fakultet, Beograd)

MATLAB TOOLBOX
FOR ANALYSIS OF 3D IMAGES

Abstract: Here we describe a MATLAB toolbox for analysis of 3D images obtained
using a 3D scanner. Toolbox consists of two main parts: various filters for improving the
image quality and a module for surface reconstruction from an unorganized set of points.

Introduction

At the Faculty of mathematics in Belgrade a project on analysis of 3D images now
is running the second year. During the first year we dealt with recognition of linear
surfaces, and we published the results in the paper [4]. 3D images are obtained
using a 3D scanner for collecting space coordinates of points on the scanned surface.
One of the aims of the project is to build a software for analysis of so obtained
3D images. For this purpose we have chosen MATLAB, the language and software
package developed by MathWorks [5]. It allows us to solve in comfortable way some
computational problems, especially those with matrix and vector formulations. Our
software implementation of selected algorithms is organized in a toolbox, a specific
MATLAB unit that extends the MATLAB environment. Possible applications in
digitization include production of 3D images of various artifacts.

Acquisition of scanned data

Figure 1: A scanned object - an image obtained by scanning

We have at our disposal a mechanical platform, a device which moves objects that
are being scanned.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by E-LIS

https://core.ac.uk/display/11884041?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Ž. Mijajlović, B. Jovanović, F. Marić, M. Marić 71

The scanner is adjusted to measure the distance from points of the object
beneath it in regular time intervals. The speed of the platform can be adjusted, but
it stays constant during scanning, in order to achieve the constant spatial density
of points of the scanned surface. First spatial coordinates of contour points are
collected and afterwards the collected data in the matrix form (contour matrix) are
imported into MATLAB.

Since the scanned data may contain some errors, we have developed a set of
filters for processing them. The object shown on Fig. 1 is a thin solid cylindrical
disk. The scanning errors are shown as spikes.

Filters

This module consists of various filters. Filters should be applied on raw data before
continuing the processing, as of recognition or determining of the type of the surface.
Even if we were dealing with data in R3, we designed these filters starting from
common filters for use on two-dimensional images that are described in [3].

Histogram. This is rather simple, but very useful and frequently used module.
The histogram (Fig. 2) represents the distribution of the number of points in the
z-axis zones. The interval [min z, max z], where min z, and max z are the minimal

Figure 2: Histogram

and maximal z coordinates of the scanned points, is divided into a number of equally
spaced bins, and the number of points that fall into each bin is determined. Under
the assumption of the spatial coherence of the surface, bins that contain a small
number of points usually contain only outliers and errors of the scanning process.
So the user may remove all points belonging to bins with the number of points below
a certain threshold value. This module also allows unconditional removing points at
selected zones of raw data. Points are removed by inserting a MATLAB NaN (not
a number) value into their position in the contour matrix.

Reduction of the number of points. The surface is often scanned on a
too dense grid. This makes manipulation with a scanned image slow and difficult.
This module allows a selection of appropriate set of representatives that preserve
the geometric nature of the surface. It is very suitable if one wants fast preliminary
processing of data. The algorithm divides the contour matrix to a number of rectan-
gular blocks, and then replaces each block with a single point. This point represents
the block and it can be the average of points contained in the block, the median (as
shown on Fig. 3), or it can be obtained by some other linear statistics algorithm.

72 Ž. Mijajlović, B. Jovanović, F. Marić, M. Marić

Figure 3: A scanned object - after performing density reduction

Isolation filters. These filters are used for removing isolated points (in R3),
based on various criteria. For example, if it is given a neighborhood, the software
determines the number of neighboring points for each point of the scanned image.
If this number is under a specified threshold, the point is considered isolated and
removed from the contour matrix. The simplified but useful version of this filter,
considers the point isolated if its projection on XOY plane is isolated point in R2

sense.

Bluring filters. This group of filters consists of assorted functions for smooth-
ing data. For each point a neighboring block is determined, and a new value is
generated based on certain criteria. The filters include:

• Averaging blur – a new value is the average of values in a given block.

• Gaussian blur – gaussian linear filter. For each block, a weighted average is
computed. The weights are approximation of two dimensional gaussian distri-
bution with dispersion σ, so that the original value and the closest neighbors
in the block have most influence on the filtered value.

• Median blur – a nonlinear filter which computes the median of points in a
selected block.

The effect of these filters is shown on Fig. 4.

Figure 4: The effect of some blurring filters - top-left: averaging, top-right: gaussian,
bottom: median

Ž. Mijajlović, B. Jovanović, F. Marić, M. Marić 73

Edge detection. The Canny edge detection algorithm [6] is implemented. It
behaves fine, even if it is originally proposed for flat images.

Surface reconstruction from a contour set

The goal of this module is stated as follows: Given a set X = {x1, . . . , xn} ⊂
R3, assumed to lie near an unknown surface U , create a surface model (triangular
mesh) approximating U .

Surface reconstruction algorithms are usually designed to exploit additional
knowledge in specific problem instances (eg. topological type of the surface, struc-
ture of the data, orientation information, the fact that the data is noise-free etc).
However, we decided to take a more general approach. We used a method proposed
in [2], for automatic construction a triangular mesh from a set of points X where

• X is an unorganized, noisy sample of an unknown surface U .

• The unknown surface U can have (almost) arbitrary topological type, and may
contain tangent plane discontinuities such as creases and corners.

• No other information about contour points are assumed.

We also suppose the following assumptions and constraints

• We do require for U to be a manifold (i.e. not self-intersecting surface).

• A noiseless sample {y1, . . . , yn} of U is said to be ρ-dense if each sphere with
center in U and radius ρ contains at least one sampled point. A sample is said
to be δ-noisy if each point xi is of the form xi = yi + ei, where yi ∈ U and
||ei|| < δ. We assume that our sample is δ-noisy, ρ-dense. Therefore, a point
p ∈ R3 cannot be a point of U if d(p,X) > ρ+δ, where d(p,X) = infq∈X d(p, q),
d(p, q) = ||p− q||.

• Features of U that are small compared to ρ or δ are obviously not recoverable.
While it is acceptable to leave out such details, it is critical that the topological
type of U is inferred correctly. Thus, we assume that no two ”sheets” of U
come closer together than ρ + 3δ.

The algorithm overview. The main idea of the algorithm is to compute
the signed distance from each point of R3 to the surface U . The signed distance
is given by dU(p) = ±d(p, U), where the sign depends on which side of the surface
p lies. Knowing that, we can represent U as {p ∈ R3 : dU(p) = 0}. Since U is
unknown we have to approximate it. The key idea is to assign an oriented tangent
plane approximation to each data point. The major obstacle is the finding globally
coherent tangent plane orientation for the surface. Once achieving that, we could
approximate dU(p) with the function d̃U : D → R which is defined in a region D near
data points. It also represents a distance from a point to the nearest tangent plane
approximation of U . Using this, and the well-known marching cubes algorithm [1],
we form a cube grid, calculate d̃U for each vertex of the grid and finally extract
the contour of U . Fig 5. shows different phases during the reconstruction of a
torus-shaped surface.

74 Ž. Mijajlović, B. Jovanović, F. Marić, M. Marić

Tangent plane estimation

A tangent plane of U at data point xi is estimated and represented with a center
ci and the normal vector ni. It is settled by finding a least-squares approximation
plane for a group of points that lie in ρ + δ neighborhood of xi which we denote by
Nbhd(xi) = {x ∈ X : d(x, xi) < ρ + δ}.

The brute force algorithm for finding this neighborhood takes O(n2) time,
where n is the number of nodes. We improved this by adopting a simple space
partitioning scheme. We divided the space into cubes and for each cube we store
the pointers to the points that lie in it.

The ci is taken to be the centroid of the neighborhood and ni is determined
using the principal component analysis. That means that the normal vector ni is
taken to be the eigenvector that belongs to the smallest-modulus eigenvalue of the
covariance matrix of vectors from Nbhd(xi).

Tangent plane orientation

Using the mentioned technique, we determined tangent plane normals, but not their
orientation. In order to achieve the second goal, we propose the following idea:
traverse all normals constructed so far, starting from a fixed point and change the
orientation of normals that face the wrong direction. The traversal should avoid
sharp edges and corners as much as possible.

The first step is to choose one fixed orientation. We do this by choosing, for
example, the highest center of a tangent plane ci and orienting the corresponding
normal towards above (i.e. nz > 0). Now we have to propagate this orientation to
all remaining normals.

For smooth surfaces, if two centers of tangent planes are geometrically close,
corresponding normals should be nearly parallel i.e. for the scalar product of normals
we have ni · nj ≈ ±1. If the dot product is close to -1, we should flip the normal.
The problem that may arise is that U might have sharp edges and corners. If |ni ·nj|
is near 1 the situation is clear, but if it is not, we are dealing with ambiguity which
should be avoided. We can reformulate this as a graph optimization problem. We
assign a graph vertex to each tangent plane and connect the vertices whose centers
are geometrically close i.e. where d(ci, cj) < ρ + δ. In order to avoid a lot of new
parameters, we use ρ + δ wherever it makes sense. To improve the speed, we adopt
indexing scheme for tangent plane centers based on spatial partitioning, similar to
the one described above. We assign a weight factor 1 − |ni · nj| to each edge, so
clear situations, where the surface is smooth, are favored in the graph traversal.
The algorithm is based on construction of the Minimal Cost Spanning Tree. The
greedy approach is used to overcome the NP-hard complexity of the algorithm that
computes the most coherent orientation of all.

Signed distance function. We already said that we can estimate U with
{p ∈ R3 : d̃U(p) = 0}, where d̃U(p) is the approximation for the signed distance
function dU(p) which gives the distance of an arbitrary point p ∈ R3 from the
surface U . Its sign depends on which side of the surface p lies. Once we had
determined tangent planes, it is easy to calculate d̃U(p) for any point of space. First,

Ž. Mijajlović, B. Jovanović, F. Marić, M. Marić 75

we determine which of the tangent planes is the best local linear approximation of
U near p. We do this by finding the tangent plane τi whose center ci is closest to
p. If there is no such plane, we leave d̃U(p) undefined. The tangent plane τi has
normal vector ni for which we assume that it is oriented correctly at the previous
stage. Knowing this, we calculate the distance from p to τi by

d̃U(p) = (p− ci) · ni

In this way we obtain a piecewise linear approximation that it is not continuous –
the discontinuities appear on places where we “switch”from one tangent plane to
another. Fortunately, this does not affect the algorithm, because we use the con-
touring algorithm that discretely samples values of d̃U , and creates a continuous
piecewise linear approximation of U .

Contour extraction. We used in this part the well known marching cubes
algorithm. The space is divided into a rectangular grid that consists of cubes. The
resolution of the final surface estimation depends directly of the size of the cubes so
it can be specified as a parameter.

The value d̃U is calculated for every vertex in the grid. Depending on its sign,
it can be estimated if the vertex is “in”or “out”the surface. If signs differ for vertices
on the same edge of a cube, we can conclude that there must be a point on the edge
where d̃U = 0. Then we adopt that the point belongs to the approximation of U .

For each cube, there are 28 possible combinations for vertex position, but many
of these are geometrically equivalent i.e. one can be transformed into another using
rotations, symmetries, and changing sign of d̃U on the vertices. In fact, there are
only 15 nonequivalent cases.

The final result, a triangular mesh, is stored in a polymesh data structure i.e.
the information about the vertices is stored separately from the information about
their connectivity.

Figure 5: Various phases in surface reconstruction: 1. Raw data, 2. Oriented
normals, 3. Interior/Exterior determination, 4. Reconstructed mesh

76 Ž. Mijajlović, B. Jovanović, F. Marić, M. Marić

Applications in digitization

One of the most important goals in the field of digitization is presentation of cultural
and scientific heritage in readable and useful form to the general and scientific audi-
torium. 3D scanning is another modern tool heavily based on computer technologies
that may help to achieve this aim. Possible applications include production of 3D
images of various artifacts, especially of the archeological origin. Compared with
2D images, 3D images give much more possibilities in detailed study of an artefact
without destructive or offensive impacts. This includes the study of the shape, mea-
surements along all three axes, and the choice of an arbitrary view on the object by
rotating, zooming, moving around, putting textures, etc. It also gives opportunity
for an examination of the artefact, dislocated in space and time. It provides a very
simple way for producing of exact replica of the object, physical and virtual. Finally
but not at least, 3D images give quite new dimension in visualization and esthetic
comprehension of the (image) of the artefact.

As an illustration, we give a 3D image of a Roman mask (3.4× 3.8× 1.8cm).
The image is produced by our software described in this article. Here are presented
applications of assorted filters, and various views on the object. All views are derived
from a single scanning. Images are shown on figures 6. and 7.

Figure 6: Raw data. Density reduction filter applied.

Figure 7: Averaging, Gaussian blur and Median filter applied

*

Ž. Mijajlović, B. Jovanović, F. Marić, M. Marić 77

References

[1] William E. Lorensen and Harvey E. Cline, Marching Cubes: A High Resolution 3D
Surface Construction Algorithm, Computer Graphics (Proceedings of SIGGRAPH ’87),
Vol. 21, No. 4, pp. 163-169.

[2] Hugues Hoppe, Surface reconstruction from unogranized points, University of Wash-
ington, doctoral dissertation 1994.

[3] Martin J. Turner, Jonathan M. Blackledge, Patrick R. Andrews, Fractal Geometry in
Digital Imaging, Academic Press, 1998.

[4] Žarko Mijajlović, Dragan Urošević, An algorithm for recognition of linear sur-
faces, Proceeding “CFT Varna 2002”, Workshop “Multiscale approximations (wavelets,
splines, RBF) and applications to Image and Signal Processing”

[5] http://www.mathtools.net/MATLAB/index.html, date of last access: 15.11.2003.,

[6] http://www.aai.com/AAI/IUE/taskodoc/Canny/Canny.html, date of last access:
15.11.2003.

zarkom@eunet.yu, bosko@matf.bg.ac.yu, filip@matf.bg.ac.yu, maricm@matf.bg.ac.yu

Figure 8: Final Result

http://www.mathtools.net/MATLAB/index.html
http://www.aai.com/AAI/IUE/taskodoc/Canny/Canny.html
mailto:zarkom@eunet.yu
mailto:bosko@matf.bg.ac.yu
mailto:filip@matf.bg.ac.yu
mailto:maricm@matf.bg.ac.yu

