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ABSTRACT: Finding fault elements in linear antenna arrays using bacteria foraging opti-

mization (BFO) is presented. One of the better options of array diagnosis is to perform it

by measuring the radiated field, because in this case, removal of the array from its working

site is not required and thereby not interrupting its normal operation. This task of fault

finding from far-field data is designed as an optimization problem where the difference

between the far-field power pattern obtained for a given configuration of failed element(s)

and the measured one is minimized w. r. t. the excitations of the array elements. This set of

excitations on comparison with the excitations of the original array gives the idea of the

fault position and their type, such as either complete fault or partial fault. BFO being rela-

tively new to microwave community when compared with other soft-computing techniques,

its performance was observed w. r. t. time of computation and convergence of the iterative

process. Possibility of finding the faults from random sample points and use of

minimum number of sample points for array fault finding are the novelties of the present

work. VC 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE 23:141–148, 2013.
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I. INTRODUCTION

Diagnosis of faults in a large antenna array is one of the

major problems in Antenna Engineering to tackle with.

The reason for this is quite straightforward. First of all, in

a large array, the possibility of having a fault may be due

to fabrication defects or due to some other unforeseen rea-

sons. Second, the fault in an array, that is, presence of

antenna elements that are not contributing to radiation, ei-

ther partly or fully, damages the radiation pattern, mostly

in the form of increased side-lobe levels. The problem

becomes more severe when the failed element(s) is/are

close to the center of the array. Before placing the antenna

array in its work place, it is normally tested for its per-

formance. During this testing, the fault in the antenna

array is usually located from its near-field measurements

[1, 2]. But, the problem arises when the faults develop in

the array after installation, and it is not possible to bring

the antenna back to the laboratory for measurement. In an

active antenna array, it is possible to control the excita-

tions of the array elements remotely [3]. If the defects in

the array can be accessed from the control station, then

suitable compensation techniques can be applied to

recover the pattern of the antenna by changing the excita-

tions of the elements that are functioning properly [4–6].

This creates the need to locate the fault in an array based

on its far-field measurement data.

Array fault finding methods using far-field data have

been discussed in the literature [7–11]. Some of these

methods are analytical approaches [7]. In addition to that,

various soft-computing-based methods have also been

used for this purpose because of the inherent advantages

involved in applying these methods [8–11].

A critical look at soft-computing-based methods for

array fault finding reveals that these methods are based on

the fundamental principle that the array factor (AF) is

related to the excitation coefficients by a discrete Fourier

transform relationship. Accordingly, the diagnosis problem

is equivalent to finding a function from the modules of its

Fourier transform. This basically needs sampling of the
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function (far-field radiation pattern) at equidistant points.

When the same problem is looked from a practical

antenna scenario angle and more specifically from a faulty

array point of view, it is not always possible to get a point

with sufficient radiated power at equal distance intervals.

In this article, we have shown the possibility of finding

the fault from the far-field radiation pattern information at

random points in addition to the implementation of the

same problem with equidistant points. Instead of analyti-

cal approaches, bacteria foraging optimization (BFO) was

used for the solution. BFO is a robust evolutionary com-

putational technique and is relatively new to microwave

community. In some cases, it outperforms other soft-com-

puting techniques such as genetic algorithm (GA) [12–14]

and particle swarm optimization (PSO) [15].

The rest of the article is organized in the following

ways: Section II describes the formulation of the problem,

followed by a brief description of the BFO algorithm in

Section III. Implementation of the developed methodology

for a typical case of fault finding is described in Section

IV. A performance analysis of the BFO for different types

of faults has been done in Section V, and finally, a con-

clusion has been drawn from the whole work.

II. PROBLEM FORMULATION

The AF of an N-element linear array, equally spaced, non-

uniform amplitude, and progressive phase excitation is

given by Ref. [16]

AFðhÞ ¼
XN
n¼1

ane
jðn�1Þðkd cos hþbÞ; (1)

where ans are the nonuniform amplitude excitation of ele-

ments. The spacing between the elements is d, and b is

the progressive phase shift.

The patterns of the defected array were formed from

Eq. (1) by making amplitude excitation equal to zero to

represent a completely fault element and half of the origi-

nal excitation to represent a partially fault element. Then,

the following cost function was minimized using BFO w.

r. t. the amplitude excitations of the array:

I ¼
XM
k¼1

AFdðhkÞ � AFoðhkÞj j½ �2; (2)

where M is the number of sample points on the pattern

used for approximating the pattern of the array, AFd is the

Figure 1 Flowchart for BFO.
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measured AF, AFo(yk) is the instantaneous AF at kth sam-

ple point obtained from BFO during computation. Com-

parison of the excitation outputs from the optimizers with

the excitations of the original array gives the idea of the

position and nature of fault in the defected array.

III. BFO TECHNIQUE

Over the years, various soft-computing approaches have

been gaining popularity among scientists in every branch

of engineering [17]. Engineers are trying techniques such

as neural networks, GA, PSO, BFO, and its variants for

finding an easy solution of their problem. The robustness

of these techniques has been tested in problems encom-

passing every engineering field. In this article, we have

used BFO to find a solution for the problem of finding

faults in antenna array from its far field. Although this

optimizer has already been used in other fields, but, so

far, its application is limited in Antenna Engineering [18–

22]. For completeness of the article, here we have briefly

described the BFO algorithm.

BFO technique was introduced by Passino [23] in

2002. It is a nongradient optimization problem that is

inspired from the imitation of the food-ingesting (forag-

ing) behavior of Escherichia coli bacteria, which are pres-

ent in our intestines. In this method, a group of bacteria

move in search of rich nutrient concentration and away

from noxious elements such that they maximize their

energy intake per unit time spend in foraging. The BFO

proceeds by selecting or eliminating bacteria based on

their foraging strategies. The natural selection tends to

eliminate animals with poor foraging strategies and favor

those having successful foraging strategies. After many

generations, the poor foraging strategies are either elimi-

nated or reshaped into the good ones. The foraging strat-

egy is governed by four different steps that include che-

motaxis, swarming, reproduction, and elimination–

dispersion.

A. Chemotaxis
The movement of E. coli bacteria toward the nutrient-rich

area is simulated by an activity called chemotaxis. This

process is achieved by swimming and tumbling. In swim-

ming, bacteria move in a predefined direction with fixed

Figure 2 Amplitude distribution of the Chebyshev array with-

out faults.

Figure 3 Defected array pattern with fault at fourth, 10th

(50%), and 17th (100%) element with 35 sample points.

Figure 4 Performance of BFO with 35 sample points.

Figure 5 Error performance of BFO.
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swim length. In tumbling, the bacteria position themselves

in some random direction in which swimming is per-

formed. Hence, the modes of operation that a bacterium

performs in its entire lifetime are that of running (swim-

ming for a period of time), tumbling, or switching

between running and tumbling. Suppose yi(j,k,l) represents

the position of ith bacterium at jth chemotactic, kth repro-

ductive, and lth elimination–dispersal step, the process of

chemotaxis can be represented as:

hi jþ 1; k; lð Þ ¼ hi j; k; lð Þ þ C ið ÞU jð Þ; (3)

where U(j) is the random unit vector that is used to define

the direction of movement after a tumble. C is termed as

‘‘run length unit.’’ C(i) is the size of the step in the direc-

tion specified by U(j). If at yi(jþ1,k,l), the cost function is

lower than that at yi(j,k,l), another step size C(i) is taken

in the same direction.

B. Swarming
It is group behavior or cell-to-cell signaling exhibited by

bacteria while moving toward rich nutrient area. It is

always desired that the bacterium that has searched the

optimum path of food should try to attract other bacteria.

This helps them propagate collectively as concentric pat-

terns of swarms with high bacterial density while moving

up in the nutrient gradient. Mathematically, swarming is

modeled as:

Jcc h;P j; k; lð Þð Þ ¼
XS
i¼1

Jicc h; hi j; k; lð Þ
� �

¼
XS
i¼1

�dattract exp �wattract

Xp
m¼1

hm � him
� �2

8>>>:
9>>>;

" #

þ
XS
i¼1

hrepellant exp �wrepellant

Xp
m¼1

hm � him
� �2

8>>>:
9>>>;

" #
ð4Þ

where Jcc(y,P(j,k,l)) is the objective function value to be

added to the actual cost function to make a time varying

objective function. S is the total number of bacteria; p
indicates number of design parameters to be optimized.

y ¼ [y1, y2, …, yp]
T is a point in the p-dimensional

search space. yim is the mth component of ith bacterium

at position yi. dattract, wattract, hrepellant, and wrepellant are

the measure of quantity and diffusion rate of the attrac-

tant and repellant effect magnitude, respectively, and

should be chosen carefully. P(j,k,l) ¼ {yi(j,k,l)|i ¼ 1, 2,

…, S} is the position of each bacterium in the popula-

tion of S.

TABLE I BFO Parameters

Parameters Values

Number of Bacteria (S) 30

Swimming length (Ns) 50

Number of chemotactic steps Nc (Nc > Ns) 100

Number of reproduction (Nre) 10

Number of elimination�dispersal events (Ned) 2

Probability of elimination and dispersal (Ped) 0.25

Figure 6 Defected array pattern with fault at fourth, 10th

(50%), and 17th (100%) element with 18 sample points.

Figure 7 Performance of BFO with 18 sample points.

Figure 8 Defected array pattern with fault at fourth, 10th

(50%), and 17th (100%) element with random sample points.
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C. Reproduction
The fitness value for ith bacterium after traveling Nc che-

motactic steps can be evaluated by

Jihealth ¼
XNcþ1

j¼1

Ji j; k; lð Þ; (5)

where Jihealth represents the health of the ith bacterium.

The least healthy bacteria constituting half of the bacterial

population are eliminated. The other healthy bacteria each

split into two bacteria that are placed at the same location.

As a result, the population size remains unchanged.

D. Elimination and Dispersal
In this event, bacteria in a region are eliminated or a

group is dispersed into a random location due to the local

environmental effect. This event changes the life of the

bacteria either gradually by consumption of nutrients or

suddenly due to some other effect. This event possibly

destroys chemotactic progress but in contrast they also

assist it, as dispersal may place bacteria near good food

source. Elimination and dispersal help in reducing the

behavior of stagnation (i.e., being trapped in a premature

solution point or local optima). A flowchart for the BFO

is shown in Figure 1.

IV. IMPLEMENTATION

A 24-element linear broadside Chebyshev array with k/2

interelement spacing was taken as the candidate antenna

to implement the developed procedure of fault finding

using BFO. Standard analytical procedure [16] was

applied to find the nonuniform amplitude excitations for a

�30 dB side-lobe level in the Chebyshev array as shown

in Figure 2. Random complete and partial faults were cre-

ated by making their excitations either equal to zero or

half of the original value, respectively. The cost function

in Eq. (2) was then minimized using BFO w.r.t. the exci-

tations of the elements. Different combinations of faults

such as (i) single complete fault, (ii) more than one com-

plete fault, and (iii) combination of partial and complete

faults were investigated. Results for a typical case, viz.,

partial faults in fourth, 10th elements, and complete fault

in 17th element, are illustrated in Figures 3 and 4. Figure

Figure 9 Performance of BFO with random sample points.

TABLE II Element Excitations Obtained with Different Sample Points

Element No. Chebyshev Excitations

18 Samples 35 Samples Random Sample Points

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

1 0.3636 0.3665 0.0302 0.3657 0.0154 0.3700 0.0153

2 0.2660 0.2698 0.0257 0.2602 0.0096 0.2621 0.0137

3 0.3507 0.3661 0.0185 0.3586 0.0115 0.3469 0.0168

4 0.4422 0.2340 0.0134 0.2235 0.0105 0.2297 0.0138

5 0.5357 0.5347 0.0213 0.5416 0.0121 0.5245 0.0136

6 0.6330 0.6347 0.0254 0.6321 0.0096 0.6375 0.0176

7 0.7248 0.7258 0.0149 0.7264 0.0126 0.7336 0.0116

8 0.8089 0.8085 0.0129 0.8063 0.0102 0.7960 0.0150

9 0.8815 0.8736 0.0168 0.8781 0.0070 0.8755 0.0115

10 0.9393 0.4601 0.0164 0.4740 0.0132 0.4794 0.0097

11 0.9794 0.9733 0.0172 0.9751 0.0058 0.9710 0.0126

12 1.0000 0.9983 0.0052 1.0000 0 1.0000 0

13 1.0000 0.9983 0.0052 1.0000 0 1.0000 0

14 0.9794 0.9733 0.0172 0.9751 0.0058 0.9710 0.0126

15 0.9393 0.9272 0.0186 0.9314 0.0098 0.9432 0.0134

16 0.8815 0.8736 0.0168 0.8781 0.0070 0.8755 0.0115

17 0.8089 0.0149 0.0138 0.0165 0.0084 0.0221 0.0133

18 0.7248 0.7258 0.0149 0.7264 0.0126 0.7336 0.0116

19 0.6330 0.6347 0.0254 0.6321 0.0096 0.6375 0.0176

20 0.5357 0.5347 0.0213 0.5416 0.0121 0.5245 0.0136

21 0.4422 0.4524 0.0299 0.4457 0.0166 0.4382 0.0207

22 0.3507 0.3561 0.0185 0.3586 0.0115 0.3469 0.0168

23 0.2660 0.2698 0.0257 0.2602 0.0096 0.2621 0.0137

24 0.3636 0.3665 0.0302 0.3657 0.0154 0.3700 0.0153

The bold values correspond to the excitation of failed elements.
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3 shows the defected pattern with the position of 35 equi-

distant sample points. Figure 4 shows the comparison of

amplitude excitations of the original array with the

defected array obtained with BFO. From this comparison,

the position and the nature of the faults can be clearly

marked. Figure 5 shows the error minimization plots for

the BFO optimizer. The optimizer was subjected to suffi-

cient number of iterations, because kinks were observed

in the error minimization plot for initial few iterations.

V. PERFORMANCE ANALYSIS OF BFO

In the process of optimization to locate the defective ele-

ment position in a failed antenna array, the current ampli-

tude of each antenna element was considered as the opti-

mizing parameter for BFO algorithm. The parameters

taken in the optimization process is shown in Table I. The

optimizer converges to the correct solution, in the analysis

done in the previous section with 35 sample points (sam-

ples taken in �90� � y � 90� range in every 5�).

The process was then tested for the same typical fault

situation by taking 50% of the sample points that were

taken in the previous analysis. Figure 6 shows the position

of the sample points. In this case, the optimizer was also

able to provide successful results (Fig. 7). In the next

attempt, we tried to locate the defects with an even

smaller number of sample points, and in this process, it

was observed that when the sample points were less than

12 in the range �90� � y � 90�, we were unable to find

the location of the defective element in a single attempt.

So, there was a reduction in the success rate when a suffi-

cient number of sample points are not available.

In a bid to further explore the fault finding procedure,

instead of taking equidistant points, we tried it with ran-

dom selection of points. The sample points were taken (y
¼ �84�, �64�, �51�, �44�, �33�, �27�, �11�, 10�, 24�,

29�, 35�, 40�, 62�, 74�, and 88�) as shown in Figure 8 for

the same fault situation and the optimizer was put to work

to locate the faults. In this case, the optimizer was also

able to exactly locate the faults along with their type

(Fig. 9). Table II shows the excitations obtained using the

BFO for each of the above-described cases. Because dif-

ferent runs of BFO produce different outcomes, therefore,

the mean and standard deviation of the excitation values

obtained over a 30 separate runs are given in Table II.

Comparison of the obtained excitations with that of the

original array shows the level and position of the fault in

the defected array. Then, a rigorous time of computation

was made. The BFO was run to locate the faults for five

random cases of different categories of fault situations and

an average time was found out (Tables III–VI). It was fur-

ther observed that the computation time increases with the

number of failed elements. If the number of faults

increases, then the problem becomes more difficult to han-

dle and a large number of samples may provide a better

result. In such case, the time required will be longer.

VI. CONCLUSIONS

The task of fault finding in antenna arrays was approached

as an optimization problem and was solved using the BFO

technique. This evolutionary computing method was used

to find the amplitude excitations from the far-field pattern

of the defected array that was then compared with the

excitations of the original array to find the location and

level of fault in the defected array. Partial as well as com-

plete fault cases were considered and located successfully.

TABLE III Time Analysis for Five Random Configuration
of One Defective Element

Fault

Positions

Time (s)

18 Samples 35 Samples

1 107.54 Average

time 107.09

199.73 Average

time 204.562 111.21 204.84

5 108.97 212.90

10 103.22 202.50

20 104.54 202.85

TABLE VI Time Analysis for Five Random
Configuration of Combination of Complete and Partial
Defective Elements

Fault Positions

Time (s)

18 Samples 35 Samples

8, 12 (100%),

20 (50%)

133.15 Average

time 150.27

229.14 Average

time 260.16

13, 18 (50%),

24 (100%)

204.31 327.38

11, 20 (100%),

15 (50%)

132.52 246.05

1, 18 (100%),

2 (50%)

138.17 249.55

4, 10 (50%),

17 (100%)

143.23 248.70

TABLE V Time Analysis for Five Random Configuration
of Three Defective Elements

Fault

Positions

Time (s)

18 Samples 35 Samples

5, 7, 12 142.72 Average

time 152.92

226.89 Average

time 248.061, 7, 13 155.22 270.45

1, 9, 20 145.65 225.30

12, 17, 24 152.30 219.65

4, 21, 24 165.57 297.74

TABLE IV Time Analysis for Five Random
Configuration of Two Defective Elements

Fault

Positions

Time (s)

18 Samples 35 Samples

5, 7 121.8 Average

time 132.12

252.52 Average

time 236.7220, 23 120.25 235.17

18, 20 137.65 236.24

4, 21 138.00 226.74

8, 12 142.94 232.96
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Equidistant sample points as well as random sample

points were tested for fault finding. BFO being a relatively

new optimizer to microwave community, its performance

was examined from convergence and time of computation

point of view. Although a linear Chebyshev array was

taken as the test antenna in this work, the same methodol-

ogy can be extended for any type of array. Convergence

of the optimizer for different types of fault situations con-

firms that this optimizer can be used on other antenna

problems with many variables.
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