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Abstract This paper proposes two new 2D-spectral esti-
mation methods. The 2D-modified magnitude group delay
(MMGD) is applied to 2D-discrete Fourier transform (2D-
DFT) for the first and to the analytic 2D-discrete Cosine
transform for the second. The analytic 2D-DCT preserves
the desirable properties of the DCT (like, improved fre-
quency resolution, leakage and detectability) and is realized
by a 2D-discrete cosine transform (2D-DCT) and its Hilbert
transform. The 2D-MMGD is an extension from 1D to 2D,
and it reduces the variance preserving the original frequency
resolution of 2D-DFT or 2D-analytic DCT, depending upon
to which is applied. The first and the second methods are
referred to as DFT-MMGD and DCT-MMGD, respectively.
The proposed methods are applied to 2D sinusoids and 2D
AR process, associated with Gaussian white noise. The per-
formance of the DCT-MMGD is found to be superior to
that of DFT-MMGD in terms of variance, frequency reso-
lution and detectability. The performance of DFT-MMGD
and DCT-MMGD is better than that of 2D-LP method even
when the signal to noise ratio is low.
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1 Introduction

The 2D-spectral estimation plays an important role in many
scientific and engineering applications like array processing
in communication and geophysics for direction of arrival esti-
mation, synthetic aperture radar image formation, magnetic
resonance spectroscopy, optics and fluid turbulence analy-
sis using particle image velocity data. In practice, the size
of the 2D data available may be generally small compared
to that of 1D data due to limited number of sensors that
can be used in a specific scenario. Similar to 1D spectral
estimation, the 2D-spectral estimation based on 2D period-
ogram also suffers from large variance, and for a given size
of 2D data, the variance reduction can be achieved by using
smoothing windows but only at the expense of frequency
resolution [1].

The spectral estimation based on the modified magni-
tude group delay (MMGD) is very effective for 1D data
as it provides significant reduction in variance preserving
the frequency resolution of the rectangular window [2,3].
The white noise can be a driving input for a system whose
output can be treated as the signal. Further, a white noise
(different) can get added at the output of a system as an
observation noise. Also, irrespective of the origin of the
signal, it can be associated with a white noise additively.
The Z-transform of a white noise sequence has its most
of the roots (zeros) close to the unit circle [3]. The trun-
cation of a signal also results in zeros close to the unit
circle. The zeros close to the unit circle result in ripples
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in the spectrum, which are the source of variance of the
spectrum estimate. Thus, the driving noise of a system
whose output is the signal, the associated noise with the
signal and the truncation effects introduce zeros close to
the unit circle, and these zeros significantly contribute to
the variance. In the windowed periodogram based on dis-
crete Fourier transform (DFT), the window converts the
signal into /toward a minimum phase. This is equivalent
to the decreased frequency resolution due to convolution
between the Fourier transform of the original signal and
that of the smoothing window, whose main lobe width is
broader than that for a rectangular window. The process of
windowing thus reduces the variance as it smoothes the spec-
tral ripples / fine structure which is due to the zeros close
to unit circle. This spectral smoothing is equivalent to pull-
ing the zeros close to the unit circle towards the origin in
the Z-plane. However, as this windowing process does not
distinguish between the signal roots (signal poles and zeros
which are away from the unit circle) and from the zeros
close to unit circle (due to noise and truncation effect),
the signal poles are also pulled towards the origin in the
Z-plane, and this results in a poor frequency resolution of
the spectral peaks. But the MMGD removes only those zeros
close to unit circle without disturbing the signal poles and
hence reduces the variance preserving the original frequency
resolution [3].

The DCT due to its symmetrical extension has the
improved frequency resolution, leakage and detectability.
For a 1D signal, these desirable properties of the DCT have
been exploited along with the MMGD in achieving a spec-
tral estimate with a better: variance, frequency resolution
and detectability [4]. This was possible due to derivation
of an analytic DCT which has the desirable properties of
the DCT. It is of interest to achieve the above said advan-
tages to 2D signals by extending the 1D approach to a
2D-scenario.

This paper proposes two new 2D-spectral estimation
methods where the 2D-MMGD is applied to 2D-DFT (DFT-
MMGD) for the first and to the analytic 2D-DCT (DCT-
MMGD) for the second. The new analytic 2D-DCT is derived
from the 2D-DCT and its Hilbert transform. The new 2D-
MMGD is an extension of MMGD from 1D to 2D signals. In
the DCT-MMGD, the 2D-DCT enables reduction in trunca-
tion effects, leakage and improved frequency resolution, and
the MMGD reduces the variance preserving the frequency
resolution of the analytic DCT. It has been found that com-
pared to the DFT-MMGD spectral estimation performance,
the DCT-MMGD has improved variance, frequency resolu-
tion and detectability when applied to 2D sinusoids plus noise
and 2D AR process associated with noise. In the presence
of noise, the proposed methods have better frequency res-
olution and detectability than those of the 2D-LP spectral
estimation [5].

2 Background

In this section, the background subject material required for
the proposed method of 2D-spectral estimation, viz., the 2D-
discrete cosine transform and the 1D group delay function,
and the modified magnitude group delay (modified version
of group delay) and 2D-group delay functions, will be briefly
considered.

2.1 2D-discrete cosine transform (2D-DCT)

The 1D-DFT due to its abrupt truncation of the data
(rectangular windowing) suffers from leakage/large vari-
ance, limited frequency resolution and poor detectability. But
the 1D-DCT due to its symmetrical extension of the given
data segment has the improved frequency resolution, leakage
and detectability. Also for a 1D-signal, these desirable prop-
erties of the DCT along with MMGD [4] have been exploited
in achieving a spectral estimate with a better: variance, fre-
quency resolution and detectability.

Here, the 2D-DCT will be considered bringing out its
desirable properties that are useful for a spectral estimator.

Let x(n1, n2) be a 2D sequence of size N1 × N2 and let
the signal be zero outside the intervals 0 ≤ n1 ≤ N1 − 1 and
0 ≤ n2 ≤ N2 − 1. Now derive y(n1, n2) from x(n1, n2)) [1]
as,

y(n1, n2) = x(n1, n2) + x(2N1 − 1 − n1, n2)

+x(n1, 2N2 − 1 − n2)

+x(2N1 − 1 − n1, 2N2 − 1 − n2) (1a)

Let Y (k1, k2) = DFT[y(n1, n2)], then the N1 × N2 DCT of
x(n1, n2) is obtained by,

Cx (k1, k2) =
⎧
⎨

⎩

W k1/2
2N1

W k2/2
2N2 Y (k1, k2)

0 ≤ k1 ≤ N1−1
0 ≤ k2 ≤ N2−1

0 Otherwise

(1b)

where, W2N1 = e− j2 π/2N1, W2N2 = e− j2 π/2N2

y(n1, n2) is obtained by symmetrically extending x(n1, n2)

about the origin to the second, third and fourth quadrants.
This is illustrated in Fig. 1a, b for a 3 × 4-point sequence.
The DFT of y(n1, n2) will extend this periodically.

The abruptness at the period boundaries of x(n1, n2) is
removed for y(n1, n2). Hence, the unwanted high-frequency
components present in the DFT are reduced in the case of the
DCT. Further, due to the smooth transition from one period
to another, it is as if there is no window being applied and
hence no sidelobes to cause leakage which effectively results
in less spectral leakage in the DCT. Hence, the reduced trun-
cation effects and leakage will result in less variance and less
magnitude bias. The reduced magnitude bias leads to better
detectability. Further, the symmetrical extension of the data
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Fig. 1 a x(n1, n2), b y(n1, n2)

will increase the frequency resolution, which may enable
picking up of finer spectral details but may lead to increased
variance.

2.2 1D-group delay function (GD), 1D-modified magnitude
group delay function (MMGD) and 2D-group delay
functions

For the proposed DCT-based 2D-spectral estimator, as mod-
ified group delay has to be applied, the concept of group
delay function and its modified version for the 1D case are
considered. Also, as the details of 2D group delay function
are essential in developing the proposed spectral estimator,
are covered.

2.2.1 1D-signal group delay function

For a minimum phase real system/signal with frequency
response X (ω),

ln X (ω) =
∞∑

n=0

c(n)e− jωn =
∞∑

n=0

c(n) cos(ωn)

− j
∞∑

n=0

c(n) sin(ωn)

Also

ln X (ω) = ln |X (ω)| e jφ(ω) = ln |X (ω)| + jφ(ω)

Therefore,

ln |X (ω)| =
∞∑

n=0

c(n) cos(ωn) (2a)

θ(ω) = φ(ω) + 2π I (ω) = −
∞∑

n=0

c(n) sin(ωn)

θ(ω) = −
∞∑

n=0

c(n) sin(ωn) (2b)

Further, φ(ω) is the principal value of the unwrapped phase
θ(ω), and I (ω) is an integer-valued function required to make
φ(ω) a continuous function of ω. The group delay /phase
group is given by

τp(ω) = −∂θ(ω)

∂ω
(2c)

and hence the PGDτp(ω) is given by

τp(ω) =
∞∑

n=0

nc(n) cos(ωn)

In Eqs. (2a) and (2b), the spectral magnitude and phase are
related through the cepstral sequence c(n) and hence the
group delay τp(ω) can be derived from the spectral mag-
nitude as c(n) can be obtained using Eq. (2a). Hence, this
group delay τp(ω) for a minimum phase system/signal or
derived from spectral magnitude of a general system/signal
is known as magnitude group delay (MGD) [3] and is denoted
by τm(ω) which is given by

τm(ω) =
∞∑

n=0

nc(n) cos(ωn) (2d)

Given the spectral magnitude (Eq. (2a)), its equivalent min-
imum phase can be derived using Eq. (2b), and the result-
ing signal with this phase and the given magnitude is
known as equivalent minimum phase signal derived from
magnitude.

2.2.2 1D-modified magnitude group delay (MMGD)

The fine structure, viz., the ripples in the magnitude spectrum
or the spikes in the group delay result in zeros close to the
unit circle in the Z-plane and contribute significantly to the
variance of the spectral estimate. Thus, the spectral ripples or
variance is due to the zeros or the numerator of a transfer func-
tion. On the other hand, the signal or system spectral peaks
are due to the denominator. By normal smoothing using win-
dows, the ripple effect or variance can be reduced but only at
the cost of frequency resolution. To reduce the variance of a
spectral estimate without any loss in frequency resolution, it
is necessary to reduce only the effect of the numerator and
this can be achieved by dividing the signal transfer function
by an estimate of the numerator. The GD domain achieves
this operation without any singularity problem as it involves
the multiplication of GD by the squared spectral magnitude
of the numerator, rather than division.

If x(n) is a signal generated by an all-pole system driven
by a white noise or sinusoids associated with white noise and
further if it can be represented by X (ω) = N (ω)/D(ω), then
D(ω) corresponds to the system or sinusoids and N (ω) to the
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excitation or the associated noise. Its group delay is

τ(ω) = τN (ω) − τD(ω)

τ(ω) = KN

|N (ω)|2 − K D

|D(ω)|2 (3a)

τN (ω) and τD(ω) are group delay functions of N (ω) and
D(ω), respectively. KN and K D can be considered as con-
stants for simplicity [3]. For the zeros close to unit circle
due to signal truncation or input driving noise of a system or
the associated noise with the signal, |N (ω)|2 will be small.
Hence, in the group delay domain, from Eq. (3a), the large
magnitude ripples (due to first term) will mask the peaks (due
to second term) as the magnitude of |D(ω)|2is sufficiently
large for poles which are well inside the unit circle. On mul-
tiplying τ(ω) (Eq. (6)) [3,4] by |N (ω)|2,

τo(ω) = τ(ω) |N (ω)|2
or

τo(ω) = KN − K D

|D(ω)|2 |N (ω)|2 (3b)

Here, in the first term, the effect of large values due to
zeros close to the unit circle is removed and it will not
mask the second term τD(ω), which is due to poles. How-
ever, τD(ω) is multiplied by |N (ω)|2. But as the envelope of
|N (ω)|2 is nearly flat, the significant features of τD(ω) con-
tinue to exist, with the |N (ω)|2 fluctuations superimposed
on it. To get τo(ω), |N (ω)|2 has to be determined with the
given signal. The |N (ω)|2 estimate, |N̂ (ω)|2, is derived using
a cepstrally smooth spectrum |X̃(ω)|2obtained by truncating
the cepstral coefficient sequence of the signal and is given
by

|N̂ (ω)|2 = |X (ω)|2
|X̃(ω)|2 (3c)

2.2.3 2D group delay functions

As for the proposed DCT-based 2D-spectral estimator, the
knowledge of 2D-group delay function is necessary, this sec-
tion considers its details.

For a minimum phase signal (similar to Eqs. (2a) and (2b)),

ln |X (ω1, ω2)| =
∞∑

m=0

∞∑

n=0

p(m, n) cos(ω1m + ω2n) (4a)

θ(ω1, ω2) = φ(ω1, ω2) + 2π I (ω1, ω2)

= −
∞∑

m=0

∞∑

n=0

p(m, n) sin(ω1m + ω2n)

θ(ω1, ω2) =−
∞∑

m=0

∞∑

n=0

p(m, n) sin(ω1m+ω2n) (4b)

whereφ(ω1, ω2) is the principal value of phase and I (ω1, ω2)

is an integer-valued function such that the overall phase

becomes a continuous function of ω1 and ω2, and θ(ω1, ω2)

is the 2D-unwrapped minimum phase function. Presently, the
minimum phase θ(ω1, ω2) is the phase derived from spectral
magnitude |X (ω1, ω2)| using Eqs. (4a) and (4b) [6] and the
minimum phase signal refers to that obtained from the spec-
tral magnitude and the minimum phase. The MGDs with
respect to frequencies ω1 and ω2 are given by [6]

τm1(ω1, ω2) = −∂θ(ω1, ω2)

∂ω1

and

τm2(ω1, ω2) = −∂θ(ω1, ω2)

∂ω2

These two different MGDS with respect to frequencies ω1

and ω2 are given by

τm1(ω1, ω2) =
∞∑

m=0

∞∑

n=0

m p(m, n) cos(ω1m + ω2n) (5a)

τm2(ω1, ω2) =
∞∑

m=0

∞∑

n=0

n p(m, n) cos(ω1m + ω2n) (5b)

Given the two MGDs, τm1(ω1, ω2) and τm2(ω1, ω2) and if
p1(m, n) p2(m, n), m = 0, . . . , N −1; n = 0, . . . , N −1
are their corresponding two cepstral coefficient sequences,
the combined cepstral sequence p(m, n) can be obtained. For
this, the first row of p(m, n) consists of those derived from
τm2(ω1, ω2) and the first column of p(m, n) consists of those
derived from τm1(ω1, ω2). The rest of the 2D array, p(m, n),
is computed as the average of p1(m, n) and p2(m, n)[6] as
given below:

p(0, n) = p2(0, n); n = 1, . . . , N/2,

p(m, 0) = p1(m, 0); m = 1, . . . , N/2

p(m, n) = 1

2
(p1(m, n) + p2(m, n) ),

m = 1, . . . , N/2; n = 1, . . . , N/2

p(m, n) = 0, m = N/2 + 1 : N − 1;
n = N/2 + 1 : N − 1 (5c)

The 2D log spectrum is obtained by taking the 2DFT of
p(m, n), i.e.

ln |X (ω1, ω2)| = DFT[p(m, n)] (5d)

3 The proposed 2D-spectral estimator based on
2D-analytic DCT and 2D-modified magnitude
group delay (2D-MMGD)

In 1D-spectral estimation [4], the MMGD was applied to the
analytic DCT derived from the DCT of the original signal.
Hence, for the proposed 2D-spectral estimation, it is neces-
sary to apply the 2D-MMGD to the 2D-analytic DCT. The
2D-analytic DCT not only involves 2D-DCT of the signal
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Fig. 2 a X (k1, k2),
b Xa(k1, k2), c method of
computing Xa(k1, k2),
d H2(k1, k2), e H3(k1, k2),
f H4(k1, k2)
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but also 2D-Hilbert transform of the 2D-DCT. Hence, the
2D-Hilbert transform and the 2D-MMGD are required in
realizing the proposed 2D-spectral estimation and will be
considered.

The Hilbert transform of a signal can be achieved by set-
ting the magnitude of the negative frequency components of
the DFT to zero and taking the imaginary part of its inverse
DFT. However, such a Hilbert transform will suffer from DFT
leakage, as during the computation of the DFT, there will be
leakage of energy from negative frequency components to
positive frequency components and vice-versa. This can be
solved by convolving the signal with the impulse response of
the Hilbert transformer, in time domain. The transfer func-
tion and the impulse response of the Hilbert transformer
are

H(ω) =
{− j ω > 0

j ω ≤ 0
h(n) = 2 sin2(π n/2)

nπ
,

−∞ ≤ n ≤ ∞
Thus, to generate an accurate analytic signal, a Hilbert

transformer impulse response is essential.
For a causal 2D-signal also, making the 2D-DFT values

as zeros in all the three quadrants, except in its first quad-
rant, and taking its inverse 2D-DFT can result in its analytic
signal. However, similar to 1D-signal case, there will be leak-
age from all the three quadrants to the first quadrant and vice
versa, once the 2D-DFT is taken, and hence the analytic 2D-
signal derived by this process will not be accurate. To get an
accurate 2D-analytic signal, the imaginary part of the ana-
lytic signal, which is the Hilbert transform of the real part,
has to be derived by convolving the signal with the impulse
response of the Hilbert transformer.

3.1 2D-Hilbert transformer

The development of the 2D-Hilbert transformer is based on
the concept that for an analytic signal xa(n1, n2), its Fourier

transform Xa(k1, k2) will be confined to only the first quad-
rant and it will be zero in all other three quadrants. This can
be represented as

xa(k1, k2) = 0, k1 < 0, k2 < 0 (6a)

where k1 and k2 are the spatial frequencies involved for a
2D-signal. Further, the imaginary part of the Fourier trans-
form forms the Hilbert transform of the analytic signal. This
approach is similar to the method considered in [7]. Since the
Fourier transform is confined to only the first quadrant, it is
not conjugate symmetric, which in turn says that the analytic
sequence is complex. Hence, the objective is to find an opera-
tion which when applied on x(n1, n2) would yield xi (n1, n2)

which when multiplied by j and added to x(n1, n2) would
give an analytic sequence,

xa(n1, n2) = x(n1, n2) + j xi (n1, n2) (6b)

For convenience, it is desirable to visualize the DFT of
x(n1, n2), X (k1, k2) as given in Fig. 2a. Here, the first quad-
rant contents of the sequence are denoted by A, second quad-
rant by B and so on. Now, given X (k1, k2), it is required to get
a sequence Xa(k1, k2) (Fig. 2b), and a method of achieving
this is shown in Fig. 2c.

The second, third and fourth components in the left-hand
side of the equation in Fig. 2c can be obtained by mul-
tiplying X (k1, k2) by the sequences H2(k1, k2), H3(k1, k2)

and H4(k1, k2) shown in Fig. 2d–f, respectively. Note
that H2(k1, k2), H3(k1, k2) and H4(k1, k2) are separable
sequences; i.e.,

H2(k1, k2) = sgn(k1)un(k2)

H3(k1, k2) = un(k1)sgn(k2)

H4(k1, k2) = sgn(k1)sgn(k2)

where, un(k) = 1,∀k, and sgn(k) =
{+1, k ≥ 0

−1, k < 0
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The IDFT of un(k) and sgn(k), respectively, is,

IDFT[un(k)] = δ(n),

IDFT[sgn(k)] =
{

j 2
π

sin2(πn/2)
n n �= 0

0 n = 0

By applying the property of separable sequences,

h2(n1, n2) = IDFT [H2(k1, k2)]

= IDFT
[
sgn(k1)

]
IDFT [un(k2)] (7a)

h3(n1, n2) = IDFT [H3(k1, k2)]

= IDFT [un(k1)] IDFT
[
sgn(k2)

]
(7b)

h4(n1, n2) = IDFT [H4(k1, k2)]

= IDFT
[
sgn(k1)

]
IDFT

[
sgn(k2)

]
(7c)

Here, h2(n1, n2) and h3(n1, n2) are imaginary, and h4

(n1, n2) is real. Now,

j Xi (k1, k2)

= X (k1, k2)[H2(k1, k2) + H3(k1, k2) + H4(k1, k2)]
So,

j xi (n1, n2)

= x(n1, n2)
∗[h2(n1, n2) + h3(n1, n2) + h4(n1, n2)]

= x(n1, n2)
∗h(n1, n2) (8)

where ∗: 2D convolution and

h(n1, n2) = [h2(n1, n2) + h3(n1, n2) + h4(n1, n2)] (9)

Then,

xa(n1, n2) = x(n1, n2) + j xi (n1, n2) (10)

Here, h(n1, n2) (Eq. 9) is the desired 2D Hilbert transform
impulse response and xa(n1, n2) (Eq. 10) is the analytic sig-
nal corresponding to x(n1, n2).

3.2 2D-analytic DCT from 2D-DCT using 2D-Hilbert
transform

In 1D signal spectral estimation using the DCT [4], the ana-
lytic DCT, Ca(k) is computed and this has the desired proper-
ties of DCT as its real and imaginary parts are C(k), DCT of
the signal and Ĉ(k), Hilbert transform of C(k), respectively.
That is,

Ca(k) = C(k) + j Ĉ(k)

The analytic DCT is nothing but the DFT of the one-sided
signal. This is based on the fact that for an analytic signal,
the spectrum is one-sided and for the one-sided signal, the
spectrum is analytic. Thus, the analytic DCT forms the spec-
trum or DFT of one-sided signal. But this DFT is having
the desired properties of DCT as its components are derived
from DCT [4], as already mentioned.

The analytic DCT of x(n1, n2) can be obtained from
its DCT Cx (k1, k2) by computing its analytic DCT using
a 2D-Hilbert transform, explained already. Such a 2D-ana-
lytic DCT forms the transform of a 2D signal y(n1, n2),
which has nonzero values only in the first quadrant and zero
values in all other quadrants. This 2D-analytic signal is of
dimension 2N1 × 2N2 and has a linear phase shift of 1/2 the
sampling interval in both axes (and this is due to symmetry
with even number of points with the absence of central point
for DCT-II). This does not pose any problem as the interest
is only 2D power spectral estimation which considers only
the spectral magnitude and not the phase spectrum of the
signal.

As discussed before, the N1 × N2-point DCT can be
interpreted as the 2N1 × 2N2-point DFT of the appropri-
ately extended signal with a linear phase corresponding
to half the sampling period added to both the axes, and
then only the first quadrant is selected. This N1 × N2-point
DCT is symmetrically extended to second, third and fourth
quadrants to construct 2N1 × 2N2-point DCT using the
symmetry property of the DCT [1]. The resulting 2N1 ×
2N2-point DCT is convolved with 2D Hilbert transformer
impulse response h(n1, n2) (Eq. (9)) to get the equivalent
2N1 × 2N2-point Hilbert transform of the actual signal. The
2N1 × 2N2-point DCT and its Hilbert transform form the
real and imaginary parts of the desired analytic signal. This
will be reflected in the space domain (inverse 2D-DFT) as
the reconstruction of x(n1, n2) from its extended version
y(n1, n2).

This method is illustrated using a signal of size 32 ×
32, x(n1, n2) = cos(0.1πn1) cos(0.1πn2). The 2D-DCT of
this signal is taken and then the 2D-analytic DCT is computed
using the 2D Hilbert transform. The magnitude of the 2D-
DFT of the actual signal and that of the 2D-analytic DCT are,
respectively, shown in Fig. 3a, b. As expected, the unwanted
high-frequency components along the two axes are signif-
icantly reduced for the 2D-analytic DCT compared to that
of 2D-DFT. The actual signal is shown in Fig. 3c, and the
IDFT of the 2D-analytic DCT is shown in Fig. 3d. Note that
the resultant signal is essentially 64 × 64, which is the zero
padded version of the actual signal.

3.3 2D-spectral estimation based on 2D-analytic DCT
and MMGD

The 2D analytic DCT derived from the 2D-DCT can be used
for spectral estimation. Similar to 1D modified magnitude
group delay [2,3], the definition of a modified magnitude
group delay (MMGD) in 2D facilitates the application
of the MMGD to 2D-spectral estimation. This makes the
2D-spectral estimation immune to the driving noise of a
2D system/ associated noise with the 2D signal, as the
MMGD removes the zeros close to the unit sphere which
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Fig. 3 a DFT of actual signal, b reconstructed DFT from the DCT, c actual signal, d IDFT of the reconstructed DFT

are due to them. This enables improvement in variance
over that obtained by the 2D-DCT preserving its frequency
resolution.

3.3.1 Extension of modified MGD for a 2D-signal

The extension of 1D-MMGD to 2D has been made for the
purpose of 2D-spectral estimation and this will be consid-
ered.

If y(m, n) is a signal generated by an all-pole system,
driven by a white noise and its spectrum is Y (ω1, ω2) =
N (ω1, ω2)/D(ω1, ω2), then D(ω1, ω2) corresponds to the
system or sinusoids and N (ω1, ω2) to the excitation or the
associated noise. The MGD with respect to ω1 is

τm1(ω1, ω2) = τm1N (ω1, ω2) − τm1D(ω1, ω2) (11a)

τm1N (ω1, ω2) and τm1D(ω1, ω2) are the MGDs for N (ω1, ω2)

and D(ω1, ω2), respectively, computed with respect to ω1.
Also,τm1(ω1, ω2) can be written as,

τm1(ω1, ω2) = αN

|N (ω1, ω2)|2
− αD

|D(ω1, ω2)|2
(11b)

Here,αN and αD are constants. Similar to 1D case, to
remove the effect of zeros close to the unit sphere on
τm1D(ω1, ω2), it is required to multiply τm1(ω1, ω2) by

|N (ω1, ω2)|2. Hence, the modified MGD (MMGD) with
respect to ω1, τm1o(ω1, ω2) is,

τm1o(ω1, ω2) = τm1(ω1, ω2) |N (ω1, ω2)|2
τm1o(ω1, ω2) = αN − αD

|D(ω1, ω2)|2
|N (ω1, ω2)|2 (12a)

Here, similar to 1D case, the effect of large values due to
zeros close to the unit sphere is removed and it will not mask
the second term τm1D(ω1, ω2), which is due to poles. The
estimate of |N (ω1, ω2)|2 is given by
∣
∣
∣Ñ (ω1, ω2)

∣
∣
∣
2 = |Y (ω1, ω2)|2/

∣
∣Y (ω1, ω2)

∣
∣2

(12b)

∣
∣Y (ω1, ω2)

∣
∣2

is the cepstrally smoothed power spectrum
obtained by only the initial few coefficients of the cepstral
sequence. Similarly,

τm2o(ω1, ω2) = τm2(ω1, ω2) |N (ω1, ω2)|2 (13a)

Two different sets of causal cepstral coefficient sequences,
p1(m, n) and p2(m, n) obtained from the MMGDs τm1o

(ω1, ω2) and τm2o(ω1, ω2), respectively, are combined to get
p(m, n) by the procedure already explained (Eqn.(5c)). From
these cepstral coefficients c(m, n), the magnitude spectrum
can be reconstructed.

ln |Y (ω1, ω2)| = DFT [p(m, n)] (13b)
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This 2D-spectrum will be significantly less affected by the
driving noise to a 2D-system whose output is the signal or
noise associated with the 2D-signal or truncation effects and
hence will have less variance but preserves the frequency
resolution of the rectangular window.

If the MGDs τm1(ω1, ω2) and τm2(ω1, ω2) are com-
puted using the 2D-DFT, the spectral estimation method is
called DFT-MMGD method. If the MGDs τm1(ω1, ω2) and
τm2(ω1, ω2) are computed from the 2D-analytic DCT using
the 2D Hilbert transform, the spectrum estimation method is
called DCT-MMGD method.

4 Simulation results

The proposed two methods of 2D-spectral estimation meth-
ods, DFT-MMGD and DCT-MMGD, each are applied to dif-
ferent simulated signals viz., sinusoids plus white Gaussian
noise, AR process plus white Gaussian noise and two low-
level 2D sinusoids in the presence of an 2D-AR process hav-
ing high-level spectral peaks. The results are also compared
with those of 2D-LP method [5]. The mean and the variance
of the 2D-spectrum are used as indices of performance. The
mean spectrum Sm(k1, k2)is given by

Sm(k1, k2) = 1

P

P∑

i=1

Si (k1, k2) (14a)

Si (k1, k2) is the individual spectrum estimate for the i th trial
and P is the number of trials (P different signals) consid-
ered in the ensemble. The mean spectrum is supposed to
be close to or it should bring out all the desired features of
the true spectrum like resolving spectral peaks. The variance
of the method of spectrum estimate indicates the variability
in the spectrum estimate from its mean spectrum for differ-
ent trial segments of signals. The variance of the spectrum,
var(k1, k2), is given by

var(k1, k2) = 1

P

P∑

i=1

[Si (k1, k2) − Sm(k1, k2)]
2

0 ≤ k1 ≤ N1 − 1
0 ≤ k2 ≤ N2 − 1

(14b)

The variance spectrum being a surface for a 2D signal, it is
difficult to quantify the variance performance at all frequen-
cies (in both dimensions) by looking at the surface. This
necessitates for a single performance index, which accounts
for the variance at all frequencies simultaneously. Hence, the
average variance per frequency bin (AVPFB) ρ which quan-
tifies the variance by a single parameter has been used and

is of importance which is given by

ρ = 1

N1 N2

N1∑

k1=N2

N2∑

k2=N1

var(k1, k2) (14c)

where (N1 × N2) is spectrum size. In situations like sinu-
soids plus noise, the true spectrum is not known unlike
in the case of AR process where by knowing the actual
coefficients used for generating the AR process, it is pos-
sible to get the true spectrum, and the root mean square
error (RMSE)/mean square error (MSE) can be used as a
performance index. The MSE is related to variance and
bias (the difference between the true spectrum and the
mean spectrum). The mean square error is equal to bias
square plus variance. In many cases, it is of interest that
the mean spectrum brings out the important characteris-
tics of the true spectrum even though the former does not
have perfect match to the latter (though such a match is
highly desirable) and the variance of the spectrum estimate
is less. This evaluation approach is generally followed,
and in the present study, the performance is evaluated
from this point of view (which is practical for sinusoids
plus noise example as its true spectrum is impossible
to be known). Especially with real data, the true spec-
trum will not be known and only the mean spectrum
and variance spectrum decide the quality of the spectral
estimate.

The 2D data size considered is (128 × 128) and is suffi-
cient to resolve the spectral peaks considered in this study.
The data size is an important specification for spectral esti-
mation using DFT/DCT as it decides frequency resolution.
Further, for estimating the variance, it is desirable to consider
number of trials P , very large. Presently, P = 25 is used,
and comparison of the variance of different methods is made
for the same value of P .

(a) Spectral estimation for sinusoids plus noise input: The
2D-sinusoids considered with noise are given by

x(n1, n2) = cos(0.2πn1 + θ(i)) cos(0.3πn2 + θ(i))

+ cos(0.3πn1 + θ(i)) cos(0.2πn2 + θ(i))

+w(n1, n2)

where w(n1, n2), the zeros mean white Gaussian noise with
unit variance, and θ(i), the phase that changes randomly from
trial to trial.

The 2D-cepstrum used is of size (4 × 4). For the 2D-
LP method, the order used is 8. For a SN R = 20d B,
the mean spectra of DFT-MMGD, DCT-MMGD and 2D-LP
methods are shown in Fig. 4a–c, respectively. Figure 4d–f
show the variances of 4a–c, respectively. It is seen that
from the mean spectra, the DCT-MMGD resolves the two
spectral peaks very well (height of the spectral peaks above
the common base level) compared to those of other two
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Fig. 4 Mean and variance spectra for 2D-sinusoids at an SNR = 20 dB. Mean spectra: a DFT-MMGD, b DCT-MMGD and c 2D-LP. Variance
spectra: d DFT-MMGD, e DCT-MMGD and f 2D-LP

methods. Further, in this respect, the 2D-LP method is bet-
ter than the DFT-MMGD. From the variance spectra, it is
clear that DCT-MMGD has a significantly better variance
than that of the DFT-MMGD (by a factor more than 2). The
variance achieved by 2D-LP method is significantly supe-
rior to those of the two methods. But the overall perfor-
mance of the DCT-*MMGD is better than 2D-LP method
as the formers’ resolution is good and the variance is
tolerable.

The performance of the methods at SNR = −5 dB is
shown in Fig. 5. It is seen that from the mean spectra

(Fig. 5a, b), for the DFT-MMGD and DCT-MMGD, the spec-
tral peaks are well resolved but the heights of the spectral
peaks are reduced approximately by a factor of half, indi-
cating that the frequency resolution is reduced due to the
increased noise level and this is expected. At this poor SNR,
the 2D-LP method fails to resolve the two peaks as it shows
only a single broad peak covering both the peaks (Fig. 5c). At
the spectral peak locations, the variance of the DFT-MMGD
and DCT-MMGD (Fig. 5d, e) are of the same order as at
SNR = 20dB (Fig. 4d, e), indicating that they perform better
at low SNR, in terms of variance. As the 2D-LP method is
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Fig. 5 Mean and variance spectra for 2D sinusoidal estimates for SNR = -5 dB. Mean spectra: a DFT-MMGD, b DCT-MMGD and c 2D-LPB.
Variance spectra: d DFT-MMGD, e DCT-MMGD and f 2D-LPB

unable to resolve the two spectral peaks (Fig. 5c, f), its lower
variance is of no value.

The AVPFB for the three methods is listed for SNR
ranging from −5 to 20 dB in Table 1. The AVPFB for
the DCT-MMGD is significantly better than that of DFT-
MMGD. Further, its value is comparable to that of the
2D-LP method in the SNR range of 0–20dB. But for
both MMGD methods, the AVPFB increases as the
SNR decreases which is expected, and this is against the
local variance stated as the AVPFB provides a global
feature covering the complete 2D-frequency range. The
above results indicate that the 2D-LP method cannot per-
form well in the presence of noise. This is due to the

Table 1 AVPFB for sinusoids

SNR (dB) DFT-MMGD DCT-MMGD 2D-LP

20 0.0538 0.0147 0.149

10 0.0205 0.0118 0.131

5 0.0304 0.0134 0.137

0 0.0361 0.0165 0.127

−5 0.0398 0.0314 0.124

fact that the 2D-LP method is basically dependent on
the signal correlation property. However, the presence of
noise will disturb the desired correlation property for the
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LP method and hence as expected its performance is
poor.

(b) Spectral estimation for the autoregressive process
plus noise input:
For a 2D-AR process, a 2D denominator D(z1, z2) is gener-
ated from two 1D polynomials A1(z1) and A2(z2) as

D(z1, z2) = A1(z1)A2(z2)

A1(z) = 1 − 3.0672z−1 + 4.2441z−2 − 3.0062z−3

+0.9606z−4

and

A2(z) = 1 − 1.5168z−1 + 0.9801z−2

The roots of A1(z1) are 0.99e±25π/180, 0.99e±50π/180 and
of A2(z1) are 0.99e±40π/180.

The 2D-AR process is generated by filtering a 2D-Gaussian
white noise of zero mean and unit variance by the transfer
function

C(z1, z2) = 1/D(z1, z2)

In this case also the DFT-MMGD, DCT-MMGD and 2D-
LP methods are applied. In both DFT-MMGD and the DCT-
MMGD, the cepstral coefficient truncation length used is
(4 × 4). The performance of DCT-MMGD in terms of spec-
tral resolution is almost similar to that of DFT-MMGD
(Fig. 6a, b). But in terms of variance, the DCT-MMGD is
significantly better than DFT-MMGD (Fig. 6d, e). Compared
to these methods, the 2D-LP mean spectrum brings out the
spectral peaks very well and is having close resemblance
to the true AR spectrum obtained by the 2D-AR coefficient
polynomial. Further, its variance is also very significantly
smaller than those by the other two methods. The order for
the 2D-LP method used is 12.

For the same AR process with a SNR = 0 dB, the results
are shown in Fig. 7. The mean spectrum by the DCT-MMGD
method brings out the two spectral peaks better than that
by the DFT-MMGD (Fig. 7a, b). But the variance at the
spectral peak locations by the two methods is comparable
(Fig. 7d, e). The 2D-LP resolves the spectral peaks, but
the peaks are significantly broader than those achieved by
the two new methods indicating their superior resolving
power. Further, its variance is considerable (Fig. 7f) com-
pared to that achieved for sinusoids even with SNR =−5 dB
(Fig. 5f).

The AVPFB for different SNR values ranging from 20 to
−5 dB is given in Table 2. At high SNR, the AVPFB values
achieved by the DCT-MMGD method are less than those
of DFT-MMGD method. Further, as the SNR decreases,
AVPFB values decrease indicating they have better global
variance performance at low SNR than at high SNR. For
the 2D-LP method, the AVPFB values are almost same
irrespective of SNR and are more than those achieved by the

new methods indicating their improved global variance over
that of the 2D-LP method. At SNR =−5 dB, the AVPFB of
the DFT-MMGD becomes less than that of the DCT-MMGD
method.

(c) Detection performance of the proposed Spectral
estimation methods for low-level sinusoids in the presence
of a 2D-AR process with high-level peaks:

In the 1D-DFT spectrum, the leakage from large ampli-
tude peaks may mask the low-amplitude peaks. But as this
effect is significantly less in the DCT, DCT-MMGD will have
a better detectability of the low-amplitude peaks compared
to that of DFT-MMGD method [4,8]. To illustrate this to
the 2D-AR process (already considered), 2D sinusoids hav-
ing peaks at frequencies (0.6π, 0.65π) and (0.65π, 0.6π)

are added and further to this, a 2D Gaussian white noise is
added to have an SNR = 25 dB. The amplitude of sinusoids is
such that their spectral peak magnitudes are 20dB below the
spectral peaks of the AR process. The mean spectra obtained
using 25 realizations for the DFT-MMGD and DCT-MMGD
are shown in the Fig. 8a, b. The low-amplitude peaks are
better brought out by DCT-MMGD compared to the DFT-
MMGD method. However, for the 2D-LP method, from the
mean spectrum, the presence of these two low-level spec-
tral peaks is not explicitly evident. The contour plots for the
low-level spectral peak region indicate that the two peaks are
detected by both DFT-MMGD and DCT-MMGD methods
(Fig. 8d, e). Further, the DCT-MMGD detects them with a
better frequency resolution than by the DFT-MMGD. Though
for the 2D-LP method, the contour plot indicates the pres-
ence of these two low-level peaks (which is not clear from
the magnitude spectrum (Fig. 8c) but with a poorer frequency
resolution as the inner contour for one of the peaks is broader.
But the new methods are able to detect with better frequency
resolution, and in this, the DCT-MMGD is superior due to
DCT inherent higher-frequency resolution compared to that
of DFT. In both DFT-MMGD and the DCT-MMGD, the ceps-
tral coefficient truncation length used is (4×4) and the order
of 2D-LP used is 12.

5 Conclusions

In this paper, two new methods of 2D-spectral estimation
methods were presented. In the first method, the 2D-modified
magnitude group delay (MMGD), which is an extension
from1D to 2D, is applied to the 2D-DFT (DFT-MMGD).
In the second, the MMGD is applied to 2D-analytic DCT
(DCT-MMGD) which is realized by a 2D-DCT and its
Hilbert transform. Due to the DCT desirable properties like
improved frequency resolution and low leakage compared to
those of DFT and due to the MMGD ability of reducing
variance preserving the original frequency resolution, the
DCT-MMGD method provided a better spectral estimate
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Fig. 6 Mean and variance spectra for 2D AR process at SNR = 20 dB. Mean spectra: a DFT-MMGD, b DCT-MMGD, and c 2D-LPB. Variance
spectra: d DFT-MMGD, e DCT-MMGD, f 2D-LP, and g true spectrum
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Fig. 7 Mean and variance spectra for 2D AR process at SNR = 0 dB. Mean spectra: a DFT-MMGD, b DCT-MMGD, and c 2D-LP. Variance spectra:
d DFT-MMGD, e DCT-MMGD and f 2D-LP

which has better frequency resolution, variance and detect-
ability of low-level spectral peaks, than by the DFT-MMGD.
Further, as the MMGD removes the zeros close to the unit
sphere due to noise, the two new methods performed better
than the 2D-linear prediction method, in terms of frequency
resolution, variance (both in local and global) and detect-
ability. In this respect again, the DCT-MMGD outperforms
DFT-MMGD. Due to MMGD nature, the new methods per-
form better at low SNR than at high SNR.

Table 2 AVPFB for AR process

SNR (dB) DFT-MMGD DCT-MMGD 2D-LP

20 0.63 0.35 0.36

10 0.28 0.19 0.34

5 0.17 0.14 0.32

0 0.10 0.10 0.31

−5 0.07 0.18 0.32
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Fig. 8 Detection of low-level sinusoids in the presence of a high level of 2D AR process associate with noise SNR = 25 dB. Mean spectra:
a DFT-MMGD, b DCT-MMGD, and c 2D-LP contour plots: d–f for the low-amplitude 2D sinusoids region of (a)–(c)
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