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List of Abbreviations 

 

CNT   - Carbon nanotube 

SWNT  - Single-walled nanotube 

MWNT  - Multi-walled nanotube 

DWNT  - Double-walled nanotube 

FESEM  -  Field-emission scanning electron microscopy 

CVD   - Chemical vapour deposition 

PECVD  -  Plasma enhanced chemical vapour deposition 
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Figure Captions 

 

Figure 1: Various allotropes of carbon: (a) diamond, (b) fullerene, (c) multilayer fullerene, (d) 

single-walled carbon nanotube, (e) double-walled carbon nanotube, (f) multi-walled carbon 

nanotube and (g) graphene.  

Figure 2: Graphene, the building block of all graphitic forms, can be wrapped to form the 0-D 

bucky balls, rolled to form the 1-D nanotubes and stacked to form the 3-D graphite.  

Figure 3: (a) Schematic of the honeycomb structure of a graphene sheet (b) SWCNTs can be 

formed by folding the sheet along the shown lattice vectors leading to armchair, zigzag and 

chiral tubes. 

Figure 4: Schematic diagram of single hot-zone pyrolysis assisted chemical vapor deposition 

setup. 

Figure 5:  Temperature profile of the furnace used for the pyrolysis. 

Figure 6: FESEM images of as-prepared MWNTs synthesized at different temperatures (a) 

750C; (b) 800C; (c) 850C and (d) 900C. 

Figure 7. Typical cross-section of the vertically grown carbon nanotubes. 

Figure 8. A typical Raman spectrum of multi-walled carbon nanotubes prepared at 850C. 

Figure 9. FESEM images of (a) as-prepared CNT at 850C; (b) after oxidation at 500C and 

(c) after chemical etching with HNO3. 

Figure 10. FESEM images of pure MWNTs prepared at different temperatures (a) 750C; (b) 

800C; (c) 850C and (d) 900C. 

Figure 11. Typical Raman spectrum of purified CNT for the sample prepared at 850C. 
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Abstract 

 

Multi-walled carbon nanotube (MWNT) and combination of single-walled (SWNT) 

and MWNT were synthesized using pyrolysis assisted chemical vapor deposition method.  A 

single hot zone furnace was used for the synthesis of carbon nanotubes at various 

temperatures in the range of 750-900C.  The as-prepared CNT consisted of carbonaceous 

impurities and traces of transition metal contents.  The as-prepared CNT was oxidized at 

500C and then treated with hydrochloric acid which resulted in pure CNT with a purity of 

95%.  The carbon nanotubes were characterized using field emission scanning electron 

microscopy (FESEM) and micro-Raman spectroscopy techniques. FESEM images clearly 

showed the presence of carbon nanotubes and the diameters of the MWNT prepared at 

various temperatures were in the range of 35-100 nm.  The Raman spectroscopy data also 

showed the presence of D, G and 2D peaks which confirm the presence of CNT.  
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1. Introduction 

Carbon (C) is the sixth element of the periodic table and has the lowest atomic 

number of any element in column IV of the periodic table.  Carbon-based materials are 

exceptional mainly due to the various possible electronic configurations of the carbon atom 

known as the hybridization of atomic orbitals.  Each carbon atom has six electrons which 

occupy 1s, 2s and 2p atomic orbitals [1].  The 1s orbital contains two strongly bound core 

electrons. Four weakly bound electrons occupy the 2s and 2p valence orbitals.  In the 

crystalline phase, the valence electrons give rise to 2s, 2p
x
, 2p

y
 and 2p

z
 orbitals which are 

important in forming covalent bonds in carbon materials.  Since the energy difference 

between the upper 2p energy levels and the lower 2s level in carbon is small compared to the 

binding energy of the chemical bonds, the electronic wave functions for these four electrons 

can readily mix with each other.  This leads to change in the occupation of the 2s and three 2p 

atomic orbitals thereby enhancing the binding energy of the C atom with its neighbouring 

atoms [1].  

The general mixing of 2s and 2p atomic orbitals is called hybridization, whereas the 

mixing of a single 2s electron with one, two, or three 2p electrons is called sp
n
 hybridization 

with n = 1,2,3.  Thus three possible hybridizations occur in carbon: sp, sp
2
 and sp

3
, while 

other group IV elements such as Si and Ge exhibit primarily sp
3
 hybridization.  Carbon 

differs from Si and Ge in that carbon does not have inner atomic orbitals, except for the 

spherical 1s orbitals, and the absence of nearby inner orbitals facilitates hybridizations 

involving only valence s and p orbitals for carbon.  The various bonding states are connected 

with certain structural arrangements, so that sp bonding gives rise to chain structures, sp
2
 

bonding to planar structures and sp
3
 bonding to tetrahedral structures [1]. 

The formation of a particular allotrope of carbon is determined by the specific 

hybridization of carbon and its bonding to the surrounding atoms.  The various allotropes of 
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carbon are shown in Figure 1 [2].  Carbon with sp
3
 hybridization will form a tetrahedral 

lattice, giving rise to the diamond structure.  Carbon with sp
2
 hybridization will form graphite 

(arranged in hexagonal sheets), buckminsterfullerene (60 carbon atoms forming a sphere), or 

carbon nanotubes (long hollow tubes of carbon) depending on the conditions in which it is 

formed.  Diamond and graphite have been known since ancient times, fullerene and CNTs 

were discovered two decades ago.  On the other hand, graphene has been discovered recently 

and are just beginning to be characterized.   

 

Figure 1: Various allotropes of carbon: (a) diamond, (b) fullerene, (c) multilayer 

fullerene, (d) single-walled carbon nanotube, (e) double-walled carbon nanotube, (f) 

multi-walled carbon nanotube and (g) graphene.  

 

Graphene is the building block for various allotropes of carbon such as fullerene (zero 

dimensional), carbon nanotubes (one dimensional) and graphite (three dimensional) as shown 

schematically in Figure 2 [3].  For example, graphite (3-D carbon allotrope) is made of 

graphene sheets stacked on top of each.  Fullerenes (buckyballs), can be made by wrapping a 

section of the graphene sheet.  The 1-D carbon allotropes, carbon nanotubes (CNT) and 
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nanoribbons, can be made by rolling and slicing graphene sheets, respectively.  In reality, 

however, these carbon allotropes are not synthesized from graphene. 

 

Figure 2: Graphene, the building block of all graphitic forms, can be wrapped to form 

the 0-D bucky balls, rolled to form the 1-D nanotubes and stacked to form the 3-D 

graphite.  

 

The properties of carbon nanotubes depend on how the tubes are rolled up.  CNT is 

characterized by a vector ‘Ch’ in terms of a set of two integers (n, m) corresponding to 

graphite vectors a1 and a2 (Figure 3) [1], 

    Ch = na1 + ma2                    (1) 

The CNT with m = n are commonly referred to as armchair tubes, those with m = 0 or n = 0 

as zigzag tubes and others are called chiral tubes. For armchair and zigzag tubes, the chiral 

angles are 30 and 0, respectively and other angles correspond to chiral tubes.  The chiral 

angle ‘’ is defined as the angle between the vector C and the zigzag direction ‘a1’, as shown 

in Figure 3.  All armchair SWNTs are metals; those with n-m = 3j, where j is a non-zero 
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integer are small band gap semiconductors and all others are semiconductors with a band gap 

that inversely depends on the nanotube diameter.   

 

Figure 3: (a) Schematic of the honeycomb structure of a graphene sheet (b) SWCNTs 

can be formed by folding the sheet along the shown lattice vectors leading to armchair, 

zigzag and chiral tubes. 
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CNTs have remarkable electronic, optical, optoelectronic, mechanical, magnetic and 

electrical properties [4-8].  However, the electronic and optical properties of CNT are the 

most interesting for future nanotechnologies [9,10].  The carbon nanotubes have novel 

electronic properties because of their one-dimensional electronic structure and can carry high 

currents with essentially no heating.  The novel electronic properties combined with their 

nanometer dimensions have made CNTs extremely attractive for applications in the field of 

nanoelectronics, energy as well as for sensor applications.  In addition to this, CNTs can emit 

light at different wavelengths depending on their structure [11].  

Various methods such as arc discharge [12], laser ablation [13], chemical vapour 

deposition (CVD) [14], plasma enhanced CVD [15], laser assisted CVD [16], aersol method 

[17], solvothermal method [18] and high pressure CO disproportionation process [19] have 

been used to synthesize single walled and multi-walled carbon nanotubes.  For industrial 

applications, simple and cost effective production of CNTs is required.  Nanda et al. proposed 

a new pyrolysis technique for the synthesis of CNTs [20].  In this method, no precursor gas is 

used and is a single step process.  In this work, single step pyrolysis technique was used to 

develop carbon nanotubes.  The CNTs were characterized using field emission scanning 

electron microscopy (FESEM) and micro-Raman spectroscopy techniques. 

2. Experimental details 

The synthesis of CNT has been carried out using pyrolysis assisted CVD technique 

consisting of single hot zone instead of double hot zone in the regular CVD method.  The 

schematic diagram and the temperature profile of the furnace are shown in Figures 4 and 5, 

respectively.  Benzene was used as the carbon source material and ferrocene as a source of 

iron which acted as a catalyst for the growth of CNTs.   
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Figure 4: Schematic diagram of single hot-zone pyrolysis assisted chemical vapor 

deposition setup. 

 

 

Figure 5:  Temperature profile of the furnace used for the pyrolysis. 

A mixture of 20 mg of ferrocene and 3 ml of benzene was placed into a quartz tube 

and the tube was kept inclined inside the furnace.  The diameter and length of the quartz tube 
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are 22 and 720 mm, respectively.  One end of the quartz tube is closed and a rubber bladder is 

connected at the other open end.  The bladder is used to collect the residual gases from the 

quartz tube and also to carry out the reaction within a controlled atmosphere.  The quartz tube 

was placed inside the furnace and the furnace was heated to the desired pyrolysis temperature 

(750-900C).  When the center of the hot zone reaches the desired temperature (800C), the 

precursor end of the furnace is at 600C.  Due to this, vapors reaching zone II, thermally 

fragment into active carbon species and catalytic particles.  When the carbon species and 

catalytic particles come into contact carbon nanotubes are formed.  The as-prepared CNTs are 

impure in nature, which consist of carbonaceous impurities such as amorphous carbon and 

some traces of transition metal.  The transition metal impurity present in the as-prepared 

black powder is due to the unreacted catalyst (i.e., ferrocene). CNT yield in the range of 200-

300 mg was obtained for different temperatures.  Pure CNTs are required in order to explore 

their enormous potential applications.  The important procedures for the purification of CNT 

are filtration method [21], chromatography [22], gas phase oxidation [23] and acid oxidation 

[24].  We have followed the gas phase oxidation and subsequent acid treatment method to 

purify the as-synthesized CNT.  The as-prepared and the purified CNTs were characterized 

using micro-Raman and FESEM techniques. 

A DILOR-JOBIN-YVON-SPEX integrated Raman spectrometer (Model Labram) 

was used in the present study.  The spectrometer consisted of a microscope coupled 

confocally to a 300 mm focal length spectrograph equipped with two switchable gratings 

(300 and 1800 grooves/mm).  A HeNe 20 mW laser beam was used as the excitation source.  

The laser was totally reflected by a notch filter towards the sample under a microscope and 

the Raman scattering was totally transmitted through the notch filter towards the confocal 

hole and entrance slit of the spectrometer.  The spectrum was recorded in a Peltier cooled 

charge coupled devices detector.  The data were collected with a 20 s data point acquisition 
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time in the spectral range of 50-3000 cm
-1

.  The morphology, purity and the tube diameter of 

the CNTs were studied using Carl Zeiss Supra 40 VP FESEM.   

3. Results and Discussion 

CNTs were prepared at different temperatures in the range of 750-900C without 

varying the ferrocene and benzene concentrations.  After the experiment, the inner wall of the 

quartz tube at reaction zone II was found to be covered uniformly with a black residue.  The 

black deposit in the form of flakes of sizes ranging from 2 to 10 mm and weighing 250-300 

mg was taken out carefully.  The collected black residue consists of CNTs and various other 

carbon species such as fullerenes, graphitized carbon nanostructures as well as amorphous 

carbon.   

3.1. Microstructural studies of as-prepared CNTs     

FESEM micrographs of carbon nanotubes prepared at different temperatures are 

shown in Figure 6.  The CNTs observed at different temperatures were MWNTs with 

diameters in the range of 35-100 nm.  The lengths of the CNTs observed at different 

temperatures were in the range of 10-25 µm.  A typical cross-section of the vertically grown 

CNTs is shown in Figure 7 wherein the length of the CNT was found to be 25 µm. The 

FESEM data clearly showed the presence of impurities in the as-prepared CNTs which are 

seen as white regions.  This was also confirmed by the micro-Raman spectroscopy data. 

3.2. Micro-Raman spectroscopy studies 

Raman spectroscopy is an important tool to characterize all sp
2
 carbons such as 

graphite, graphene, CNT and fullerenes.  The Raman spectroscopy data not only provides 

unique vibrational and crystallographic information, but also unique information about 

physical properties that are relevant to electrons and phonons [25].  The most prominent 

Raman features in CNTs are the radial breathing modes (RBMs), ‘D’, ‘G’ (graphite) and G 

modes.  



 

Figure 6: FESEM micrographs of as-prepared MWNTs synthesized at different temperatures (a) 750C, (b) 800C, (c) 850C 

and (d) 900C. 



 

Figure 7: Typical cross-section of the vertically grown carbon nanotubes. 

The ‘G’ band is the primary Raman active mode in graphite and it provides a good 

representation of the sp
2
 bonded carbon of CNTs.   The ‘D’ band known as the ‘disorder’ or 

‘defect’ mode originates from edge configurations in graphene, where the planar sheet 

configuration is disrupted.  The G band or 2D band is an overtone mode of the D-band.  The 

cylindrical shape of the CNT introduces another Raman feature, the radial breathing mode, 

wherein each atom in the CNT is vibrating in the radial direction.  The RBM frequency is 

inversely proportional to the diameter, making it an important feature for determining the 

diameter distribution in a sample.   

A typical micro-Raman spectrum of as-prepared multi-walled carbon nanotubes 

prepared at 850C is shown in Figure 8.  The Raman spectrum showed three peaks at 1330, 

1585 and 2661 cm
-1

, which correspond to D, G and G bands, respectively [20].  The D peak 

at 1330 cm
-1

 is due to the presence of amorphous carbon in the as-prepared CNT.  The peak 

at G band indicates the presence of highly crystalline graphitic layers.  The G band 

frequency is twice that of the D band and this band is an intrinsic property of the nanotube.   
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The intensity ratio ID/IG is used to characterize the degree of the carbon materials, i.e., 

smaller ratio of ID/IG corresponds to higher degree of CNT formation [26].  The ID/IG 

intensity ratio is high (Figure 8) which confirms that some amount of impurity is present in 

the as-prepared CNTs.  In order to obtain pure CNTs, the as-prepared CNTs were purified by 

gas phase oxidation method followed by the hydrochloric acid-treatment.   
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Figure 8: A typical Raman spectrum of as-prepared multi-walled carbon nanotubes 

prepared at 850C. 
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3.3.  Purification of CNT 

In gas phase oxidation, the etching of amorphous carbon takes place from the surface 

of the CNTs and the catalyst particles present in the sample.  The carbonaceous particles are 

removed during gas phase oxidation in air or oxygen, since the etching rate of the amorphous 

carbon is faster than CNTs [20].  However, gas phase oxidation cannot eliminate the 

transition metals present in the as-synthesized CNTs.  Therefore, liquid phase reactions in 

various acids are further necessary in order to melt away the transition metals.   

The as-prepared CNTs synthesized at 850C were oxidized in air at 500C for 3 hrs.  

After the oxidation, the CNTs were soaked in 6M HCl for 12 hrs.  The acid treated sample 

was washed many times in deionized water to remove the acid.  The final product was 

recovered by drying in the oven after the material is filtered out.  FESEM and micro-Raman 

spectroscopy techniques were used to confirm the purity of CNTs.  Figure 9 shows the 

FESEM micrographs of impure CNT (as-prepared at 850C, Figure 9(a)), CNT obtained after 

oxidation at 500C (Figure 9(b)) and CNT obtained after chemical etching with HCl (Figure 

9(c)).  The same procedure was followed to purify the as-prepared CNTs synthesized at 

temperatures in the range of 750-900C, and the FESEM micrographs of purified CNT are 

shown in Figure 10.  The Raman data of the purified CNT (prepared at 850C) confirmed the 

presence of high purity CNT as shown in Figure 11.  The ID/IG ratio of the purified CNT is 

0.52, whereas, for the as-prepared CNT the ratio is 0.88 (see Figs. 8 and 11).  The intensity 

ratio reduced drastically which confirms the presence of high purity CNTs.  

 



 

  

 

 

 

Figure 9: FESEM images of (a) as-prepared CNT at 900C; (b) after oxidation at 500C and (c) after chemical etching with HNO3. 
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Figure 10: FESEM images of pure multi-walled CNTs prepared at different temperatures (a) 750C, (b) 800C, (c) 850C and (d) 900C.
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Figure 11: Typical Raman spectrum of purified CNT for the sample prepared at 850C. 
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4. Conclusions 

Carbon nanotubes were synthesized in a quartz tube by a single zone pyrolysis 

technique using ferrocene as a catalyst and benzene as a carbon precursor.  CNTs were grown 

at different temperatures in the range of 750-900C.  The CNTs prepared at different 

temperatures were mutli-walled with diameter in the range of 35-100 nm.  The FESEM 

micrographs clearly showed the presence of impurities in the as-prepared sample, which was 

also confirmed by the micro-Raman spectroscopy studies.  The Raman data showed peaks 

corresponding to D, G and G modes of carbon nanotube.  However, the high ID/IG ratio 

indicated the presence of impurities in the as-prepared sample.  The CNTs were purified by 

gas phase oxidation followed by hydrochloric acid treatment for 12 hrs.  The purity of the 

CNT was confirmed by micro-Raman spectroscopy studies which showed a drastic reduction 

in the D peak intensity.  Further, the ID/IG ratio was very low for the purified sample clearly 

indicating the high purity of the CNT.      
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