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ABSTRACT

Turbulent flow past circular cylinder at moderate to high Reynolds number has been analysed employing an
second-order time accurate pressure-based finite volume method solving two-dimensional Unsteady Reynolds
Averaged Navier Stokes (URANS) equations for incompressible flow, coupled to eddy-viscosity based turbu-
lence models. The major focus of the paper is to test the capabilities and limitations of the present turbulence
model-based 2D URANS procedure to predict the phenomenon ofDrag Crisis, usually manifested in reliable
measurement data, as a sharp drop in the mean drag coefficientaround a critical Reynolds number. The com-
putation results are compared to corresponding measurement data for instantaneous aerodynamic coefficients
and mean surface pressure and skin friction coefficients. Turbulence model-based URANS computations are
in general found to be inadequate for correct prediction of the mean drag coefficients, the Strouhal number
and also the coefficients of maximum fluctuating lift over therange of flow Reynolds number varying from
104 to 107.

KEYWORDS: Turbulent flow, Circular cylinder, Drag Crisis, Unsteady RANS procedure, Eddy viscosity
based Turbulence models, Implicit Finite Volume Method

NOMENCLATURE

D cylinder diameter
Re flow Reynolds number based on D
CP non-dimensional pressure coefficient
β skin friction coefficient
Cl lift coefficient
Cd drag coefficient
f frequency
St Strouhal number
〈Ui〉 phase-averaged velocity components

alongi direction
〈P〉 phase-averaged pressure
k turbulence kinetic energy

ε turbulence energy dissipation
∆t time step size
∆v cell volume
y+ non-dimensional wall normal distance
µ fluid viscosity
µt eddy viscosity
T transformation matrix
J Jacobian of transformation matrixT
ηi

k metric coefficients of transformation
bi

k projection area of the cell face
φ any flow variable
SU andSP linearised source terms

1 INTRODUCTION

Flow around a circular cylinder is a challenging
kaleidoscopic phenomenon. Cross flow normal to
the axis of a circular cylinder and the associated
problems of heat and mass transport are encountered
in a wide variety of engineering applications. Both
measurements and computations for flow past cir-

cular cylinder over a wide range of Reynolds num-
ber, have revealed distinct flow patterns which have
later been classified (Zdravkovich 1997; Williamson
1996; Lienhard 1966; Roshko 1954) under different
flow regimes. The flow remains steady and lami-
nar for Reynolds number between 5 and 40 and the
wake starts becoming unstable at a critical Reynolds
number of around 47, leading finally to the shed-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Aerospace Laboratories Institutional Repository

https://core.ac.uk/display/11874845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ding of alternate vortices from the cylinder surface
at definite frequencies, well known in literature as
the Von Karman vortex street. The laminar vortex
shedding is observed to be continuing up to a value
of Reof about 190, beyond which the two dimen-
sional flow becomes unstable and three dimensional,
eventually leading to the simultaneous formation of
spanwise and streamwise vortex structures. These
three-dimensional disturbances propagate further
downstream and the flow in the thin free shear layer
bordering the far wake zone undergoes slow transi-
tion from laminar to turbulent state. As the Reynolds
number is further increased, the transition inception
location moves further upstream and alters even the
structure and evolution of the vortex shedding in
the near wake zone. At aroundRe= 2× 105, the
boundary layer on the cylinder surface is observed
to becomes unstable and the transition point reaches
close to the laminar separation point on the cylin-
der surface. Eventually the transition takes place
in the boundary layer which slowly turns to be tur-
bulent (Achenbach 1968; Roshko 1961). At the
critical Reynolds number, when the laminar to tur-
bulent transition takes place in the boundary layer at
a location somewhere before the laminar separation
point, the turbulent boundary layer is able to sustain
the adverse pressure gradient for a longer distance
and hence the separation point is shifted further
downstream. As a consequence of such downstream
shift of the separation point, the base pressure on
the rear part of the cylinder is increased and hence
the drag is observed to be drastically reduced. The
Reynolds number at which this phenomenon of the
so-called ’Drag Crisis’ occurs is known as the crit-
ical Reynolds number, which however depends to
a great extent on the other disturbances of the ex-
perimental situation. Measurement data reported by
various researchers (Zdravkovich 1997; Achenbach
1968; Roshko 1961) have shown that the value of
the drag coefficient reduces from approximately 1.2
at the Subcritical Reynolds number range to about
0.3 in the Supercritical flow regime. It is also worth-
while to note from the measurement data that as the
Reynolds number is increased further to the Trans-
critical flow regime(Re> 3.4×106), the drag coef-
ficient once again increases slowly to about 0.7. As
the Reynolds number reaches the range ofRe= 107,
the transition inception point is shifted further up-
stream to a location very close to the front stagnation
point and the flow is fully turbulent almost every-
where around the cylinder and in the wake as well.

The challenging flow past circular cylinders have
always been a very interesting and exciting research
topic for the experimental fluid dynamicists, leading
to a large volume of measurement data on flow past
cylinders. On the other hand,in the area of numeri-
cal simulation of time-dependent three-dimensional

flow around circular cylinder, very few research re-
sults (Rajani et al. 2009; Kakuda et al. 2007; Mittal
2001; Mittal and Balachandra 1997; Karniadakis
and Triantafyllou 1992; Tamura et al. 1990) have
been reported in the recent years. Moreover most
of these detailed three-dimensional flow computa-
tions are limited only to laminar range at very low
Reynolds number of the order of 200-300, where
the objective is only to demonstrate the appear-
ance of three-dimensional vortical flow structures
and the chaotic state of flow in the cylinder wake
even at a Reynolds number as low as 300 or so.
As the Reynolds number increases, the phenomena
of transition and turbulence need to be appropri-
ately simulated for a realistic simulation of the flow
situation. In spite of being the most accurate simu-
lation methodology, Direct Numerical Simulation
approach, under the present constraints of com-
putation resources, is prohibitively expensive for
higher Reynolds number flows consisting of very
wide range of length and time scales. The litera-
ture on the simulation of turbulent flow past circular
cylinder at high Reynolds number using URANS
methodology coupled to turbulence models or us-
ing LES methodology are also quite limited. LES
computations are reported using either Smagorinsky
(Singh and Mittal 2005; Selvam 1997; Song and
Yuan 1990) type sub grid scale models or using no
turbulence models as such (Singh and Mittal 2005;
Kashimaya et al. 1998; Kakuda and Tosaka 1992;
Tamura and Kuwahara 1989) to simulate the tur-
bulent interactions at the sub grid level. Deng and
his research group (Deng et al. 1993) have used
the algebraic Baldwin-Lomax model as well as the
k− ε turbulence models to study the phenomenon
of drag crisis, whereas advanced turbulence models
like SST and SA have been used by Cox (Cox 1997)
for similar two-dimensional flow simulations. Most
of the computational results available in literature
have usually over predicted the mean drag in the
subcritical regime compared to the corresponding
measurement data.

The objective of the present URANS computa-
tion is mainly to assess the limitation and ac-
curacy level of the existing popular and widely
used turbulence models for computation of aero-
dynamic drag and specially in predicting the phe-
nomenon of Drag Crisis for flow past a circular
cylinder over a certain range of flow Reynolds num-
bers. However the present computations are re-
stricted to two-dimensional flow only since measure-
ment data and other computation results reported
in literature (Singh and Mittal 2005; Williamson
1996; Braza et al. 1990) confirm that the free
shear layer instability in the wake which happens
to be the prime source of laminar to turbulent
transition and eventually leads to drag crisis, is a



two-dimensional phenomenon only. Computation-
intensive three-dimensional flow calculation using
turbulence model-based URANS methodology will
be meaningful only if the turbulence models, even
for two-dimensional flow computation, can mimic
the physics of the transitional flow with reasonable
accuracy. In the present two dimensional numeri-
cal simulation, computations have been carried out
using different turbulence models for a range of
Reynolds number covering the subcritical to the su-
percritical regime (Re ranging from 104 to 107 ).
All the computations have been carried out using
an implicit finite volume type Navier Stokes code
RANS3D, developed at the CTFD Division, NAL,
Bangalore, India (Majumdar et al. 1992; Majumdar
1998; Majumdar et al. 2003). The computation re-
sults have been validated against measurement and
other computation data reported in unclassified liter-
ature.

2 MATHEMATICAL M ODELLING OF

FLOW PHYSICS

The analysis of flow behind a circular cylinder over
a wide range of flow Reynolds number has been
carried out in the present work through numerical
solution of the relevant Unsteady Reynolds Aver-
aged Navier Stokes (URANS) equation system, cou-
pled to four different eddy viscosity based turbu-
lence models. The basic equations to be solved are
a set of non-linear, strongly coupled partial differen-
tial equations representing the conservation of mass,
conservation of three mean momentum components
along the cartesian directions and the conservation
of relevant turbulence scalars for evaluation of the
Reynolds stresses.

2.1 Unsteady Reynolds Averaged
Navier Stokes (URANS) Equations

In the URANS approach, the Reynolds averaging
concept, is directly used to replace the instantaneous
flow variables by the so-called time-averaged vari-
ables or phase-averaged variables for the steady and
time-dependent mean flow situations respectively.
The only assumption in this representation is that
the time scale of the mean flow variation has to be
quite large compared to the time scale of the tur-
bulent fluctuations. The effect of turbulent fluctu-
ation on the mean flow is therefore represented in
the mean momentum equations in the form of a sec-
ond moment correlation between the unknown fluc-
tuating velocity components. The cartesian coordi-
nate system(y1,y2,y3) are transformed to the non-
orthogonal coordinate system(x1,x2,x3) using the

chain rules of differentiation as follows:
[

∂
∂y1

,
∂

∂y2
,

∂
∂y3
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,

∂
∂x3

]t

whereT is the transformation matrix andTi j =
∂y j

∂xi
.

The URANS equations for turbulent incompressible
flow in non-orthogonal curvilinear coordinates with
cartesian velocities as dependent variables may be
written in a compact form as follows:

Momentum transport for the cartesian velocity
component〈Ui〉:

∂
∂t

(ρ〈Ui〉)+
1
J

∂
∂x j

[

ρ〈Ui〉〈Uk〉η j
k + 〈P〉η j

i

−µ
J

(

∂〈Ui〉
∂xm

B j
m+

∂〈Uk〉
∂xm

ηm
i η j

k

)

−

ρ〈uiuk〉η j
k

]

= SUi (1)

where,ui is the fluctuating velocity component,SUi

is any momentum source other than the pressure
gradient,η j

k are the metric coefficients (cofactor of

the term
∂y j

∂xk
in the transformation matrixT) and

B j
m = η j

nηm
n . η j

k is expressed in terms of the pro-
jection area of the faces as follows :

η j
k = b j

k∆x j/(∆x1∆x2∆x3)

where the areasbi
j for the control volume aroundP

are shown in Fig. 1(b) for a two-dimensional situa-
tion on y1 − y2 plane. These momentum equations
are further supplemented by the mass conservation
or the so-called continuity equation
.

Mass conservation (Continuity):

∂
∂x j

(

ρ〈Uk〉η j
k

)

= 0 (2)

However Eq. 1 and Eq. 2 do not form a closed sys-
tem due to the presence of the unknown turbulent
stress term−ρ〈uiu j〉.

2.2 Turbulence Modelling

2.2.1 Eddy Viscosity Hypothesis

In Eddy Viscosity based turbulence models, the tur-
bulent stress appearing in the Reynolds-Averaged
equations is expressed in terms of the mean veloc-
ity gradients as following:



−ρ〈uiuk〉 = µt

(

∂〈Ui〉
∂xk

+
∂〈Uk〉

∂xi

)

− 1
3

ρδik〈umum〉 (3)

where,δik is the Kronecker Delta andk is the sum-
ming index overk = 1,2,3. The eddy viscosityµt

is assumed to be an isotropic scalar quantity whose
value depends on the local state of turbulence. Sub-
stituting the turbulent stress term in Eq. 1 and
carrying out some algebraic manipulation one may
rewrite the mean momentum equation as following :

∂(ρ〈Ui〉)
∂t

+
1
J

∂
∂x j

[
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i
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J
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ηm
i η j

k

)]

= SUi (4)

The algebraic or zero equation turbulence models
(Baldwin and Lomax 1978; Cebeci and Smith 1974),
employed very successfully for attached boundary
layer type flows, compute the eddy viscosity(µt) at
any field point as an algebraic function of the mean
velocity gradients and the normal distance from the
solid surface. These models are computationally
cheap but sometimes call for complicated interpo-
lations to determine the normal distance from wall
for highly skewed grids near the body surface and
cannot, in general, simulate separated flows. On the
other hand for eddy viscosity based turbulence mod-
els, transport equation are solved for one or more
turbulence scalars. Four different turbulence mod-
els used in the present work are the low Reynolds
number version ofk− ε model proposed by Chien
(Chien 1982), Shear Stress Transport (SST) model
proposed by Menter (Menter 1994), one equation
model of Spalart-Allamaras (SA) (Spalart and Alla-
maras 1992) and thek− ε− v̄2− f model, popularly
known as V2F model, proposed by Durbin (Durbin
1995).

2.3 Finite Volume Formulation

The present flow solution algorithm (RANS3D) is an
iterative two-step predictor-corrector procedure sim-
ilar to the SIMPLE algorithm of Patankar (Patankar
1980). In the predictor step, the momentum equa-
tions are solved to advance the velocity field par-
tially in time for a guessed pressure field. The con-
tinuity is then ensured by solving a Poisson equa-
tion for pressure correction, followed by relevant
correction of the pressure and velocity field in the
corrector step. Integration of the momentum trans-
port equations (Eq. 4) over each control volume
transforms the relevant pde’s in the form of dis-
crete algebraic equations representing a balance be-
tween the convective and diffusive fluxes through

the cell faces and the other remaining terms as vol-
ume sources. Second order accurate central dif-
ference scheme is used for spatial discretisation of
the convective and diffusive fluxes at the cell faces.
The temporal derivatives are also discretised using
the second order accurate three-level fully implicit
scheme. The numerical stability is ensured by means
of a deferred correction procedure (Khosla and Ru-
bin 1974) where a suitable weighting function is
used to blend the flux from the desired scheme with
upwind fluxes which allow some small numerical
diffusion for stability of the solution. Using the
relevant geometric factors with second order spatial
and temporal discretisation schemes for the cell face
fluxes and linearisation of the source terms, the flux
balance equation is expressed in an implicit manner
in the following quasi-linear form:

(

1.5φn+1
P +0.5φn−1

P −2φn
P

)

∆v/∆t +APφn+1
P =

∑
nb

Anbφn+1
nb +SU (5)

whereAP = ∑Anb−SP; the coefficientAnb repre-
sents the combined effect of convection and diffu-
sion from the neighbouring nodes at the cell faces;
SU and SP are the components of the linearised
source term,∆v is the cell volume and∆t is the time
step size. The superscripts ofφ represent the respec-
tive time step. The detailed derivation of Eq. 5 in
terms of the flow variables and the cell face pro-
jection areas is given elsewhere (Majumdar et al.
1992; Majumdar et al. 2003). The transformation
of continuity equation to an equation of pressure-
correction, described in the following subsection
is not that straightforward. A segregated iterative
method, coupled to the strongly implicit procedure
of Stone (Stone 1968), is used to solve the system
of linear equations (Eq. 5) corresponding to each
transport equation in a sequential manner. At each
time step, the normalized residue for all the equa-
tions solved are brought down to a convergence cri-
terion of 10−5.

2.4 Computation of Pressure Field

Algorithms based on pressure-velocity solution
strategy transform the continuity equation into a
field equation for pressure correction using momen-
tum equations as link between pressure and velocity
corrections. For three dimensional flow analysis us-
ing a collocated variable arrangement, the problem
of the so-called checkerboard spitting is avoided by
employing the principle of Momentum Interpolation
(Majumdar 1988; Majumdar et al. 1992). This gives
the cell-face velocity components,Uiw (as an illus-
tration, at the cell west face‘w’ ) and hence the link



between pressure and velocity correctionU ′
iw as:

Uiw = αv

[

H i
P +Di

2(Ps−Pn)+Di
3(Pb−Pt)+

Di
1(Pw−Pp)

]

+(1−αv)U
0
iw (6)

U ′
iw = αvDi

1(p′w− p′p) (7)

where H i
p =

(

∑Ai
nbUinb +SU

)

/Ai
p and

Di
k = bi

k/Ai
p; Ai

nb represents the coefficients for
neighbouring nodes, the superscript′0′ is the value
at the previous iteration,Ai

P is the value ofAP for
Ui at the nodeP, bi

k is the relevant projection area
of the cell face (Fig.1),αv is an under-relaxation pa-
rameter and the expressions with overbar represent
the linear average of the same quantities evaluated
at the cell-centersP andW adjacent to the face’w’ .
Now the conservation of mass in a control volume
may be expressed as:

Ce−Cw +Cn−Cs+Ct −Cb = 0 (8)

where the face mass fluxCw, for example, may be
written as follows using’i’ as the summation index
for three directions.

Cw = ρwb1
iw(Uiw +U ′

iw) (9)

SubstitutingUiw andU ′
iw for all ‘i’ from equations

similar to Eqs. 6 and 7 respectively in mass flux ex-
pression similar to Eq. 9 for each of the six faces in
Eq. 8, one obtains the equation of pressure correc-
tion in a form very similar to Eq. 5. Once the field
of pressure correction is solved, corrections are ap-
plied to the cell-centre pressure and velocities, to all
the cell-face velocities and finally to the convective
mass-fluxes to satisfy the cell wise continuity.

3 RESULTS AND DISCUSSION

3.1 Computational Details

The computational domain consists of the annular
region between two circles of diameterD and 40D
whereD is the diameter of the cylinder and the num-
ber of nodes used is 144 along the radial and 121
along the circumferential direction divided into two
blocks overlapped with one control volume on ei-
ther side of the block interface. In order to handle a
two-dimensional problem by the three-dimensional
flow solver RANS3D, only two parallel planes are
considered along the axial or spanwise direction(z)
with the same 2D curvilinear grid stacked on each of
the twoz planes. At the spanwise end planes Sym-
metry conditions are applied to ensure two dimen-
sionality of the flow. The two block radial polar grid
(Fig. 2(a)) is used on the two-dimensional plane of

interest, between the cylinder of unit diameter(D)
and the far field of radius twenty units. The grid lines
are stretched radially near the wall to resolve the
sharp local gradients of the flow variables. Fig. 2(b)
shows the boundary conditions used for the turbu-
lent flow computation. Block 1 consists of an inflow
boundary, a wall boundary for the half cylinder and
two cut boundaries separating this block from the
neighbouring Block 2 as shown in the figure. Simi-
larly, Block 2 consists of an outflow, a wall boundary
for the rest half of the cylinder and the two cuts. An
impulsive start of the cylinder is simulated by speci-
fying uniform inflow velocity (U = U∞ andV = 0
)at all nodes with no slip conditions (U = 0 and
V = 0),imposed on the cylinder wall as initial con-
ditions (t = 0) and maintained thereafter at all time
instants (t > 0). For the turbulence scalars, appro-
priate near wall boundary conditions have been used
depending on the turbulence model chosen. The
level of free stream turbulence energy(k) is main-
tained at 1% of the mean kinetic energy of the free
stream whereas the value of the turbulence energy
dissipation(ε) at the inflow boundary nodes is pre-
scribed assuming the local eddy viscosity to be ap-
proximately equal to the laminar viscosity. Effect of
the spatial and temporal discretisation schemes and
the effect of far field location have earlier been stud-
ied in detail for laminar flows. In the present study
extensive parametric analysis have been carried out
for turbulent flows atRe= 105 andRe= 3.6×106 in
order to study the effect of grid-size, time step size
and local eddy viscosity level at the inflow boundary.
Based on the previous and present studies, central
difference scheme for spatial discretisation coupled
to second order time discretisation with∆t = 0.05
have been used for all the turbulent flow computation
at different Reynolds number. For very high values
of Re, the number of grid lines and the near wall
grid spacing are so adjusted that the value ofy+ at
the first near wall point is maintained to be less than
unity for all the turbulence models used.

3.2 Temporal Evolution of Lift and
Drag Coefficients

The typical temporal evolution of the lift(Cl ) and
drag(Cd) coefficients for the cylinder computed for
Reynolds number of 105, using different turbulence
models are shown in Fig. 3. The variation of the
aerodynamic coefficients are plotted against non-
dimensional time(t̄ = U∞t

D ). Irrespective of the tur-
bulence model used, the figures clearly demonstrate
the phenomenon of periodic fluctuation of the lift
and drag coefficient due to turbulent vortex shed-
ding. In each computation however, large number of
time steps are required for the initial transients to die
out and finally when a statistically stationary state is



reached, the number of iterations required per time
step is reduced. The temporal variation of the lift
(Cl ) coefficient shows a periodic fluctuation about
the zero mean as expected physically for a symmet-
ric mean flow and the corresponding Fourier spec-
tra (not shown in any figure) indicates a dominant
frequency(f ), expressed in non-dimensional form as
the Strouhal number(St= f D

U∞
) . In case of drag(Cd)

also similar periodic behaviour is demonstrated but
the Strouhal number forCd is observed to be almost
double the corresponding value for theCl . Such dif-
ference in the frequency of the periodic mean motion
between the longitudinal and the transverse direction
has also been observed and explained in other mea-
surement and computation data reported in unclas-
sified literature (Mittal 2001; Song and Yuan 1990;
Drescher 1956). For the same flow Reynolds num-
ber of 105, the mean value of the drag coefficient and
the maximum or RMS amplitude of the lift coeffi-
cient, obtained by different turbulence models, indi-
cated in the same Fig. 3, are observed to be different.
The Chien’s lowRe k− ε and the SST model appear
to be predicting nearly the same value of maximum
Cl amplitude as 1.0 at the statistically stationary state
whereas the SA model consistently under predicts
and the V2F model over predicts the same quan-
tity by about 15 to 20%. Comparison to measure-
ment data on mean drag coefficient(Cd ≈ 1.2) re-
ported in literature (Achenbach 1968) demonstrates
that the predictions by V2F model agree reason-
ably well; Chien and SST models mildly under pre-
dict the Cd value whereas SA model grossly un-
der predicts this value. AtRe= 105, the experi-
mentally observed laminar flow separation is consis-
tently over predicted by all the four models. How-
ever, the predicted location of separation is at around
90◦ whereas the corresponding measured value re-
ported by Aachenbach (Achenbach 1968) is around
78◦. Further the post separation behaviour of the tur-
bulent flow, specially the combined effect of the tur-
bulent free shear layer bordering the wake and the
large vortex structure of the near wake itself in the
vicinity of the rear surface of the cylinder, is ob-
served to be quite different for the different turbu-
lence models used. Under prediction of mean drag
coefficients for flow past circular cylinder, observed
in the present computation with some of the turbu-
lence models, has also been reported by other re-
searchers (Cox 1997; Selvam 1997). Fig. 4 shows
the temporal evolution ofCl andCd at four different
Reynolds number using the Chien’s lowReversion
of k− ε model. The sharp drop in the level of mean
drag coefficient is clearly seen in the figure when the
Reis increased from 105 to 8.5×105, whereas when
theRe is further increased to 3.6×106 and 107 the
level of mean drag further decreases but at a much
slower rate. The increase of the drag observed in
measurement data (Zdravkovich 1997; Achenbach

1968; Schlichting 1968) when the Reynolds num-
ber in increased to 107 is not captured by the present
computation with any of the four turbulence mod-
els, even using reasonably high spatial and temporal
resolution (Section 3.3). The maximum value ofCl

is drastically reduced from about 1.0 atRe= 105 to
approximately 0.3 atRe= 8.5×105, but the level of
maximumCl remains almost unchanged as theReis
increased further up to 107.

3.3 Surface Pressure and Skin Friction
on Cylinder Surface

The time averaged flow quantities at any field node
are computed from arithmetic averaging of the rel-
evant flow variable over at least 50 vortex shed-
ding cycles after the statistically stationary state is
reached. Both the surface pressure and the wall
shear stress on the cylinder surface are appropriately
non-dimensionalised for pressure asCp = (p−p∞)

1/2ρU2∞

and for skin friction asβ = τwall
1/2ρU2

∞

√
Re. Fig. 5 shows

the circumferential variation ofCp and β at four
different Reynolds number (Re= 105, 8.5× 105,
3.6× 106 and 107) using two different grid sizes -
one with 121 nodes (∆θ = 3◦) along the circum-
ferential direction and 144 points in the radial di-
rection (∆r = 1× 10−4D for Re= 105 ) and the
other with 241 nodes (∆θ = 1.5◦) along the cir-
cumferential direction and 305 points in the radial
direction (∆r = 1×10−4D for Re= 105). However
insignificant effect of grid refinement on the circum-
ferential variation ofCp andβ, observed in Fig. 5,
indicates the results with 121×144 nodes to be more
or less grid-independent. Similarly for time step size
also, the results obtained using∆t = 0.05 and 0.005
shown in Fig. 5(a) and (c) justify the independence
of the solution on the time step size for∆t = 0.05.

The effect of the four different turbulence models
on circumferential variation ofCp andβ at four dif-
ferent Reynolds number are shown in Fig. 6. Ir-
respective of the turbulence model used, the com-
puted pressure distribution and the skin friction coef-
ficient agree reasonably well with the measurement
data (Jones et al. 1969; Achenbach 1968) for the
front segment of the cylinder covering almost one
third of the periphery (about 60◦ on either side of the
front stagnation point) where the flow mostly con-
sists of the development of a laminar boundary layer
under a favourable pressure gradient. But beyond
the subcritical regime ofRe= 105, discrepancies are
observed between the computed and measured val-
ues of the suction peak attained by this accelerating
flow. The corresponding peak of the skin friction co-
efficient are largely over predicted at almost all the
flow Reynolds number beyond 105. The other major



disagreement lies here in the prediction of the sepa-
ration point location which, compared to the corre-
sponding measurement data, is invariably predicted
further downstream for all the flow situations stud-
ied. The prominent double peak in skin frictionβ
observed in the measurement data atRe= 8.5×105,
possibly due to the transition taking place well be-
fore the separation, has not at all been captured by
any of the turbulence models used. However the
measurement data for flow atRe= 3.6×106 do not
exhibit such double peaks ofβ and it is not clear
whether flow at thisReis fully turbulent and the tran-
sition point falls very close to the stagnation point.
However the large over prediction of the single peak
magnitude ofβ at the same Reynolds number is not
in conformity with the argument of fully turbulent
flow everywhere in the boundary layer on the cylin-
der surface. AtRe= 107 when the boundary layer
is physically expected to be fully turbulent for most
part of the cylinder, the base pressure at the rear
surface predicted by all the models is found to be
close to the measurement data but the magnitude
of the suction peak is over predicted with a down-
stream displacement of the peak location as well.
This disagreement which also explains the discrep-
ancy in the value of the aerodynamic coefficients
may be attributed to the inadequacy of the eddy vis-
cosity based turbulence models for flow in the pres-
ence of laminar to turbulent transition and also to
the strong adverse pressure gradient. Perhaps LES
or DNS simulations might be more reasonable ap-
proaches for resolving such flows with large vortical
structures and often with more than one characteris-
tic frequencies.

3.4 Phenomenon of Drag Crisis

In order to understand whether the Unsteady 2D
RANS computation employing eddy viscosity based
turbulence models, is capable of predicting the inter-
esting phenomenon of Drag Crisis for circular cylin-
ders, observed in measurement data forCd against
Re, 2D computations have been carried out for a
wide range of flow Reynolds number spanning from
the laminar regime to as high as 107. Fig. 7 shows
the available measurement data (Zdravkovich 1997;
Achenbach 1968; Schlichting 1968) on the mean
drag coefficient collected from different sources and
also the present computation results for laminar flow
as well as for turbulent flow situations using variety
of turbulence models. Excellent agreement with
the compilation data of Zdravkovich (Zdravkovich
1997) in the laminar regime up to aboutRe= 200
confirms the adequacy of the space and time res-
olution and also the accuracy of the discretisation
schemes used in the flow solution algorithm of
RANS3D. BeyondRe= 200, the important effects

of the three dimensional spanwise instabilities on
the flow have already been identified by many re-
searchers including the present author (Rajani et al.
2009; Mittal 2001; Mittal and Balachandra 1997;
Williamson 1996; Zhang et al. 1995; Williamson
and Roshko 1990; Roshko 1955; Roshko 1954). As
stated earlier, this complex flow always consists of
laminar, turbulent and transitional patches and the
discrepancies obviously are expected to be more
while using either purely laminar flow equations or
fully turbulent flow-based turbulence models for sit-
uations with large laminar or transitional patches.
Accordingly the zone ofRebetween 400 and 3000
has been simply omitted for the time being and the
unsteady RANS computation has been carried out
betweenRe= 3900 and 107. Up toRe= 6.9×104,
the turbulence models appear to have insignificant
effect on the predicted mean drag coefficient. How-
ever beyondRe= 6.9×104, a sharp fall in the drag
coefficient is observed - but at different rates with
different turbulence models. The computation with
SA model shows a very sharp fall atRe= 1×105 re-
sulting in a strong under prediction ofCd compared
to the measurement data. The Chienk− ε model
more or less follows the data from other source up
to Re= 8.5×105, with a sudden drop inCd occur-
ring atRe= 1.4×105 which is slightly earlier than
that observed in the measurement data. The SST
and V2F models also follow a similar trend of the
drag variation where the phenomenon of drag crisis
occurs at a relatively high value of flow Reynolds
number(Re= 3.6× 105) and hence the mean drag
coefficient is over predicted forRe> 105. However
as theRe increases further, results from all the four
models more or less follow the same trend of drop
in Cd till Re reaches about 106. Therefore quali-
tatively a sharp drop inCd in the critical regime is
manifested by all the turbulence models, but a wide
scatter is observed in the computation results ob-
tained by different models. Further, the falling trend
of Cd is continued in the prediction even when the
Reynolds number is increased to higher value of the
order of 107. None of the 2D URANS computation
is able to capture the rise inCd observed in the mea-
surement data beyond a Reynolds number of 106.
Fig. 8 shows the variation of the mean drag coef-
ficient with flow Reynolds number using a single
turbulence model coupled to different grid and time
step sizes. The overlapping of the data points clearly
shows the solution obtained using 121× 144 grid
and∆t = 0.05 may be accepted as the grid indepen-
dent solution and further refinement does not bring
any significant effect on the solution. The discrepan-
cies between the measurement data and computation
results may mostly be attributed to the inadequacy
of the eddy viscosity based turbulence models to
capture the transition specially beyond the critical
regime when the transition takes place somewhere



in the cylinder surface boundary layers and that too
at a point upstream of the separation point.

Fig. 9 compares the computed variation of the
Strouhal number (St) with the flow Reynolds num-
ber against measurement data available from differ-
ent sources (Williamson 1992; Cantwell and Coles
1983; Roshko 1961). Similar to the mean drag varia-
tion, the prediction matches reasonably well to mea-
surement data in the pure laminar regime (Re< 250).
However for turbulent flow regime, the predicted
Strouhal number is observed to be almost constant
approximately at a level of 0.25 tillRe= 105 fol-
lowed by a sharp rise as the value ofRe increases
towards 107. The measurement data for Strouhal
number shows a similar trend of variation in a qual-
itative sense but the approximately constant level
of Strouhal number for 103 < Re< 3× 105 is at
around 0.2 whereas the predicted level is found to
be at the order of 0.25. Further the peak value of
St= 0.45 atRe= 2×106, followed by a sharp drop,
as observed in measurement data of Roshko (Roshko
1961), could not also be captured by the present
computation where instead of the drastic oscillatory
behaviour, a slowly increasing trend is clearly ob-
served tillRe= 107, for all the turbulence models
used. The major discrepancies indicate gross inade-
quacy of the two dimensional flow computation us-
ing eddy viscosity based turbulence models for sim-
ulation of the present flow situation where the tran-
sition taking place in the free-shear layer bordering
the near wake zone plays a very important role and
eventually the transition is observed to occur along
the spanwise direction within the separation bubble
itself.

4 CONCLUDING REMARKS

Two dimensional turbulent flow past a circular cylin-
der has been computed for flow Reynolds number
varying from 104 to 107 using the Unsteady RANS
code RANS3D coupled to four eddy viscosity-based
turbulence models. In the subcritical range up to
Re= 105, all the four turbulence models predict rea-
sonable flow patterns with turbulence vortex shed-
ding at definite frequency (Strouhal number) for a
given Reynolds number. The circumferential varia-
tion of the time averaged pressure and skin friction
around the cylinder for different values ofReshow
that compared to measurement data, the flow sepa-
ration location on the cylinder surface is always pre-
dicted further downstream, irrespective of whether
the separation is laminar or turbulent. As a con-
sequence of that the width of the wake and hence
the base pressure at the cylinder rear surface which
decides the value ofCd is changed. The skin fric-
tion coefficient is, in general, largely over predicted

for Rebeyond the critical regime. This may be at-
tributed to the gross inadequacy of all the turbulence
models to capture the effect of laminar to turbulent
transition in the boundary layer on the cylinder sur-
face. A sharp fall of the mean drag coefficientCd is
captured by all the turbulence models, as observed
in measurement; but only the low Reynolds num-
ber version of the Chienk− ε turbulence model is
able to predict the phenomenon of drag crisis at a
Recloser to the corresponding measurement data. A
wide scatter is observed in the predicted variation
of the mean drag coefficient with Reynolds number.
It is important to note that unlike the measurement
data, the falling trend ofCd with Re is not reversed
in the prediction for the post or transcritical regime
whenReexceeds 5×105. The phenomenon of Drag
Crisis is captured by the eddy viscosity based tur-
bulence models in a qualitative sense only. More
accurate prediction demands realistic simulation of
the transition process in the free-shear layer in the
subcritical regime and also the complex transition in
the boundary layer interacting with the flow separa-
tion in the critical and post-critical regime. Work is
in progress on Large Eddy Simulation of the same
flow, which is likely to capture the physical process
of transition through direct numerical simulation of
the large eddies and produce more accurate results
on this complex unsteady three dimensional flow sit-
uation.
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(a) Hexahedral control volume (b) Projection areas for 2D Cell

Figure 1: Typical control volume and cell face projection area
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Figure 2: Multiblock polar grid(124×144) and boundary conditions
used for computation of flow past circular cylinder
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Figure 3: Temporal variation of lift (Cl ) and drag (Cd) coefficient
using different turbulence models (Grid:121×144,∆t = 0.05,Re= 105)
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(a) Re= 105
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(c) Re= 3.6×106
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Figure 4: Temporal variation of lift (Cl ) and drag (Cd) coefficient at different
Reusing Chien lowRe k− ε turbulence model (Grid:121×144,∆t = 0.05)



(a) Re= 105

(b) Re= 8.5×105

(c) Re= 3.6×106

(d) Re= 107

Figure 5: Surface pressure (Cp) and skin friction coefficient (β) around the cylinder at different
Reusing Chien’s lowRe k− ε turbulence model
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Figure 6: Surface pressure (Cp) and skin friction coefficient (β) around the cylinder at different
Reusing different turbulence models (Grid:121×144,∆t = 0.05)



Figure 7: Effect of turbulence models on the variation of mean drag coefficient withRe
(Grid:121×144,∆t = 0.05)

Figure 8: Effect of grid and time step size on the variation ofmean drag coefficient withRe
(Turbulence Model : Chien low Rek− ε)



Figure 9: Effect of turbulence models on the variation of Strouhal number (St) with Re
(Grid:121×144,∆t = 0.05)


