CORE

National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists 14-16 April 2009, National Aerospace Laboratories, Bangalore-17

Formatted: Right, Space After: 12 pt
Formatted: Font: 9 pt, Italic
Formatted: 13_Chapt_title
Formatted

# Reactive Processing of Ceramic Composites at Moderate Temperatures 

L. Rangaraj* ${ }_{-}^{1}$, C. Divakar ${ }^{1}$ and V. Jayaram ${ }^{2}$<br>${ }^{1}$ Materials Science Division, National Aerospace Laboratories (CSIR), Bangalore-560 017017, INDIA<br>E-mail: *ranga@nal.res.in<br>${ }^{2}$ Department of Materials Engineering, Indian Institute of Science, Bangalore-560 012 ${ }_{2}$ INDIA<br>ranga@nal.ros.in

## ABSTRACT:

Dense $\mathrm{TiN}^{-\mathrm{TiB}_{2}}$ and $\mathrm{ZrB}_{2}-\mathrm{ZrC}$ composites were produced by using stoichiometric Ti - BN and $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ powder mixtures with $1 \mathrm{wt} \% \mathrm{Ni}$ at $40 \mathrm{MPa}, 1600^{\circ} \mathrm{C}$ for 30 min . Addition of excess $\mathrm{Ti}+\mathrm{Zr}$ powder to stoichiometric Ti-BN $+/ Z \mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ powder mixtures yielded dense $\mathrm{TiN}_{x}-\mathrm{TiB}_{2}$ and $\mathrm{ZrB}_{2}-\mathrm{ZrC} \mathrm{X}_{x}$ composites at $1200^{\circ} \mathrm{C}$. The densification mechanism in $\mathrm{TiN}^{\mathrm{T}} \mathrm{TiB}_{2}$ composites attributed to the presence of transient Ti-Ni liquid phase for long time. However, in case of $\mathrm{ZrB}_{2}$ - ZrC composites, plastic deformation of transient $\mathrm{ZrC}_{x}$ grains during reactive hot pressing played a predominant role in densification without Ni. Further, $\mathrm{ZrB}_{2}-\mathrm{ZrC}-\mathrm{SiC}$ composite were produced by using $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$-Si powder mixtures at $1600^{\circ} \mathrm{C}$ for 30 min . The relative density, hardness and fracture toughness of the composites are $99 \%, 20-22$ GPa and 5--5.5 MPa.m ${ }^{1 / 2}$ respectively.
-
Key-words: Composites, Densification, Transient Liquid Phase, Plastic Deformation,

## 1. INTRODUCTION

Group IV transition metal ( $\mathrm{Ti}, \mathrm{Zr}$ and Hf ) borides, carbides and nitrides are considered for various engineering applications due to their high melting temperatures, high Young's modulus, high temperature strength, high hardness, good wear resistance etc $c_{-}^{-[1]}=$ To specify a few, Ti-based boride ( $\mathrm{TiB}_{2}$ ), carbide (TiC) and nitride (TiN) are considered for cutting tool and wear resistant applications due to their high hardness and good wear resistance ${ }^{[22-5]}$. On the other hand $\mathrm{Zr}-$ based ( $\mathrm{ZrB}_{2}$ ), carbide ( ZrC ) and nitride ( ZrN ) with silicon carbide ( SiC ) additions are considered for ultra-high temperature applications including nose-cone and thermal protection systems in reentry vehicles due to
their high melting temperature $\left(3000^{\circ} \mathrm{C}\right)$ and good chemical stability ${ }^{[16=12]}$

At present, ceramic monoliths and composites have been ${ }^{\wedge}$ produced by various methods including Pressureless Sintering (PS), Hot Pressing (HP), reactive hot pressing (RHP) etc., The PS required very high processing temperatures ( $1850-2200^{\circ} \mathrm{C}$ ) in addition to $\mathrm{Ni}, \mathrm{Cr}, \mathrm{Fe}$, $\mathrm{MoSi}_{2}$ etc as sintering aids $\underline{-}^{[13-19]}$. These composites may deteriorate during the application due to exaggerated grain growth and liquid phase. The HP produces nearly fully dense composites at temperatures lower by $100-200^{\circ} \mathrm{C}$ than PS and also minimizes the amount of sintering aids ${ }^{[9-11,20=22]}=$ In recent years, the RHP technique has been used to prepare various composites starting with reactant powder mixtures. This technique offered advantages like homogenous

Formatted: 11 Au name, Left

Formatted: 12_Au_name_expla, Left
Formatted: Font: 12 pt

Formatted: 09_0_abs_Head, Left

## Formatted: Font: Bold

| Formatted: $03 \_$__level, Left |
| :--- |
| Formatted: Font: 11 pt, Superscript |
| Formatted: Font: 11 pt, Not Bold, Superscript |
| Formatted: Condensed by 0.2 pt |
| Formatted: $02 \_$In_para, Left, Space Before: 8 |
| pt |
| Formatted: Condensed by 0.2 pt |
| Formatted: Font: 11 pt, Superscript |
| Formatted: Font: 11 pt, Not Bold, Superscript |
| Formatted: Condensed by 0.2 pt |
| Formatted: Condensed by 0.1 pt |
| Formatted: Centered, Space Before: 10 pt |
| Formatted: Font: 10.5 pt |
| Formatted: Default Paragraph Font, Font: |
| 10.5 pt |

Formatted: Font: 11 pt, Superscript
Formatted: Font: 11 pt, Not Bold, Superscript
Formatted: Condensed by 0.2 pt
Formatted: 02 In para, Left, Space Before:

Formatted: Font: 11 pt, Superscript
Formatted: Font: 11 pt, Not Bold, Superscript
Formatted: Condensed by 0.2 pt
Formatted: Condensed by 0.1 pt
Formatted: Centered, Space Before: 10 pt

Formatted: Default Paragraph Font, Font:
10.5 pt

## National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists

 14-16 April 2009, National Aerospace Laboratories, Bangalore-174distribution of matrix and reinforcement, strong interfacial bonding between matrix and reinforcement, finer grain size distribution and hence better thermodensification mechanism was attributed due to the formation of a low temperature $\mathrm{Ti}-\mathrm{Ni}$ liquid phase at $\sim 942^{\circ} \mathrm{C}$, which leads to higher densification due to the transient liquid phase sintering during the RHP. At the end $\left(1600^{\circ} \mathrm{C}\right)$ it was identified that the Ni was present as isolated particles at the triple points. The present work deals with the reaction and densification of TiN$\mathrm{TiB}_{2}$ and $\mathrm{ZrB}_{2}-\mathrm{ZrC}$ composites starting with stoichiometric and non-stoichiometric $\mathrm{Ti}-\mathrm{BN}$ and $\mathrm{Zr}-$ $\mathrm{B}_{4} \mathrm{C}$ powder mixture. The reaction and densification of $\mathrm{ZrB}_{2}-\mathrm{ZrC}-\mathrm{SiC}$ composites are also reported.

## 2. EXPERIMENTAL WORK

The composites were prepared according to the following reactions:
$-(3+y) \mathrm{Ti}+2 \mathrm{BN} \rightarrow \mathrm{TiB}_{2}+(1+\mathrm{y}) \mathrm{TiN}_{1 /(1+\mathrm{y})}$
$(3+y) \mathrm{Zr}+\mathrm{B}_{4} \mathrm{C} \rightarrow 2 \mathrm{ZrB}_{2}+(1+\mathrm{y}) \mathrm{ZrC}_{1 /(1+\mathrm{y})} \ldots$.
$2.5 \mathrm{Zr}+\mathrm{B}_{4} \mathrm{C}+0.65 \mathrm{Si} \rightarrow \mathrm{ZrB}_{2}+0.5 \mathrm{ZrC}_{\mathrm{x}}+0.65 \mathrm{SiC} \ldots$
.

## -2.1. Mixing of Powders

The mixing of required quantities of Ti and BN powders with $1 \mathrm{wt} \% \mathrm{Ni}$ was carried out with a ball: powder ratio of $10: 1$ in a Fritsch Pulveresette centrifugal ball mill for 24 hrs in hexane medium. The required quantities of powders $\left(\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}\right.$ or $\left.\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}-\mathrm{Si}\right)$ with $1 \mathrm{wt} \% \mathrm{Ni}$ were mixed in a rotary ball mill using $\mathrm{ZrO}_{2}$ ( $8 \mathrm{~mol} \% \mathrm{Y}_{2} \mathrm{O}_{3}$ ) milling media for 24 hrs in a polythene bottle containing ethanol medium with the ball: powder ratio of $3: 1$. Selected compositions without Ni were also mixed. The powder mixtures were dried at $\sim 100^{\circ} \mathrm{C}$ for $\sim 5$ hrs. The weight loss of the $\mathrm{ZrO}_{2}$ milling media after each mixing was $\sim 2 \mathrm{wt} \%$, indicating incorporation of impurity in the starting mixture.

Table 1The Purity, Particle Size and Source of the Powders,

| Powder | Purity (\%) | Particle $\text { Size }(\mu \mathrm{m})$ | Source |
| :---: | :---: | :---: | :---: |
| ${ }_{4}$ Titanium ${ }^{\text {a }}$ (2) $=99.5$ |  | -10-15 | M/s Alfa-Aesar, USA |
| $\begin{aligned} & \text { Boron } \\ & \text { Nitride (3) } \end{aligned}$ |  | -5 | M/s Alpha |
|  |  |  | Chemicals-India |
| Zirconiu <br> m | 98 | 2-10 | M/s Yashoda special metals, Hyderabad |
| Boron | 99 | 10-20 | $\mathrm{M} / \mathrm{s}$ S Boron Carbide |
| Garbide |  |  | India Pvt. Ltd |

mechanical properties. The composites produced by RHP are: $\mathrm{TiB}_{2}-\mathrm{TiC}^{-[23]}, \mathrm{TiN}^{\left[2 \mathrm{TiB}_{2-}\right.}{ }^{[[3-5]}, \mathrm{ZrB}_{2}-\mathrm{ZrC}_{-}{ }^{[[24,}$ ${ }^{25]}, \mathrm{ZrB}_{2}-\mathrm{SiC}-\left[24,{ }^{26-29]}, \mathrm{ZrB}_{2}-\mathrm{ZrC}-\mathrm{SiC}-{ }^{[[29]}\right.$ etc. The composites produced by RHP also adopted the similar

Table 1: The Purity, Particle Size and Source of the Powders

| Powder | $\underline{\text { Purity }(\%)}$ | $\underline{\text { Particle Size }(\mu \mathrm{m})}$ | Source |
| :--- | :---: | :---: | :--- |
| Titanium | $\underline{\sim 99.5}$ | $\underline{\sim 10-15}$ | $\underline{\mathrm{M} / \mathrm{s} \text { Alfa-Aesar, USA }}$ |
| $\underline{\text { Boron Nitride }}$ | $\underline{\sim 99.5}$ | $\underline{-5}$ | $\underline{\mathrm{M} / \mathrm{s} \text { Alpha Chemicals- India }}$ |
| $\underline{\text { Zirconium }}$ | $\underline{98}$ | $\underline{2-10}$ | $\underline{\mathrm{M} / \mathrm{s} \text { Yashoda special metals, Hyderabad }}$ |
| Boron Carbide | $\underline{99}$ | $\underline{10-20}$ | $\underline{\mathrm{M} / \mathrm{s} \text { Boron Carbide India Pvt. Ltd }}$ |
| $\underline{\text { Silicon }}$ | $\underline{99}$ | $\underline{4}$ | $\underline{\mathrm{M} / \mathrm{s} \text { Elkem, Germany }}$ |
| $\underline{\text { Nickel }}$ | $\underline{99.5}$ | $\underline{4}$ | $\underline{\mathrm{M} / \mathrm{s} \text { INCO - United Kingdom }}$ |

Recently, our work has shown that the addition of 1 $\mathrm{wt} \% \mathrm{Ni}$ to the stoichiometric $3 \mathrm{Ti}-2 \mathrm{BN}$ powder mixture yielded 99.5\% Relative Density (RD) $2 \mathrm{TiN}-\mathrm{TiB}_{2}$ composite at $1600^{\circ} \mathrm{C}$ for 30 min , whereas without Ni requires at least $1850^{\circ} \mathrm{C}$ to achieve $98.2 \% \mathrm{RD}_{-^{-}}{ }^{[5]}=$ The

The value of ' $y$ ' is 0 to 0.5 . The purity, particle size ${ }^{4}$ and source of the raw materials used in the present study are listed in Table 1.
conditions of HP. The densification mechanisms operating during RHP has not been well understood, except the fine grain size development in $\mathrm{ZrB}_{2}-\mathrm{SiC}$ composites- ${ }^{[[27]}$ and plastic deformation mechanism in $\mathrm{TiB}_{2}-\mathrm{TiC}$ composites- ${ }^{\text {[123ł1 }}$, however, these mechanisms were operative at high temperatures $\left(1500^{\circ} \mathrm{C}\right.$ and above).
位


## 7



National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists 14-16 April 2009, National Aerospace Laboratories, Bangalore-174

Section 1.01 Figure 1The Typical Temperature time - pressure Gycle of the Gomposites Produced at-40. $\mathrm{MPa}, 1200^{\circ} \mathrm{C}$ for 30 min .

For high temperature ( 1600 and $1850-{ }^{\circ} \mathrm{C}$ ) experiments with ( $1 \mathrm{wt} \% \mathrm{Ni}$ ) and without Ni , the start of pressure application was at $1400 / 1600^{\circ} \mathrm{C}$ and the required pressure was reached in 25 min and maintained for the required time. For low temperature experiments (1100-$-1400-{ }^{\circ} \mathrm{C}$ ), the start of pressure application was at 950 ${ }^{\circ} \mathrm{C}$

Formatted: Right, Space After: 12 pt
Formatted: Font: 9 pt, Italic
Formatted: Font: 9.5 pt, Not Bold, Font color: Auto
Formatted: 02_In_para, Left, Line spacing:
Multiple 1.01 li
Formatted: Font: 9.5 pt, Not Bold, Font color: Auto
Formatted: Font: Helvetica, 9 pt
Formatted: 01_Open_para, Left, Space
Before: $0 \mathrm{pt}, \mathrm{After:} 0$ pt
Formatted: Font: 9.5 pt, Not Bold, Font color:
Auto
Formatted: Font: Helvetica, 9 pt
Formatted: 01_Open_para, Left, Space
Before: 0 pt, After: 0 pt
Formatted: Font: 9.5 pt, Not Bold, Font color:
Auto
Formatted: 02_In_para, Line spacing:
Multiple 1.01 li
Formatted: 04_B_level, Indent: First line: 0"
Formatted: 04_B_level, Space Before: 14 pt, Line spacing: Multiple 1.01 li

Formatted: Condensed by 0.2 pt
Formatted: 01_Open_para, Left, Line spacing:
Multiple 1.01 li
Formatted: Condensed by 0.2 pt
Formatted: 02_In_para, Left
Formatted: Condensed by 0.1 pt
Formatted: Condensed by 0.2 pt
Formatted: Condensed by 0.1 pt
Formatted: Condensed by 0.1 pt
Formatted: 02 In para, Left, Indent: First line: 0 ", Line spacing: Multiple 1.01 li

Formatted: Centered, Space Before: 10 pt
Formatted: Font: 10.5 pt
Formatted: Default Paragraph Font, Font:
10.5 pt

## National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists

 14-16 April 2009, National Aerospace Laboratories, Bangalore-17and again the final pressure was reached in 25 min and maintained for the required time. In both cases the pressure was released within 10 min during cooling. In case of $\mathrm{ZrB}_{2}-\mathrm{ZrC}$ and $\mathrm{ZrB}_{2}-\mathrm{ZrC}-\mathrm{SiC}$ composites, the pressure application was started at $1000 / 1200 / 1400-{ }^{\circ} \mathrm{C}$ and held for required temperature. The stoichiometric $\mathrm{ZrB}_{2}-\mathrm{ZrC}$ composites have been produced at $1200-$ $1600^{\circ} \mathrm{C}$ for 30 min and non- stoichiometric $\mathrm{ZrB}_{2}-\mathrm{ZrC}_{\mathrm{x}}$ composites have been produced at $1000-1400{ }^{\circ} \mathrm{C}$ for $30 \mathrm{~min} . \mathrm{ZrB}_{2}-\mathrm{ZrC}-\mathrm{SiC}$ composites have been produced at $1400{ }^{\circ} \mathrm{C}$ and $1600^{\circ} \mathrm{C}$ for 30 min .


Fig. 1: The Typical Temperature-time-pressure Cycle of the Composites Produced at $40 \mathrm{MPa}, 1200^{\circ} \mathrm{C}$ for 30 min

### 3.0 CHARACTERIZATION

The reactive hot pressed composites were recovered from the graphite die assembly after cooling to room temperature were ground by coarse silicon carbide (SiC) abrasive paper and final polishing using diamond pastes ( 1 and $0.25 \mu \mathrm{~m}$ ) in an automatic polishing machine (Ecomet 4000 with Automet 2000, M/s Buehler, USA). The polished samples were cleaned with acetone in an ultrasonic cleaner. The density of the samples was measured by water immersion method. The relative densities (RD) of the composites are estimated using the measured bulk density and the calculated theoretical density according to rule of mixtures using the reactions (1) to (3).

The phase identification in the composites was carried out by recording the X-ray diffraction (XRD) patterns in the $2 \theta$ range of $20-80^{\circ}$ with $0.1^{\circ}$ step using A Philips
x-ray diffractometer (Philips, Eindhoven, The Netherlands). The $\mathrm{N} / \mathrm{Ti}$ and $\mathrm{C} / \mathrm{Zr}$ and stoichiometry were studied by determining the lattice parameter $(\AA)$ of ZrC and TiN in the composites. The lattice parameters $a$ and $c$ of $\mathrm{ZrB}_{2}$ and $\mathrm{TiB}_{2}$ were also determined. The lattice parameter was calculated by recording the XRD patterns in the $2 \theta$ range of $80-156^{\circ}$ with $0.02^{\circ}$ step and using standard extrapolation functions $\left(\cos ^{2} \theta / \sin \theta\right)$ to determine the true lattice parameter at a Bragg angle of $90^{\circ}$.
Vickers hardness measurements (Model HSV-20, Shimadzu Corporation, Kyoto, Japan) were performed on the polished surfaces at a test load of $500 \mathrm{~g}(4.9 \mathrm{~N})$ and a holding period of 15 seconds. An average of 15 readings was taken for each reported value. The indentation fracture toughness of the composites have been measured using 5 to 10 kg load calculated using the formula- $\left[^{[30+]_{-}}\right.$

The micro-structural observations of the surfaces of the composites were carried out using optical microscopy (Axiovert 200 M MAT, Carl Zeiss Light Microscopy, Goettingen, Germany). Polished $\mathrm{ZrB}_{2}-\mathrm{ZrC}$ samples were etched using $\mathrm{HF}: \mathrm{HNO}_{3}: \mathrm{H}_{2} \mathrm{O}$ solution in the ratio of 2:3:95 for 10 seconds to distinguish $\overline{\mathrm{ZrB}}_{2}$ and ZrC grains. Scanning electron microscopy (SEM: FEI-Sirion, Eindhoven, The Netherlands) with energy dispersive xray microanalysis (EDAX, super-ultra-thin window, Genesis Spectrum, Mahwah, NJ07430, USA) was used to study the reaction and densification of composites. The average grain size of $\mathrm{ZrB}_{2}$ and ZrC has been measured through image analysis of the SEM micrographs by the line intercept method by counting a minimum of 300 grains. The amount of unreacted $\mathrm{B}_{4} \mathrm{C}$ present, porosity, amount of $\mathrm{ZrB}_{2}, \mathrm{ZrC}, \mathrm{SiC}, \mathrm{TiB}_{2}$, TiN in the composites were also estimated using optical and SEM micrographs

### 4.0 RESULTS AND DISCUSSION

## 4.1_TiN-TiB ${ }_{2}$ Composites

### 4.1.1 Reaction of Ti-BN Powder Mixtures

Stoichiometric Ti-BN powder mixtures in presence of Ni led to completion of reaction at $1200^{\circ} \mathrm{C}$, whereas without Ni required at least $1400^{\circ} \mathrm{C}$. The RD of the composites without Ni increases from 78 to $98.2 \%$ as the temperature increases from $1400^{\circ} \mathrm{C}$ to $1850^{\circ} \mathrm{C}$. The ${ }^{4}$ addition of $1 \mathrm{wt} \% \mathrm{Ni}$ yielded 93 to $99.5 \% \mathrm{RD}$ composites as the temperature increased from 1200 to

Formatted: Font: 9 pt , Italic
Formatted: Right, Space After: 12 pt
Formatted: Font color: Auto

Formatted: Condensed by 0.2 pt

Formatted: Condensed by 0.2 pt

Formatted: 02 In para, Left, Line spacing:
Multiple 0.99 li

Formatted: Condensed by 0.2 pt

Formatted: Condensed by 0.2 pt
Formatted: Condensed by 0.2 pt
Formatted: Condensed by 0.1 pt
Formatted: Condensed by 0.2 pt
Formatted: 02_In_para, Left
Formatted: 03_A_level, Left
Formatted: Condensed by 0.2 pt
Formatted: Condensed by 0.2 pt
Formatted: 03_A_level, Left, Space Before: 15 pt
Formatted: Condensed by 0.2 pt
Formatted: 04_B_level, Left, Space Before: 10 pt
Formatted: Font: Not Italic
Formatted: Font color: Auto
Formatted: 01_Open_para, Left
Formatted: Font color: Auto, Condensed by 0.2 pt

Formatted: 02_In_para
Formatted: Condensed by 0.2 pt
Formatted: Centered, Space Before: 10 pt
Formatted: Font: 10.5 pt
Formatted: Default Paragraph Font, Font: 10.5 pt

National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists
14-16 April 2009, National Aerospace Laboratories, Bangalore-17
$1600^{\circ} \mathrm{C}$. The composites produced at intermediate Ti -Ni liquid phase, which results in enhancement of temperature ( $1100-1200^{\circ} \mathrm{C}$ ) showed the formation of densification.

Table 2: Experimental Conditions and Properties of the Composites

| Composition | $\frac{\text { Experimental }}{\text { Conditions }}$ $\left(\mathrm{MPa} /{ }^{\circ} \mathrm{C} / \mathrm{min}\right)$ | Phases <br> Present | $\frac{\text { Density }-\mathrm{g} / \mathrm{cm}^{3}}{\frac{(\% \text { Relative }}{\text { Density) }}}$ | $\frac{\text { Hardness }}{(H v)}$ | $\frac{\frac{\text { Fracture }}{}}{\frac{\text { ToughnesS }}{\left(\text { MPa. } m^{1 / 2}\right)}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $3 \mathrm{Ti}-2 \mathrm{BN}$ | 40/1850/30 | TiN, TiB 2 | 98.2 | 24.5 | 6.03 |
| $3 \mathrm{Ti}-2 \mathrm{BN}$ | 40/1600/30 | TiN, TiB ${ }_{2}$ | 4.5 (89) | 16.8 | - |
| $3 \mathrm{Ti}-2 \mathrm{BN}(1 \mathrm{wt} \% \mathrm{Ni})$ | 40/1200/30 | TiN, TiB2 | 4.71 (93) |  |  |
| $3 \mathrm{Ti}-2 \mathrm{BN}(1 \mathrm{wt} \% \mathrm{Ni})$ | 40/1600/30 | TiN, TiB2 | 5.06 (99.5) | 24.6 | 6.53 |
| 3.25Ti-2BN (1wt\% Ni) | 40/1200/30 | $\underline{\mathrm{TiN}, \mathrm{TiB}_{2}}$ | 4.92 (97.8) | $\underline{22}$ |  |
| 3.5Ti-2BN (1wt\% Ni) | 40/1200/30 | $\underline{\mathrm{TiN}, \mathrm{TiB}_{2}}$ | 4.95 (99.9) | $\underline{22}$ |  |
| 3.5Ti-2BN | 40/1200/30 | $\frac{\mathrm{TiN}, \mathrm{TiB}_{22}}{\mathrm{TiB}, \mathrm{Ti}, \mathrm{BN}}$ | 3.52 (70) | = | = |



Fig. 2: The XRD Patterns of the Composites Produced with $1 \mathrm{wt} \% \mathrm{Ni}$ at 40 MPa , for 1 min : (a) Starting Powder Mixture, (b) $1100^{\circ} \mathrm{C}$ and (c) $1200^{\circ} \mathrm{C}$. ( $\Delta-\mathrm{hBN},-\mathrm{Ti}$, $\square-\mathrm{TiN}, \mathrm{O}-\mathrm{TiB}_{2}, \Delta$-TiB and ?- unidentified peak)

Non-stoichiometric Ti-BN powder mixtures (excess Ti) reactive hot pressed at $1100^{\circ} \mathrm{C}$ showed the incomplete reaction (Fig. 2 (b)) and the observed phases are TiN, $\mathrm{TiB}_{2}, \mathrm{TiB}, \mathrm{Ti}$ and BN phases. As the temperature was increased to $1200^{\circ} \mathrm{C}$ showed only phases corresponding to TiN and $\mathrm{TiB}_{2}$ (Fig. 2 (c)). Since free Ti was not observed in XRD patterns and also the measured lattice parameter of $\operatorname{TiN}_{\mathrm{x}}\left(\operatorname{TiN}_{\mathrm{x} 1}: 4.250 \AA\right.$ to $\mathrm{TiN}_{x \sim 0.8}: 4.245 \AA$ ) in the stoichiometric and nonstoichiometric composites suggests the $\mathrm{N} / \mathrm{Ti}$ ratio approaches to 1 to 0.8 . Finally, it is concluded that the
excess Ti was incorporated to form non-stoichiometric $\mathrm{TiN}_{\mathrm{x}}$, which can form $\mathrm{N} / \mathrm{Ti}$ ratios from 0.65 to 1.1. $\underline{-}^{[311}$, ${ }^{32]}$. The lattice parameter-N/Ti plot of TiN produced (TiN in the $\mathrm{TiN}-\mathrm{TiB}_{2}$ composites) in the present study is given in FigureFig.--3 and-_the values reported in literature are also shown. The measured lattice parameter of TiN is higher than the monolithic $\mathfrak{f}^{[33,34]}$ and lower than those reported for composite $--^{[35]}$ The lattice parameters of $\mathrm{TiB}_{2}(a$ and $c)$ are $3.029 \pm 0.001 \AA$ and $3.229 \pm 0.001 \AA$ respectively, which are in good agreement with the powder diffraction file (JCPDS: 35$=0741 ; a=3.0303 \AA$ and $c=3.2295 \AA$ ) values. The experimental conditions, phases present, density and hardness of the composites are given in Table 2.

| Table 2 Experimental Conditions and Properties of the Composites, |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { Composi }}{\text { tion }}$ | Experime ntal Condition s <br> $\triangle \mathrm{MPa} /{ }^{\circ} \mathrm{Ct}$ min) | Phas es Pres ent | Densi ty$\mathrm{g} / \mathrm{cm}^{3}$ (\% Relati ve Densi女) | Hardn ess (Hv) | Fractu re Iough ness (MPa. $\left.\mathrm{m}^{1 / 2 \mathrm{I}}\right)$ |
| $3 \mathrm{Ti}-2 \mathrm{BN}$ | $\frac{40 / 1850 / 3}{\theta}$ | $\frac{\mathrm{TiN},}{\mathrm{TiB}_{z}}$ | 98.2 | 24.5 | 6.03 |
| 3Ti-2BN | 40/1600/3 | TiN, | 4.5 | 16.8 | - |

Formatted: Font: 9 pt, Italic
Formatted: Right, Space After: 12 pt

| Formatted: Space Before: 0 pt |
| :--- |
| Formatted: Number of columns: 1 |
| Formatted Table |
| Formatted: Tab stops: $0.41^{\prime \prime}$, Decimal aligned |
| Formatted: Tab stops: $0.41^{\prime \prime}$, Decimal aligned |
| Formatted: Tab stops: $0.41^{\prime \prime}$, Decimal aligned |
| Formatted: Tab stops: $0.41^{\prime \prime}$, Decimal aligned |
| Formatted: Tab stops: $0.41^{\prime \prime}$, Decimal aligned |
| Formatted: Tab stops: $0.41^{\prime \prime}$, Decimal aligned |
| Formatted: Tab stops: $0.41^{\prime \prime}$, Decimal aligned |

Formatted: 01_Open_para, Left
Formatted: Number of columns: 2

| Formatted: 008 _Table capion, Left |
| :--- |
| Formatted: Font: 9.5 pt, Not Bold |
| Formatted: 02 _In_para, Left |
| Formatted: Font: 9.5 pt, Not Bold |
| Formatted: Font: Helvetica, Not Bold, Italic |
| Formatted Table |
| Formatted: Font: Helvetica |
| Formatted: Font: Helvetica |
| Formatted: Font: Helvetica |
| Formatted: Font: Helvetica, Not Bold, Italic |
| Formatted: Font: Helvetica, Not Bold, Italic |
| Formatted: Font: Helvetica, Not Bold, Italic |
| Formatted: Font: Helvetica |
| Formatted: Left |
| Formatted: Left |
| Formatted: Left |
| Formatted: Left |
| Formatted: Centered, Space Before: 10 pt |
| Formatted: Font: 10.5 pt |
| Formatted: Default Paragraph Font, Font: |
| 10.5 pt |

National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists 14-16 April 2009, National Aerospace Laboratories, Bangalore-17


Figure 2- The XRD Patterns of the Composites Produced with 1 wt\% Ni at 40 MPa , for $1 \mathrm{~min}:$ (a) Starting Powder Mixture (b) $1100^{\circ} \mathrm{C}$ and (c) $1200^{\circ} \mathrm{C}$. ( $\triangle \mathrm{hBN}$ - Ti, TiN, - -TiB ${ }_{2}, A-T i B$ and ?- unidentified peak).


FigureFig.--3-:_L_Ltice Parameter- $\mathrm{N} / \mathrm{Ti}_{1}$ Ratio Plot of the TiN:
$\triangle-\mathrm{TiN}_{x-0.8-1}$ in the $\mathrm{TiB}_{2}-\mathrm{TiN}$ Composites (present study),
$\square-\mathrm{TiN}_{x-0.8,1}$ in $\mathrm{TiB}_{2}-\mathrm{TiN}$ Composites ${ }_{A}^{-[35]}$-monolithic $\mathrm{TiN}_{\mathrm{x}}$ Produced by Gas Phase Reaction-[33]

### 4.1.2-_ Microstructural Observations and Densification of TiN-TiB2 Composites

Relative densities of the $\mathrm{TiN}_{\mathrm{x}}-\mathrm{TiB}_{2}$ composites produced without Ni and with $1 \mathrm{wt} \% \mathrm{Ni}$ at $1200^{\circ} \mathrm{C}$ for 30 min are $3.52 \mathrm{~g} / \mathrm{cm}^{3}$ ( $70 \% \mathrm{RD}$ ) and $4.95 \mathrm{~g} / \mathrm{cm}^{3}$ _ ( $99.9 \% \mathrm{RD}$ ) respectively (Table 2). The substantial influence of non-stoichiometry ( $\mathrm{Ti}: 0.0-0.5 \mathrm{~mol}$ ) on densification in the presence of $1 \mathrm{wt} \% \mathrm{Ni}$ increases the RD from $93 \%$ $\left(\mathrm{TiN}^{-\mathrm{TiB}_{2}}\right)$ to $99.9 \%\left(\mathrm{TiN}_{\mathrm{x} \sim 0.8}-\mathrm{TiB}_{2}\right)$ at $1200-{ }^{\circ} \mathrm{C}$. The densities of the $\mathrm{TiN}-\mathrm{TiB}_{2}$ and $\mathrm{TiN}_{\mathrm{x} \sim 0.8}-\mathrm{TiB}_{2}$ composites produced at $1100^{\circ} \mathrm{C}$ for 1 min are $3.56 \mathrm{~g} / \mathrm{cm}^{3}$ and 3.32 $\mathrm{g} / \mathrm{cm}^{3}$ respectively, whereas $\mathrm{TiN}_{\mathrm{x} \sim 0.8}-\mathrm{TiB}_{2}$ processed for 30 min showed a density of $3.98 \mathrm{~g} / \mathrm{cm}^{3}$. The reaction and densification of the composite with $1 \mathrm{wt} \% \mathrm{Ni}$ does not complete below $1200-{ }^{\circ} \mathrm{C}$.
The typical optical micrographs of the composites produced with $1 \mathrm{wt} \% \mathrm{Ni}$ and without at $1200^{\circ} \mathrm{C}$ for 30 min is shown in FigureFig.-_4. It is noticed that when Ni is absent, the RD for $\mathrm{TiN}_{\mathrm{x}}-\mathrm{TiB}_{2}$ drops to $\sim 70 \%$ as shown in Fig. 4 (a) and similar to what has been reported for stoichiometric composite at $1600{ }^{\circ} \mathrm{C},=[-[5+1]$ Significant change in densification can be seen with non-stoichiometry and the addition of $1 \mathrm{wt} \% \mathrm{Ni}$ (Fig._ 4 (b)).

| Formatted | ... [49] |
| :---: | :---: |
| Formatted | ... [48] |
| Formatted | ... [72] |
| Formatted | ... [53] |
| Formatted | ... [54] |
| Formatted | ... [55] |
| Formatted | ... [56] |
| Formatted | ... [57] |
| Formatted | ... [58] |
| Formatted | ... [59] |
| Formatted | ... [60] |
| Formatted | ... [61] |
| Formatted | ... [62] |
| Formatted | ... [73] |
| Formatted | ... [74] |
| Formatted | ... [75] |
| Formatted | ... [76] |
| Formatted | ... [77] |
| Formatted | ... [78] |
| Formatted | ... [79] |
| Formatted | ... [80] |
| Formatted | ... [81] |
| Formatted | ... [82] |
| Formatted | ... [83] |
| Formatted | ... [63] |
| Formatted | ... [84] |
| Formatted | ... [85] |
| Formatted | ... [87] |
| Formatted | ... [86] |
| Formatted | ... [88] |
| Formatted | ... [89] |
| Formatted | ... [90] |
| Formatted | ... [91] |
| Formatted | ... [92] |
| Formatted | ... [93] |
| Formatted | ... [64] |
| Formatted | ... [65] |
| Formatted | ... [66] |
| Formatted | ... [67] |
| Formatted | ... [68] |
| Formatted | ... [69] |
| Formatted | ... [70] |
| Formatted | ... [71] |
| Formatted | ... [51] |
| Formatted | ... [52] |
| Formatted | ... [50] |

National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists 14-16 April 2009, National Aerospace Laboratories, Bangalore-17


FigureFig.- 4: Optical Micrographs of the Composites Produced at $40 \mathrm{MPa}, 1200^{\circ} \mathrm{C}$ for $30 \mathrm{~min}:$ (a) $\mathrm{TiN}_{x}-\mathrm{TiB}_{2}$ without $\mathrm{Ni}(\overline{7} \overline{0} \% \overline{\mathrm{R}} \overline{\mathrm{D}}) \overline{\mathrm{and}}^{-}(\overline{\mathrm{b}}) \overline{\mathrm{T}}_{\mathrm{T}} \overline{\mathrm{N}}_{\mathrm{x}-0.8}^{-}-\overline{\mathrm{Ti}} \overline{\mathrm{B}}_{2}$ with $\overline{1} \overline{\mathrm{wt}} \% \overline{\mathrm{Ni}}$ (99.9\% RD)

The role of excess Ti with the presence of Ni was observed after partial densification for 1 min at $1200^{\circ} \mathrm{C}$. The partially dense regions with isolated Ni particles in the $\mathrm{TiN}-\mathrm{TiB}_{2}$ composite as shown in Fig. 5 (a) are observed The large sizes of Ni-rich regions in $\mathrm{TiN}_{\mathrm{x}}-\mathrm{TiB}_{2}$ composites are also observed and is shown in Fig. 5(b).The EDAX spectra (Fig. 5-(c) and (d)) of
core and rim of a white region in Fig. 5-(b) reveal the core to be enriched in Ni relative to the rim. The core contains $\sim 53 \mathrm{at} \% \mathrm{Ni}, 37 \mathrm{at} \% \mathrm{Ti}$ and $10 \mathrm{at} \% \mathrm{~N}$ and rim contains $\sim 1.2$ at $\% \mathrm{Ni}, 65$ at $\%$ Ti and 33.8 at $\%$. The compositional analysis suggests that Ti is being removed from the $\mathrm{Ni}-\mathrm{Ti}$ metallic phase and added to the TiN matrix and further supported by the contrast of the rim similar to that of the TiN matrix, which surrounds the Ni-rich core.

The typical SEM micrographs at higher magnification ${ }^{4}$ reveal that after densification is complete in $\mathrm{TiN}_{\mathrm{x}}-\mathrm{TiB}_{2}$ (Fig. 6-(a)), the residual metal is similar in scale and volume fraction to that seen in TiN-TiB ${ }_{2}$ (Fig. 6-(b)), which has been densified at $\left.1600^{\circ}{ }^{-}{ }^{-}{ }^{[5]}\right]^{-}$White spots are identified as Ni . The volume fraction of TiN estimated by image analysis in $\mathrm{TiN}-\mathrm{TiB}_{2}$ and $\mathrm{TiN}_{\mathrm{x}}-\mathrm{TiB}_{2}$ is 60.02 $\pm 2.2$ and $65.85 \pm 7.68$ respectively, which is in agreement with the values calculated using the reaction (1). The grains of $\mathrm{TiN}(1.14 \pm 0.72 \mu \mathrm{~m})$ and $\mathrm{TiB}_{2}(0.64$ $\pm 0.27 \mu \mathrm{~m}$ ) observed in $\mathrm{TiN}_{\mathrm{x}} \mathrm{o}_{8} 8_{-}^{-\mathrm{TiB}_{2}}$ (Fig. 6-(a)) are finer than those in $\mathrm{TiN}-\mathrm{TiB}_{2}$ composite ( $\mathrm{TiN}: 1.78 \pm 0.87$ $\mu \mathrm{m}$ and $\mathrm{TiB}_{2} 1.37 \pm 0.79 \mu \mathrm{~m}$ ) as shown in Fig. 6-(b).

Formatted: Font: 9 pt, Italic
Formatted: Right, Space After: 12 pt
Formatted: 01_Open_para, Centered, Line spacing: Multiple $0.98^{-1 i}$
Formatted: 01_Open_para, Line spacing: Multiple 0.98 li
Formatted: Font color: White
Formatted: Font color: White

Formatted: 02_In_para, Left

Formatted: Condensed by 0.2 pt

Formatted: Condensed by 0.2 pt

Formatted: Condensed by 0.2 pt

Formatted: 08_Fig_cap, J ustified, Line spacing: Multiple 0.98 li

Formatted: Font: 9.5 pt , Not Bold, Font color: Auto

Formatted: Line spacing: Multiple 0.98 li
Formatted: 02_In_para, Left, Line spacing:
Multiple 0.98 li

$$
\begin{aligned}
& \text { Formatted: Centered, Space Before: } 10 \mathrm{pt} \\
& \text { Formatted: Font: } 10.5 \mathrm{pt} \\
& \text { Formatted: Default Paragraph Font, Font: } \\
& 10.5 \mathrm{pt}
\end{aligned}
$$

National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists
14-16 April 2009, National Aerospace Laboratories, Bangalore-174


FigureFig.-_5: SEM Micrographs with EDAX Analysis of the Composite Produced with $\overline{1} \overline{\mathrm{wt}} \% \mathrm{Ni}^{-}$at $\overline{40} \overline{\mathrm{M}} \overline{\mathrm{P}} \overline{\mathrm{a}}$, $1200^{\circ} \mathrm{C}$ for 1 min . (a) $\mathrm{TiN}-\mathrm{TiB}_{2}$, White Regions are Ni, (b) $\mathrm{TiN}_{\mathrm{x}}-\mathrm{TiB}_{2}$ Showed the Ni-rich Region ${ }_{\Omega_{-}}(\mathrm{c})$ EDAX of Ni Rich Core
(C) and (d) Ti-rich Rim (R) $\qquad$ C- - - - - - - - . . . -

(b)

Formatted: 08_Fig_cap, Justified
Formatted: Font: 9.5 pt , Not Bold, Font color: Auto
Formatted: Font: 9.5 pt, Not Bold, Font color: Auto
Formatted: Font: 9.5 pt, Not Bold, Font color: Auto

Formatted: Font: 9.5 pt, Not Bold, Font color: Auto

Formatted: Font: 9.5 pt, Not Bold, Font color: Auto

Formatted: Font: 9.5 pt , Not Bold, Font color: Auto

Formatted: Font: 9.5 pt, Not Bold, Font color: Auto
Formatted: Font: 9.5 pt , Not Bold, Font color: Auto
Formatted: Font: 9.5 pt, Not Bold, Font color: Auto
Formatted: 01_Open_para, Centered
Formatted: 01_Open_para
Formatted: 01_Open_para, Centered, Line spacing: single, Tab stops: Not at 0.44 "

National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists 14-16 April 2009, National Aerospace Laboratories, Bangalore-174


FigureFig._-_6: SEM Micrographs of the Composites Produced with $1 \mathrm{wt} \% \mathrm{Ni}$ at $40 \mathrm{MPa}, 30 \mathrm{~min}$ : (a) $\mathrm{TiN}_{\times 0.8^{-}}$ $\mathrm{TiB}_{2}$ at $1200^{\circ} \mathrm{C}$ and (b) $\mathrm{TiN}-\mathrm{TiB}_{2}$ at $1600^{\circ} \mathrm{C}$ -

### 4.1.3 Role of Ni in Densification of the Composites

 It was reported in the earlier work $f^{[44]}$ on RHP of stoichiometric 3Ti-2BN powder mixture with $1 \mathrm{wt} \% \mathrm{Ni}$ required at least $1850^{\circ} \mathrm{C}$ to attain $99.9 \%$ RD. The densification temperature was reduced to $1600^{\circ} \mathrm{C}-f^{[54]}$ by the application of pressure at $950^{\circ} \mathrm{C}$ due to presence of transient Ni -Ti liquid phase. Starting with the nonstoichiometric Ti-BN powder mixture with $1 \mathrm{wt} \% \mathrm{Ni}$ resulted in completion of reaction and densification of $\mathrm{TiN}_{\mathrm{x} \sim 0.8}-\mathrm{TiB}_{2}$ composites at temperature as low as $1200^{\circ} \mathrm{C}$. Referring to the $\mathrm{Ni}-\mathrm{Ti}$ phase diagram (FigureFig.-_7) suggests a mechanism for excess Ti in promoting densification. In order to obtain liquid phases under equilibrium conditions in the powder mixture, the Ti and Ni content should be $90 \mathrm{wt} \%$ and $10 \mathrm{wt} \%$. But in the present case the amount of Ni is 1 $\mathrm{wt} \%$ for the total mixture and for the Ti alone it is only $1.33 \mathrm{wt} \%\left(\mathrm{TiN}^{2} \mathrm{TiB}_{2}\right)$ and $1.28 \mathrm{wt} \%\left(\mathrm{TiN}_{\mathrm{x}}-\mathrm{TiB}_{2}\right)$. Thus, for the formation of liquid phase under equilibrium conditions more than $90 \%$ of Ti should have first reacted with BN in the solid state. In the present study, reaction and densification proceed in parallel. The conversion of a reactant mixture to product phases (TiN and $\mathrm{TiB}_{2}$ ) at around $\sim 942^{\circ} \mathrm{C}$ leads to a local increase of $\mathrm{Ni}: \mathrm{Ti}$ ratio in the vicinity of Ni particle. In this liquid phase unreacted BN dissolves much faster than in the solid-state, which aids in the completion of the reaction. It was also noticed in an earlier study $t^{[5]+}$, that the application of pressure at $950^{\circ} \mathrm{C}$ during heating ( $\mathrm{Ni}-\mathrm{Ti}$ eutectic at $942^{\circ} \mathrm{C}$ ) promotes a uniform distribution of liquid phase and the formation of interparticulate contacts, thereby accelerating the reaction and densification. Addition of excess Ti in the present study, maintains the liquid phase compositional trajectory at $1200^{\circ} \mathrm{C}$ (Fig. 7) and application ofpressure at $950^{\circ} \mathrm{C}$ leads to higher densification.
$\mathrm{Ni}-\mathrm{Ti}$


FigureFig.-_7: The Ti-Ni Binary Phase Diagram ${ }_{\Delta}^{[36]}$
study, maintains the liquid phase compositional trajectory at $1200^{\circ} \mathrm{C}$ (Fig. 7) and application of pressure at $950^{\circ} \mathrm{C}$ leads to higher densification.

## 4.2 $\mathrm{ZrB}_{2}-\mathrm{ZrC}$ Composites

### 4.2.1 Reaction of $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ Powder Mixtures:

The XRD patterns of $\mathrm{ZrB}_{2}$ - ZrC composites producedstarting with stoichiometric and non-stoichiometric mixture of Zr and $\mathrm{B}_{4} \mathrm{C}$ powder (with $1 \mathrm{wt} \% \mathrm{Ni}$ and without Ni ) at $40 \mathrm{MPa}, 1200^{\circ} \mathrm{C}$ for 30 min show peaks corresponding to $\mathrm{ZrB}_{2}$ and ZrC (FigureFig.-_8) with tiny peaks of $\mathrm{ZrO}_{2}$. The shift of ZrC peaks towards higher angle as the composition deviates from stiochiometry is seen in (Fig. 8-(d) and (e)).

Formatted: Font: 9 pt, Italic
Formatted: Right, Space After: 12 pt
Formatted: 01_Open_para, Centered

Formatted: 01_Open_para, Indent: Left:
-0.05", Tab stops: Not at 3.72"

## Formatted: Font: 9.5 pt , Not Bold <br> Formatted: 08_Fig_cap, J ustified <br> Formatted: Font: 9.5 pt, Not Bold

Formatted: Font: Not Italic
Formatted: 07_C_level, Left, Space After: 4 pt
Formatted: 01_Open_para, Left

Formatted: 08_Fig_cap, Left, Indent: First line: 0"
Formatted: Font: 9.5 pt, Not Bold, Font color: Auto
Formatted: Font: 9.5 pt , Not Bold, Font color: Auto, Superscript

Formatted: Font: 9.5 pt, Not Bold, Font color:
Auto
Formatted: 08_Fig_cap, Left, Indent: First line: 0", Tab stops: Not at 4.13"

Formatted: 01_Open_para, Left
Formatted: Font: Not Italic
Formatted: 07_C_level, Left, Space Before: 10 pt

Formatted: 01_Open_para, Left

Formatted: Centered, Space Before: 10 pt
Formatted: Font: 10.5 pt
Formatted: Default Paragraph Font, Font: 10.5 pt


FigureFig.- 8: The XRD Patterns of the $\mathrm{ZrB}_{2}-\mathrm{ZrC}$ Composites $40 \mathrm{MPa}, 1200^{\circ} \mathrm{C}$ for $30 \mathrm{~min}:(\mathrm{a})$ Starting Powder Mixture (b) Stoichiometric with wt $\%$ Ni, (c) Non-Stoichiometric

 $\checkmark-\mathrm{B}_{4} \mathrm{C}_{\mathrm{C}}$ and $\left.\triangle-\mathrm{ZrO}_{2}\right)_{-}$

The lattice parameter of ZrC in the composite produced with Ni at $1200^{\circ} \mathrm{C}$ is $4.686 \AA$ and without Ni at $1200^{\circ} \mathrm{C}$ is $4.67 \overline{4} \bar{A}$. The lattice parameter of $\mathrm{ZrC}_{x}^{-}$in the nonstoichiometric composite is $4.661 \AA\left(1000^{\circ} \mathrm{C}\right.$ for 5 min$)$ and increases to $4.667 \AA\left(40 \mathrm{MPa}, 1000^{\circ} \mathrm{C}\right.$ for 30 min$)$. After the reaction is complete at $1200^{\circ} \mathrm{C}$, the lattice parameter of $\mathrm{ZrC}_{\mathrm{x} \sim 0.67}$ in the composite is $4.682 \AA$. The lattice parameter of $\mathrm{ZrC}_{\mathrm{x}}$ in the composites produced without Ni at $1000^{\circ} \mathrm{C}, 1200^{\circ} \mathrm{C}$ and $1400^{\circ} \mathrm{C}$ are 4.667 , 4.676 and $4.682 \AA$ respectively. The differences in the measured lattice parameters of ZrC and $\mathrm{ZrC}_{x-0.67}$ in the composites ( 4.686 and $4.682 \AA$ ) are consistent with the reducing trend as reported in the literature $\left(\mathrm{ZrC}_{0} .97\right.$ $4.698 \AA$ and $\mathrm{ZrC} 0.58-4.691 \AA$ ) ${ }^{377 I}$ The lattice parameters of $\mathrm{ZrB}_{2}$ are $3.167 \AA$ and $3.53 \AA$ respectively, which are in good agreement with those reported in JCPDS (34-_0423).

### 4.2.2 Microstructural Observations

The typical optical micrographs of the composites produced with and without Ni at $1200^{\circ} \mathrm{C}$ clearly showed completion (Fig. 9 (a)) and incompletion of the reaction with 3 vol\% of $\mathrm{B}_{4} \mathrm{C}$ (Fig. 9(b)). However, the reaction was found to be complete when the temperature was

14-16 April 2009, National Aerospace Laboratories, Bangalore-17
increased to $1400 / 1600^{\circ} \mathrm{C}$. The composites produced with $1 \mathrm{wt} \% \mathrm{Ni}$ at $1400^{\circ} \mathrm{C}$ and $1600^{\circ} \mathrm{C}$ for 30 min indicate a small reduction in porosity ( 5 to $3.5 \%$ ).


FigureFig.- 9: Optical Micrographs of the Stoichiometric Composites Produced at $40 \mathrm{MPa}, 1200^{\circ} \mathrm{C}$ for 30 min : (a) with $1 \mathrm{wt} \%$ Ni and (b) Without Ni. The Dark Regions are Pores and Gray Regions in (b) are Partially Reacted $\mathrm{B}_{4} \mathrm{C}$ (3 vol\%) Particles

The typicat optical micrographs of the non-stoichiometric ${ }^{ \pm}$ composites produced at $1200^{\circ} \mathrm{C}$ for 30 min with $\overline{1} \mathrm{wt} \%$
${ }_{2}^{2}$

Ni and without Ni showed fully dense (Fig. 10 (a)) with small amount ( 0.3 vol\%) of unreacted $\mathrm{B}_{4} \mathrm{C}$ (Fig. 10 (b)).


FigureFig.-_10: Optical Micrographs of the NonStoichiometric Composites Produced at $40 \mathrm{MPa}, 1200^{\circ} \mathrm{C}$ for

30 (b) without Ni
min:-
(a) with 1 wt\% Ni and (b) without Ni

The typical SEM micrographs of the etched stoichiometric composite produced with $1 \mathrm{wt} \% \mathrm{Ni}$ at $1200^{\circ} \mathrm{C}$ (Fig. 11 (a)) showed the fine grain microstructure ( $0.4 \pm 0.2 \mu \mathrm{~m}$ for $\mathrm{ZrB}_{2}$ and $0.3 \pm 0.1 \mu \mathrm{~m}$ for ZrC ) and composite produced at $1600^{\circ} \mathrm{C}$ showed coarse grain structure $\left(1.6 \pm 0.4 \mu \mathrm{~m}\right.$ for $\mathrm{ZrB}_{2}$ and $1.2 \pm 0.3 \mu \mathrm{~m}$ for

ZrC ), however the grain sizes achieved are much finer than those reported earlier. $f^{[38,39]}$ The typical SEM micrographs of the etched non-stoichiometric composite produced with $1 \mathrm{wt} \% \mathrm{Ni}$ at $1200^{\circ} \mathrm{C}$ (Fig. $\left.11-(\mathrm{b})\right)$ showed (b) the grain sizes of $\overline{\mathrm{ZrB}}{ }_{2}$ and $\overline{\mathrm{ZrC}}$ are $0.6 \pm 0.2 \mu \mathrm{~m}$ and $0.4 \pm 0.1 \mu \mathrm{~m}$ respectively.


FigureFig.- 11: SEM Micrographs of the Composites
 Stoichiometric and (b) Non-stoichiometric. The Dark Gray
 Grains $_{\bar{x}_{-}}$
4.2.3-Densification of $\mathrm{ZrB}_{2}=$ ZZC $_{x}^{-}$composites

Formatted: Right, Space After: 12 pt
Formatted: Font: 9 pt, Italic
Formatted: Condensed by 0.1 pt
Formatted: Font: 11 pt, Font color: Auto Superscript

Formatted: Condensed by 0.2 pt
Formatted: 01_Open_para, Centered, Indent: First line: 0"

Formatted: Condensed by 0.1 pt
Formatted: 01_Open_para
Formatted: 01_Open_para

| Formatted: 01_Open_para, Centered |  |
| :---: | :---: |
| Formatted: 01_Open_para, Centered |  |
| Formatted: 08_Fig_cap, Justified |  |
| Formatted: Font: 9.5 pt, Not Bold, Font color: Auto |  |
| Formatted: Font: 9.5 pt, Not Bold, Font color: Auto |  |
| Formatted: Condensed by 0.2 pt |  |
| Formatted: Font: 9.5 pt , Not Bold, Font color: Auto, Condensed by 0.2 pt |  |
| Formatted: 08_Fig_cap, Justified |  |
| Formatted: Condensed by 0.2 pt |  |
| Formatted: Font: 9.5 pt, Not Bold, Font color: Auto |  |
| Formatted: Font: 9.5 pt, Not Bold, Font color: Auto |  |
| Formatted: Font: 9.5 pt, Not Bold, Font color: Auto |  |
| Formatted: Font: 9.5 pt, Not Bold, Font color: Auto |  |
| Formatted: Font: 9.5 pt, Not Bold, Font color: Auto |  |
| Formatted: Font color: Auto |  |
| Formatted: Font: 9.5 pt, Not Bold, Font color: Auto |  |
| Formatted | ... [135] |
| Formatted: 02_In_para, Left |  |
| Formatted | . [136] |
| Formatted: Condensed by 0.2 pt |  |
| Formatted: Font: Not Italic |  |
| Formatted: 07_C_level, Left |  |
| Formatted: Condensed by 0.1 pt |  |
| Formatted: Centered, Space Before: 10 pt |  |
| Formatted: Font: 10.5 pt |  |
| Formatted | [134] |

## National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists

 14-16 April 2009, National Aerospace Laboratories, Bangalore-17The density of the stoichiometric composites increases from $5.43 \mathrm{~g} / \mathrm{cm}^{3}(86 \% \mathrm{RD})$ at $1200^{\circ} \mathrm{C}$ to $6.13 \mathrm{~g} / \mathrm{cm}^{3}$ $\left(97.3 \%\right.$ RD) at $1600^{\circ} \mathrm{C}$. The density of the nonstoichiometric composites increases from $5.72 \mathrm{~g} / \mathrm{cm}^{3}$ $(90 \% \mathrm{RD})$ at $1000^{\circ} \mathrm{C}$ to $6.20 \mathrm{~g} / \mathrm{cm}^{3}(99 \% \mathrm{RD})$ at $1200^{\circ} \mathrm{C}$. The composites produced without Ni also showed similar densities and it appears that there is no effect of Ni addition on densification. The hardness and fracture toughness of the composites are 19__ 22 GPa and 5.5 MPa. ${ }^{1 / 2}$ respectively. The most remarkable finding in the present study is the role played by excess Zr in reducing the process temperature to as low as $1200^{\circ} \mathrm{C}$ for $\mathrm{ZrB}_{2}-\mathrm{ZrC}_{\mathrm{x}}$ composites and to achieve full density of $\sim 99 \% \mathrm{RD}$. In the stoichiometric composite, the lattice parameter of $\mathrm{ZrC}(4.674 \AA)$ is low compared to the Ni containing composite ( $4.686 \AA$ ), where the reaction is complete. However, the final densities of the composites are similar. This suggests the formation of non-stoichiometric $\mathrm{ZrC}_{\mathrm{x}}$ aids in densification even in stoichiometric composites.
The key issue in the present study is the how fine microstructure as described above can promote densification at low temperature with specific reference to yielding and creep of transition metal carbides. The flow stress will be lower and diffusion rate will be faster as the transition metal carbides deviates fromstoichiometry. The transition metal carbides (TiC, ZrC) are known to exist over a range of compositions, e.g., Ti and Zr carbides have $\mathrm{C} /$ metal ratio ranging from 0.65 to $0.980^{[31,32]}$. These carbides are extremely hard and their yield strength at room temperature approaches the ideal strength. At high homologous temperatures these are very soft and creep rapidly. For example, the yield strength of $\mathrm{TiC}_{0.66}$ is about 63 MPa as compared to 400 MPa for $\mathrm{TiC}_{0.93}$ at $1200^{\circ} \mathrm{C}^{-[40]=}$ Also at temperatures around $1000^{\circ} \mathrm{C}$, the carbides of Ti and Zr undergo brittle to ductile transition and deform readily - (111)[110] addition to the room temperature slip system ${ }^{-[[41]}$ of (110)[110]. In reactive densification of the $\mathrm{Ti} / \mathrm{B}_{4} \mathrm{C}$ system, it has been reported that the formation of $\mathrm{TiC}_{x}$ helps in the densification of $\mathrm{TiB}_{2}-\mathrm{TiC}$ composites at $1600-1800^{\circ} \mathrm{C}_{\Delta \Delta}^{-[2,23]}$
Also, in the case of $\mathrm{TiC}_{0.95}$, the critical resolved shear stress (CRSS) is reported to decrease from $\sim 141 \mathrm{MPa}$ at $1000^{\circ} \mathrm{C}$ to $\sim 72 \mathrm{MPa}$ at $1200^{\circ} \mathrm{C}$, while that of $\mathrm{TiC}_{0.79}$ the CRSS decreased from $\sim 91 \mathrm{MPa}\left(1000^{\circ} \mathrm{C}\right)$ to $\sim 44$ MPa $\left(1200^{\circ} \mathrm{C}\right)_{i}^{-[42]}$ The ZrC, like its group IV
counterpart TiC , shows falling yield strength with deviations from ideal stoichiometry. For $\mathrm{ZrC}_{0.875}$, the $\overline{\mathrm{C}} \overline{\mathrm{RS}} \overline{\mathrm{S}}$ reduces from $\sim 163 \mathrm{MPa}$ at $1000^{\circ} \mathrm{C}$ to $\sim 87 \mathrm{MPa}$ at $1200^{\circ} \mathrm{C}^{-[40]}$ In the non-stoichiometric composite the $\mathrm{C} / \mathrm{Zr}$ ratio is proposed to be $\sim 0.67\left(\mathrm{ZrC}_{\mathrm{x} \sim 0.67}\right)$ and hence its CRSS is expected to be even lower. Thus, during hot pressing, it is likely that the local stresses around particle contacts are considerably higher than the nominal applied stress ( 40 MPa applied at $1000^{\circ} \mathrm{C}$ ) and can exceed the flow stress, thereby leading to plastic flow, which can aid densification at $1200^{\circ} \mathrm{C}$. As already discussed, the formation of non-stoichiometric $\mathrm{ZrC}_{\mathrm{x}}$ at the early stage enhances the densification by deformation even in stoichiometric composites.
The observation that the amount of partially reacted $\mathrm{B}_{4} \mathrm{C}$ ( $0.3 \mathrm{vol} \%$ ) in the non-stoichiometric composite produced without Ni at $1200^{\circ} \mathrm{C}$ is very much lower than (3 vol\%) stoichiometric composite. Thus the addition of excess Zr accelerates the reaction due to the mobility of the point defects in non-stoichiometric $\mathrm{ZrC}_{\mathrm{x}}$.
An additional mechanism for densification comes from vacancy creation through non-stoichiometry, which is known to enhance the mass transport through solidstate diffusion during sintering in ceramics. Nonstoichiometric carbides are characterized by a large effective diffusion coefficient $\left(\mathrm{D}_{\text {eff }}\right)$ as a result of which they sinter more easily than stoichiometric carbides. The $\mathrm{D}_{\text {eff }}$ for $\mathrm{ZrC}_{\mathrm{x}}$ phases was found to grow appreciably with increase in carbon-vacancy concentration at all temperatures, from $5.1 \times 10^{-15}=^{2} \mathrm{~s}^{-1}$ for $\mathrm{ZrC}_{0.95}$ to $1 \times 10^{-}$ $==^{10} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ for $\mathrm{ZrC}_{0.68}$ at $1800^{\circ} \mathrm{C}=\left[{ }^{[377]}-\right.$ It has also been reported that the activation energy for collective recrystallization of $\mathrm{ZrC}_{\mathrm{x}}$ decreases from $53.4 \mathrm{kcal} / \mathrm{mol}$ at $\mathrm{x}=0.97$ to $42.8 \mathrm{kcal} / \mathrm{mol}$ at $\mathrm{x}=0.65_{-4 \Delta A^{-[43]}}$

## $4.3 \mathrm{ZrB}_{2}-\mathrm{ZrC}_{\mathrm{x}}-\mathrm{SiC}$ Composites:

The XRD patterns of the $\mathrm{ZrB}_{2}-\mathrm{ZrC}_{\mathrm{x}}-\mathrm{SiC}$ (ZBCSC) composites produced according to reaction (3) at $1400^{\circ} \mathrm{C}$ and $1600^{\circ} \mathrm{C}$ for 30 min (Fig. 12) showed the presence of $\mathrm{ZrB}, \overline{\mathrm{ZrC}}_{\mathrm{x}}$ and SiC with tiny peaks of $\mathrm{m}-\mathrm{ZrO}_{2}$ can be seen in both the composites.

| Formatted: Font: 9 pt, Italic |  |
| :---: | :---: |
| Formatted: Right, Space After: 12 pt |  |
| Formatted: Condensed by 0.1 pt |  |
| Formatted: Font: 11 pt, Font color: Auto, Superscript |  |
| Formatted: Condensed by 0.2 pt |  |
| Formatted: Condensed by 0.2 pt |  |
| Formatted: Condensed by 0.1 pt |  |
| Formatted: Font: 11 pt, Font color: Auto, Superscript |  |
| Formatted: Condensed by 0.1 pt |  |
| Formatted: Condensed by 0.1 pt |  |
| Formatted: Font: 11 pt, Font color: Auto, Superscript |  |
| Formatted: Font: 11 pt, Not Bold, Font color: Auto, Superscript |  |
| Formatted: Font: 11 pt, Font color: Auto, Superscript |  |
| Formatted: Font: 11 pt, Font color: Auto, Superscript |  |
| Formatted: Font: 11 pt, Not Bold, Font color: Auto, Superscript |  |
| Formatted: Font: 11 pt, Font color: Auto, Superscript |  |
| Formatted: Condensed by 0.1 pt |  |
| Formatted: 04_B_level, Left |  |
| Formatted: 01_Open_para |  |
| Formatted: Condensed by 0.2 pt |  |
| Formatted: Font: 11 pt, Font color: Auto |  |
| Formatted: Font: 11 pt, Font color: Auto, Superscript |  |
| Formatted: Font: 11 pt, Not Bold, Font color: Auto, Superscript |  |
| Formatted: Font: 11 pt, Font color: Auto, Superscript |  |
| Formatted: Font: 11 pt, Font color: Auto |  |
| Formatted: Condensed by 0.1 pt |  |
| Formatted: Condensed by 0.2 pt |  |
| Formatted: Font: 11 pt, Font color: Auto, Superscript |  |
| Formatted | [138] |
| Formatted | [139] |
| Formatted: |  |
| Formatted: | 10 pt |
| Formatted: |  |
| Formatted | ... [137] |

National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists 14-16 April 2009, National Aerospace Laboratories, Bangalore-17


FigureFig.-_12: -The XRD Patterns of the ZBCSC Composites Produced with $1 \mathrm{wt} \% \mathrm{Ni}$ at 40 MPa for 30 min: (a) Starting Powder Mixture ${ }_{2}$ (b) $1400^{\circ} \mathrm{C}$ and (c) $1600^{\circ} \mathrm{C}$
$\triangle-\mathrm{ZrC},-\mathrm{SiC}, \square-\mathrm{Zr}, \mathrm{O}-\mathrm{Si}, \triangle-\mathrm{B}_{4} \mathrm{C}$ and $-\mathrm{mZrO}_{2}$ )

The densities of the composites increase from $4.67 \mathrm{~g} / \mathrm{cm}^{3}$ $(\sim 82 \% \mathrm{RD})$ at $1400^{\circ} \mathrm{C}$ to $5.55 \mathrm{~g} / \mathrm{cm}^{3}(\sim 97 \% \mathrm{RD})$ at $1600^{\circ} \mathrm{C}$. The composite produced without Ni at $1600^{\circ} \mathrm{C}$ is $5.61 \mathrm{~g} / \mathrm{cm}^{3}(\sim 98 \% \mathrm{RD})$. These results may be compared with the earlier reports on densification of $\mathrm{ZrB}_{2}-\mathrm{ZrC}-$ SiC composites by RHP $\mathbb{L}^{[299]}$ and SPS $\ddagger^{[44]]}$, which required temperature greater than $1800^{\circ} \mathrm{C}$. Typical backscattered electron (BSE) images of the composite with $1 \mathrm{wt} \% \mathrm{Ni}$ and without Ni at $1600^{\circ} \mathrm{C}$ for 30 min (Fig. 13) showed the distribution of $\mathrm{ZrB}_{2}, \mathrm{ZrC}_{x}$ and SiC. The volume fraction of SiC estimated in the composite from image analysis is $16 \pm 4$. The hardness of the composite produced at $1600^{\circ} \mathrm{C}$ for 30 min is $\sim 18 \mathrm{GPa}$.



FigureFig.-_13: Back Scattered Electron Images of the $\mathrm{ZrB}_{2}-\mathrm{ZrC}_{x}-\mathrm{SiC}$ Composites Produced at $40 \mathrm{MPa},{ }^{1600^{\circ} \mathrm{C}}$ for 30 min : (a) with $1 \mathrm{wt} \% \mathrm{Ni}$ and (b) without Ni -

## 5. CONCLUSIONS

Reactive processing method has been successfully used to densifiy $\mathrm{TiN}-\mathrm{TiB}_{2}, \mathrm{ZrB}_{2}-\mathrm{ZrC}$ and $\mathrm{ZrB}_{2}-\mathrm{ZrC}-\mathrm{SiC}$ composites under moderate pressure and temperature. Addition of excess Ti to the starting Ti-BN compositions with the presence of Ni plays a crucial role in bringing down the densification temperature to $1200^{\circ} \mathrm{C}$, which is lower by 300 to $400^{\circ} \mathrm{C}$ than the reported value in literature. The densification was attributed to the maintaining the $\mathrm{Ti}-\mathrm{Ni}$ transient liquid phase for longer time. Presence of excess Zr with $\mathrm{Zr}-\mathrm{B}_{4} \mathrm{C}$ leading to yield $98 \%$ RD composites at $1200^{\circ} \mathrm{C}$ owing to the formation of deformable transient-_non-stoichiometric $\mathrm{ZrC}_{\mathrm{x}}$ grains during RHP. The densification in $\mathrm{ZrB}_{2^{-}}$ $\mathrm{ZrC}-\mathrm{SiC}$ composites was also similar to the $\mathrm{ZrB}_{2}-\mathrm{ZrC}_{\mathrm{x}}$ composites. The relative density, hardness and fracture

Formatted: Right, Space After: 12 pt
Formatted: Font: 9 pt , Italic
Formatted: 08_Fig_cap, Left

| Formatted: 08_Fig_cap, Left |
| :---: |
| Formatted: 08_Fig_cap, Justified |
| Formatted: Font: 9.5 pt, Not Bold |
| Formatted: Font color: Auto, Condensed by 0.2 pt |
| Formatted: Condensed by 0.2 pt |
| Formatted: 02_In_para |
| Formatted: Condensed by 0.2 pt |
| Formatted: 08_Fig_cap |
| Formatted: 08_Fig_cap, Justified |
| Formatted: Font: 9.5 pt, Not Bold, Font color Auto |
| Formatted: Font: 9.5 pt, Not Bold, Font color Auto |
| Formatted: Condensed by 0.1 pt |
| Formatted: Font: 9.5 pt, Not Bold, Font color Auto |
| Formatted: 03_A_level, Left |
| Formatted: Condensed by 0.2 pt |
| Formatted: 01_Open_para, Centered |
| Formatted: Condensed by 0.1 pt |
| Formatted: Centered, Space Before: 10 pt |
| Formatted: Font: 10.5 pt |
| Formatted: Default Paragraph Font, Font: 10.5 pt |

## National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists

14-16 April 2009, National Aerospace Laboratories, Bangalore-17
toughness of the composites are comparable with those reported in literature.

## ACKNOWLEDGEMENT

The authors acknowledge the support from Director, NAL and Head, Materials Science Division, NAL. The authors thank Mr. V. Babu (Department of Materials Engineering, IISc, Bangalore) for assistance in hot pressing experiments, Dr._S. Usha Devi (Materials Science Division, NAL) and Mr. Keshab Barai (Department of Materials Engineering, IISc) for XRD and-_SEM studies respectively.

## REFERENCES

1. [1] Alan W. Weimer, Alan W., "Carbide, Nitride and Boride Materials Synthesis and Processing ${ }^{2}, 1^{\text {st }}$ Edition 1997, Chapman and Hall.
Z. [2] G. Wen, G., S.B. Li, S.B., B.S. Zhang, B.S.- and Z.X. Guo, Z.X.,- Acta. Mater., 49, 146370 (2001).
2. [3] I. Gotman, I., N. A. Travitzky, N.A.; and E. Y. Gutmanas, E.Y., Mater. Sci. Eng., A244, 12737 (1998).
3. [4] G. J.Zhang, G.J., Z. Z.Jin, Z.Z.; and X. Yue, X.,-_J. Am. Ceram. Soc., 78 [10], 2831-33 (1995).
4. [5] L. Rangaraj, L., G. Divakar, C.- -and $\forall$. Jayaram, V., J. Am. Ceram. Soc., 87^ [10], 1872_-78 (2004).
5. [6] K. Upadhya, K., J.M.Yang, J.M. and W.P. Hoffman, W.P., Am. Ceram. Soc. Bull., 76 [12], 51-56 (1997).
6. [7] W. G.Fahrenholtz, W.G., G. E. Hilmas 2 G.E., I. G. Talmy, I.G.- and J. $\overline{\text { A. Zaykoski, J.A.,- J. }}$ Am. Ceram. Soc., 90 [5], 1347-64 (2007).
7. [8] F.Monteverde, F., A. Bellosi, A.- and S. Guicciardi, S., J. Eur. Ceram. Soc., 22, 279-_88 (2002),
8. [9] E. Opila, E., S. Levine, S.- and J. Lorincz, J.,- J. Mat. Sci., 39, 5969-77 (2004).
9. [10] S. R. Levine, S.R., E. J. Opila, E.J., M.G. Halbig, M.C., J.D. Kiser, J.D., M. Singh, M.- and J.A. Salem, J.A., J. Eur. Ceram.-Soc., 22, 275767 (2002).
10. [11] M. Gasch, M., D. Ellerby, D., E. Irby 2 E., S. Beckman, S., M. Gusman, M.-_ and S. Johnson, S., J. Mat. Sci., 39, 5925--37 (2004).
11. [12] M. M. Opeka, M.M., I. G. Talmy, I.G. and J. A. Zaykoski, J.A., J. Mat. Sci., 39, 5887--904 (2004),
12. [13] S. K. Mishra, S.K.-(Pathak), S.-Das, S., S. K. Das, S.K.; and P. Ramachandrarao, P., $J_{i}^{*}$ Mater. Res., 15_ [11], 2499-504 (2000).
13. [14] S. K. Mishra, S.K., S. K. Das, S.K., A.* K. Ray, A.K.-_ and P. Ramachandrarao, P., J. Am. Ceram. Soc., 85 [11], 2846--48 (2002).
14. [15] Y.Yan, Y., Z.Huang, Z., S.Dong, S.- and D.Jiang, D., J. Am. Ceram. Soc., 89 [11], 3589--92 (2006).
15. [16] L. Silvestroni, L.- and D. Sciti, D., Scripta Materialia, 57, 165--68 (2007).
16. [17] D.-Sciti, D., M.-Brach, M.-_ and A. Bellosi, A., J. Mat. Res., 20 [4], 922-_30 (2005).
17. [18] D. Sciti, D., S.Guicciardi, S., A. Bellosi, A.- and G.Pezzotti, G.,-J. Am. Ceram. Soc., 89 [7], 2320-22 (2006).
18. [19] S.Q. Guo, S.Q., Y. Kagawa, Y., T. Nishimura, T.- and H.-Tanaka, H., Scripta Materialia, 58, 579--82 (2008),
19. [20] A.L.-Chamberlain, A.L., W. G. Fahrenholtz, W.G., G. E. Hilmas, G.E.-_ and D. T. Ellerby, D.T., J. Am. Ceram Soc., 87 [6], 1170-72 (2004).
20. [21] A.Chamberlain, A., W. Fahrenholtz, W., G.-Hilmas, G.-_and D.-Ellerby, D., Refractories Applications Transactions, 1[2], 1-8 (2005).
21. [22] W.G. Fahrenholtz, W.G., G.E. Hilmas, G.E., A.L. Chamberlain, A.L.- and J.W. Zimmermann, J.W., J. Mat. Sci., 39, 5951-_57 (2004).
22. [23] M.W. Barsoum, M.W.--and B.-Houng, B., J. Am. Ceram. Soc., 76 [ $\overline{6}$ ], $1445-51(1993)$.
23. [24] G. J. Zhang, G.J., M. Ando, M., J.F. Yang, J.F., T.Ohji, T. and S. Kanzaki, S., J. Eur. Ceram. Soc., 24, 171-78 (2004),
24. [25] L.Rangaraj, L., S.J. Suresha, S.J., G. Divakar, C.-_ and $\forall$. Jayaram, V., Meta. Mater and Trans., A 39-(2008).
25. [26] G. J. Zhang, G.J., Z.Y. Deng, Z.Y., N. Kondo, N., J.F. Yang, J.F.-- and 干.Ohji, T., J. Am. Ceram. Soc., 83 [91],2330-- 32 (2000).
26. [27] A.L. Chamberlain, A.L., W.G. Fahrenholtz, W.G.-- and G.E. Hilmas, G.E., J. Am. Ceram. Soc., 89 [12], 3638-_45 (2006).
27. [28] J.W. Zimmermann, J.W., G.E.-Hilmas, G.E., W.G. Fahrenholtz, W.G., F. Monteverde, F. and A. Bellosi, A., J. Eur. Ceram. Soc., 27, 2729= 36 (2007).

| Formatted: Font: 9 pt, Italic |  |
| :---: | :---: |
| Formatted: Right, Space After: 12 pt |  |
| Formatted | .. [152] |
| Formatted: 03_A_level, Left |  |
| Formatted | ... [153] |
| Formatted: 01_Open_para |  |
| Formatted | [154] |
| Formatted | . [155] |
| Formatted | .. [156] |
| Formatted | ... [157] |
| Formatted: 03_A_level, Left |  |
| Formatted: Font: 11 pt |  |
| Formatted | . [158] |
| Formatted: 14_Reference_text, Left, No bullets or numbering, Tab stops: Not at 0.38" |  |
| Formatted | ... [141] |
| Formatted | . [159] |
| Formatted | .. [142] |
| Formatted | ... [160] |
| Formatted | ... [143] |
| Formatted | ... [161] |
| Formatted: 14_Reference_text, Left, Space After: 1 pt , Line spacing: Multiple 1.01 li , No bullets or numbering, Tab stops: Not at $0.38{ }^{\prime \prime}$ |  |
| Formatted | ... [144] |
| Formatted | ... [162] |
| Formatted | ... [145] |
| Formatted | ... [163] |
| Formatted | ... [146] |
| Formatted | ... [164] |
| Formatted | ... [165] |
| Formatted | ... [147] |
| Formatted | ... [166] |
| Formatted | ... [148] |
| Formatted | ... [167] |
| Formatted | ... [149] |
| Formatted | ... [168] |
| Formatted | ... [150] |
| Formatted | ... [169] |
| Formatted | ... [151] |
| Formatted: Centered, Space Before: 10 pt |  |
| Formatted: Font: 10.5 pt |  |
| Formatted | ... [140] |

National Conference on Scientific Achievements of SC \& ST Scientists \& Technologists 14-16 April 2009, National Aerospace Laboratories, Bangalore-17
29. $\qquad$ Kan. Y.M -.W. W.W., G.J Zhang, G.J., Y.M. Soc., 89 [9], 2967-_69 (2006).
30. [30]
K. Niihara, K., R. Morena, R.; and D. P. H. Hasselman, D.P.H., J. Mater. Sci. Lett., 1, 13-16 (1982).
31. [31] L.E. Toth, L.E., "Transition Metal Carbides and Nitrides"; (Academic Press, New York, 1971).
32. [32] E.K. Storms, E.K., "The Refractory Carbides", Academic Press, New York, 1967, Vol. 2, pp._18-_34.
33. [33] S. Nagakura, S., T. Kusunoki, T., F. Kakimoto, F.-_ and Y.Hirotsu, Y.,__J. Appl. Cryst., 8, 65-_66 (1975).
34. [34] H. A. Wriedt H.A.-_ and J.L.-Murray ${ }_{2}$ J.L., "The N-Ti (Nitrogen-Titanium) system", Bull. Alloy Phase Diagrams, 8 [4], 378-_88 (1987).
35. [35] M.Shibuya, M., M. Ohyangi, M.- and Z. A. Munir, Z.A., J. Am. Ceram. Soc., 85 [12] 296570 (2002).
36. [36] Alloy Phase Diagrams, ASM Handbook, Vol. 3; ASM International, Materials Park, OH, 1992.
37.
[37] $\qquad$ S. S. Ordanyan, S.S., A.K. Kravchik, A.K.-- and V.S.-Neshpor, V.S., Powder Metall. Metal Ceram., 16[12], 57-_61 (1977).
38. [38] T. Tsuchida, T.- and S. Yamamoto, S., Solid State Ionics, 172 [1_-4], 215_-16 (2004).
39. [39] K. H. Kim, K.H.--and K. B. Shim, K.B., Mat. Characterization, 50, 31-37 (2003).
40. [40] D.B. Miracle, D.B.- and H.A. Lipsitt, H.A., J. Am. Ceram. Soc., 66 [8], 592--97 (1983)
41. [41] D.J. Rowcliffe, D.J., "Plastic Deformation of Transition Metal Carbides", Deformation of ceramics II, ed., Richard E. Tressler and Richard C. Bradt, Plenum Publishing Corporation, 49_-71 (1984).
42. [42] W.S.Williams, W.S., J. Appl. Phys., 35 [4], 1329--38 (1964).
43. [43] G.V. Samsonov, G.V. - and S. A. Bozhko, S.A., Powder Metall. Metal Ceram., 9 [3], 35-_38 (1970).
44-[44] A.Bellosi, A., F. Monteverde, F.- and D. Sciti ${ }_{2}$ D., Int. J. Appl. Ceram. Techno., 3 [1],- 32-_40 (2006).

| Formatted: Right, Space After: 12 pt |  |
| :---: | :---: |
| Formatted: Font: 9 pt, Italic |  |
| Formatted | [170] |
| Formatted | [175] |
| Formatted | [171] |
| Formatted | ... [176] |
| Formatted | [177] |
| Formatted: Font: 10.5 pt, Font color: Auto |  |
| Formatted | ... [178] |
| Formatted: Font: 10.5 pt |  |
| Formatted: Font: 10.5 pt, Font color: Auto |  |
| Formatted $\ldots$.. [172] |  |
| Formatted | ... [173] |
| Formatted | ... [179] |
| Formatted | ... [180] |
| Formatted | [174] |

Formatted: 14_Reference_text, Left, Space After: 3 pt , No bullets or numbering, Tab stops: Not at 0.38"
Formatted: Bullets and Numbering

| Formatted |
| :--- |
| Formatted: Font: 10.5 pt |
| Formatted: Font: 10.5 pt Font color: Auto |

Formatted: 14_Reference_text, Left, No bullets or numbering, Adjust space between Latin and Asian text, Adjust space between Asian text and numbers, Tab stops: Not at 0.36"

Formatted: Left: 0.8", Right: 0.71", Top: 0.64 ", Bottom: $0.85^{\prime \prime}$, Header distance from edge: 0.64", Footer distance from edge: 0.77"

Formatted: Font: 10.5 pt
Formatted: 14_Reference_text, Left, Tab stops: Not at 0.38"

Formatted: Centered, Space Before: 10 pt
Formatted: Font: 10.5 p
Formatted: Default Paragraph Font, Font:
10.5 pt



| Page 230: [40] Formatted | pawan | 12/30/2010 12:26:00 AM |
| :---: | :---: | :---: |
| Font: Helvetica, 9 pt |  |  |
| Page 230: [41] Formatted | pawan | 12/30/2010 12:48:00 AM |
| 01_Open_para, Left, Space Before: 0 pt, After: 0 pt |  |  |
| Page 230: [42] Formatted | pawan | 12/30/2010 12:26:00 AM |
| Font: Helvetica, 9 pt |  |  |
| Page 230: [43] Formatted | pawan | 12/30/2010 12:48:00 AM |
| 01_Open_para, Left, Space Before: 0 pt, After: 0 pt |  |  |
| Page 230: [44] Formatted | pawan | 12/30/2010 12:26:00 AM |
| Font: Helvetica, 9 pt |  |  |
| Page 230: [45] Formatted | pawan | 12/30/2010 12:48:00 AM |
| 01_Open_para, Left, Space Before: 0 pt, After: 0 pt |  |  |
| Page 230: [46] Formatted | pawan | 12/30/2010 12:26:00 AM |
| Font: Helvetica, 9 pt |  |  |
| Page 230: [47] Formatted | pawan | 12/30/2010 12:48:00 AM |
| 01_Open_para, Left, Space Before: 0 pt, After: 0 pt |  |  |
| Page 229: [48] Formatted | pawan | 12/30/2010 12:34:00 AM |
| Right, Space After: 12 pt |  |  |
| Page 229: [49] Formatted | pawan | 12/30/2010 12:34:00 AM |
| Font: 9 pt, Italic |  |  |
| Page 229: [50] Formatted | pawan | 12/30/2010 12:34:00 AM |
| Default Paragraph Font, Font: 10.5 pt |  |  |
| Page 229: [51] Formatted | pawan | 12/30/2010 12:34:00 AM |
| Centered, Space Before: 10 pt |  |  |
| Page 229: [52] Formatted | pawan | 12/30/2010 12:34:00 AM |
| Font: 10.5 pt |  |  |
| Page 234: [53] Formatted | pawan | 12/30/2010 12:28:00 AM |
| Left |  |  |
| Page 234: [54] Formatted | pawan | 12/30/2010 12:28:00 AM |
| Left |  |  |
| Page 234: [55] Formatted | pawan | 12/30/2010 12:28:00 AM |
| Left |  |  |
| Page 234: [56] Formatted | pawan | 12/30/2010 12:28:00 AM |
| Left |  |  |
| Page 234: [57] Formatted | pawan | 12/30/2010 12:28:00 AM |
| Left |  |  |

Left

| Page 234: [60] Formatted | pawan | 12/30/2010 12:28:00 AM |
| :---: | :---: | :---: |
| Left |  |  |
| Page 234: [61] Formatted | pawan | 12/30/2010 12:28:00 AM |
| Left |  |  |
| Page 234: [62] Formatted | pawan | 12/30/2010 12:28:00 AM |
| Left |  |  |
| Page 234: [63] Formatted | pawan | 12/30/2010 12:28:00 AM |
| 01_Open_para, Centered |  |  |
| Page 234: [64] Formatted | pawan | 12/30/2010 12:28:00 AM |
| 08_Fig_cap, Left |  |  |
| Page 234: [65] Formatted | pawan | 12/ 29/2010 11:41:00 PM |
| Font: 9.5 pt, Not Bold |  |  |
| Page 234: [66] Formatted | pawan | 12/ 29/2010 11:41:00 PM |
| Font: 9.5 pt, Not Bold |  |  |
| Page 234: [67] Formatted | pawan | 12/29/2010 11:41:00 PM |
| Font: 9.5 pt, Not Bold |  |  |
| Page 234: [68] Formatted | pawan | 12/ 29/2010 11:41:00 PM |
| Font: Arial, 9.5 pt, Not Bold |  |  |
| Page 234: [69] Formatted | pawan | 12/ 29/2010 11:41:00 PM |
| Font: 9.5 pt, Not Bold |  |  |
| Page 234: [70] Formatted | pawan | 12/ 29/2010 11:41:00 PM |
| Font: Arial, 9.5 pt, Not Bold |  |  |
| Page 234: [71] Formatted | pawan | 12/ 29/2010 11:41:00 PM |
| Font: 9.5 pt, Not Bold |  |  |
| Page 234: [72] Formatted | pawan | 12/30/2010 12:28:00 AM |
| 01_Open_para, Centered |  |  |
| Page 234: [73] Formatted | pawan | 12/30/2010 12:28:00 AM |
| 08_Fig_cap, Left |  |  |
| Page 234: [74] Formatted | pawan | 12/ 29/2010 11:42:00 PM |
| Font: 9.5 pt, Not Bold |  |  |
| Page 234: [75] Formatted | pawan | 12/29/2010 11:42:00 PM |
| Font: 9.5 pt, Not Bold |  |  |
| Page 234: [76] Formatted | pawan | 12/29/2010 11:42:00 PM |

Font: 9.5 pt, Not Bold

| Page 234: [79] Formatted | pawan | 12/29/2010 11:42:00 PM |
| :---: | :---: | :---: |
| Font: 9.5 pt, Not Bold, Superscript |  |  |
| Page 234: [80] Formatted | pawan | 12/29/2010 11:42:00 PM |
| Font: 9.5 pt, Not Bold |  |  |
| Page 234: [81] Formatted | pawan | 12/29/2010 11:42:00 PM |
| Font: 9.5 pt, Not Bold |  |  |
| Page 234: [82] Formatted | pawan | 12/29/2010 11:42:00 PM |
| Font: 9.5 pt, Not Bold |  |  |
| Page 234: [83] Formatted | pawan | 12/29/2010 11:42:00 PM |
| Font: 9.5 pt, Not Bold, Superscript |  |  |
| Page 234: [84] Formatted | pawan | 12/30/2010 12:29:00 AM |
| Font: 9.5 pt, Not Bold |  |  |
| Page 234: [85] Formatted | pawan | 12/30/2010 12:29:00 AM |
| Font: 11 pt, Not Bold, Not Italic |  |  |
| Page 234: [86] Formatted | pawan | 12/30/2010 12:55:00 AM |
| 07_C_level, Left, Tab stops: 0.38", Left |  |  |
| Page 234: [87] Formatted | pawan | 12/30/2010 12:28:00 AM |
| Font: 11 pt, Not Bold |  |  |
| Page 234: [88] Formatted | pawan | 12/30/2010 12:28:00 AM |
| Font: 11 pt, Not Bold |  |  |
| Page 234: [89] Formatted | pawan | 12/30/2010 12:28:00 AM |
| Font: 11 pt, Not Bold, Not Superscript/ Subscript |  |  |
| Page 234: [90] Formatted | pawan | 12/30/2010 12:28:00 AM |
| Font: 11 pt, Not Bold |  |  |
| Page 234: [91] Formatted | pawan | 12/30/2010 12:55:00 AM |
| Condensed by 0.1 pt |  |  |
| Page 234: [92] Formatted | pawan | 12/30/2010 12:57:00 AM |
| 01_Open_para, Left, Line spacing: Multiple 0.98 li |  |  |
| Page 234: [93] Formatted | pawan | 12/30/2010 12:55:00 AM |
| Condensed by 0.1 pt |  |  |
| Page 229: [94] Formatted | pawan | 12/30/2010 12:34:00 AM |
| Default Paragraph Font, Font: 10.5 pt |  |  |
| Page 229: [95] Formatted | pawan | 12/30/2010 12:34:00 AM |
| Centered, Space Before: 10 pt |  |  |
| Page 229: [96] Formatted | pawan | 12/30/2010 12:34:00 AM |
| Font: 10.5 pt |  |  |


| Page 238: [99] Formatted | pawan | 1/ 12/ 2011 6:22:00 PM |
| :---: | :---: | :---: |
| 08_Fig_cap, Justified |  |  |
| Page 238: [100] Formatted | pawan | 12/ 29/2010 11:46:00 PM |
| Font: Not Bold |  |  |
| Page 238: [101] Formatted | pawan | 12/ 29/2010 11:46:00 PM |
| Font: Not Bold |  |  |
| Page 238: [102] Formatted | pawan | 12/ 29/2010 11:46:00 PM |
| Font: Not Bold |  |  |
| Page 238: [103] Formatted | pawan | 12/ 29/2010 11:46:00 PM |
| Font: Not Bold |  |  |
| Page 238: [104] Formatted | pawan | 12/ 29/2010 11:46:00 PM |
| Font: Not Bold |  |  |
| Page 238: [105] Formatted | pawan | 12/ 29/2010 11:46:00 PM |
| Font: Not Bold |  |  |
| Page 238: [106] Formatted | pawan | 12/ 29/2010 11:46:00 PM |
| Font: Not Bold |  |  |
| Page 238: [107] Formatted | pawan | 12/ 29/2010 11:46:00 PM |
| Font: Not Bold |  |  |
| Page 238: [108] Formatted | pawan | 12/ 29/2010 11:46:00 PM |
| Font: Not Bold |  |  |
| Page 238: [109] Formatted | pawan | 12/ 29/2010 11:46:00 PM |
| Font: Not Bold |  |  |
| Page 238: [110] Formatted | pawan | 12/ 29/2010 11:46:00 PM |
| Font: Not Bold |  |  |
| Page 238: [111] Formatted | pawan | 12/30/2010 12:30:00 AM |
| 02_In_para, Left |  |  |
| Page 238: [112] Formatted | pawan | 1/12/2011 6:23:00 PM |
| Condensed by 0.2 pt |  |  |
| Page 238: [113] Formatted | pawan | 1/12/2011 6:24:00 PM |
| Condensed by 0.2 pt |  |  |
| Page 238: [114] Formatted | pawan | 1/12/2011 6:23:00 PM |
| Condensed by 0.1 pt |  |  |
| Page 238: [115] Formatted | pawan | 1/12/2011 6:24:00 PM |
| Condensed by 0.2 pt |  |  |
| Page 238: [116] Formatted | pawan | 12/30/2010 12:30:00 AM |


| Page 238: [118] Formatted | pawan | 12/30/2010 1:00:00 AM |
| :---: | :---: | :---: |
| Condensed by 0.2 pt |  |  |
| Page 238: [119] Formatted | pawan | 12/30/2010 1:00:00 AM |
| Condensed by 0.1 pt |  |  |
| Page 238: [120] Formatted | pawan | 12/30/2010 12:30:00 AM |
| 01_Open_para, Centered |  |  |
| Page 238: [121] Formatted | pawan | 12/30/2010 12:30:00 AM |
| 01_Open_para |  |  |
| Page 238: [122] Formatted | pawan | 12/30/2010 12:30:00 AM |
| 01_Open_para, Centered |  |  |
| Page 238: [123] Formatted | pawan | 1/12/2011 6:24:00 PM |
| 08_Fig_cap, Justified |  |  |
| Page 238: [124] Formatted | pawan | 12/ 29/2010 11:48:00 PM |
| Font: 9.5 pt, Not Bold, Font color: Auto |  |  |
| Page 238: [125] Formatted | pawan | 12/ 29/2010 11:48:00 PM |
| Font: 9.5 pt, Not Bold, Font color: Auto |  |  |
| Page 238: [126] Formatted | pawan | 12/ 29/2010 11:48:00 PM |
| Font: 9.5 pt, Not Bold, Font color: Auto |  |  |
| Page 238: [127] Formatted | pawan | 12/ 29/2010 11:48:00 PM |
| Font: 9.5 pt, Not Bold, Font color: Auto |  |  |
| Page 238: [128] Formatted | pawan | 12/ 29/2010 11:48:00 PM |
| Font: 9.5 pt, Not Bold, Font color: Auto |  |  |
| Page 238: [129] Formatted | pawan | 12/ 29/2010 11:48:00 PM |
| Font: 9.5 pt, Not Bold, Font color: Auto |  |  |
| Page 238: [130] Formatted | pawan | 12/ 29/2010 11:48:00 PM |
| Font: 9.5 pt, Not Bold, Font color: Auto |  |  |
| Page 238: [131] Formatted | pawan | 12/ 30/ 2010 1:02:00 AM |
| Font color: Auto, Condensed by 0.2 pt |  |  |
| Page 238: [132] Formatted | pawan | 12/30/2010 1:02:00 AM |
| Condensed by 0.2 pt |  |  |
| Page 238: [133] Formatted | pawan | 12/30/2010 12:30:00 AM |
| 02_In_para, Left |  |  |
| Page 229: [134] Formatted | pawan | 12/30/2010 12:34:00 AM |
| Default Paragraph Font, Font: 10.5 pt |  |  |
| Page 239: [135] Formatted | pawan | 12/ 29/2010 11:49:00 PM |

Font: 9.5 pt, Not Bold, Font color: Auto

Default Paragraph Font, Font: 10.5 pt

| Page 240: [138] Formatted | pawan | 12/29/2010 11:28:00 PM |
| :--- | ---: | ---: |
| Font: 11 pt, Not Bold, Font color: Auto, Superscript |  |  |
| Page 240: [139] Formatted | pawan | 12/ 29/ 2010 11:28:00 PM |

Font: 11 pt, Font color: Auto, Superscript

| Page 229: [140] Formatted | pawan | 12/30/2010 12:34:00 AM |
| :---: | :---: | :---: |
| Default Paragraph Font, Font: 10.5 pt |  |  |
| Page 242: [141] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 242: [141] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 242: [141] Formatted | pawan | 12/30/2010 12:19:00 AM |


| Page 242: $[142]$ Formatted | pawan | $\mathbf{1 2 / 3 0 / 2 0 1 0 ~ 1 2 : 1 9 : 0 0 ~ A M ~}$ |
| :--- | :---: | :---: |
| Font: 10.5 pt |  |  |
| Page 242: $[142]$ Formatted | pawan | $\mathbf{1 2 / 3 0 / 2 0 1 0 ~ 1 2 : 1 9 : 0 0 ~ A M ~}$ |
| Font: 10.5 pt |  |  |
| Page 242: $[142]$ Formatted | pawan |  |
| Font: 10.5 pt |  | $\mathbf{1 2 / 3 0 / 2 0 1 0} \mathbf{1 2 : 1 9 : 0 0 ~ A M ~}$ |
| Page 242: $[142]$ Formatted | pawan |  |

Font: 10.5 pt

| Page 242: [142] Formatted | pawan | 12/30/2010 12:19:00 AM |
| :---: | :---: | :---: |
| Font: 10.5 pt |  |  |
| Page 242: [142] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [143] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [143] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [143] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [144] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [144] Formatted | pawan | 12/30/2010 12:19:00 AM |

Font: 10.5 pt

| Page 242: [144] Formatted | pawan | 12/30/2010 12:19:00 AM |
| :--- | :--- | :--- |



Font: 10.5 pt

| Page 242: [149] Formatted | pawan | 12/30/2010 12:19:00 AM |
| :---: | :---: | :---: |
| Font: 10.5 pt |  |  |
| Page 242: [149] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [149] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [149] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [150] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 242: [150] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 242: [150] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 242: [150] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 242: [150] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |

Font: 10.5 pt

| Page 242: [151] Formatted | pawan | 12/30/2010 12:19:00 AM |
| :---: | :---: | :---: |
| Font: 10.5 pt |  |  |
| Page 242: [151] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [151] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [151] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [151] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [151] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [151] Formatted | pawan | 12/30/2010 12:19:00 AM |

Font: 10.5 pt

| Page 242: [151] Formatted | pawan | 12/ 30/ 2010 12:19:00 AM |
| :--- | :--- | :--- |


| Page 242: [152] Formatted | pawan | 12/30/2010 12:19:00 AM |
| :---: | :---: | :---: |
| Font: 10.5 pt |  |  |
| Page 242: [152] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [152] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [152] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [152] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [153] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [153] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [153] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [153] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [153] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [153] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [153] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [154] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [154] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [154] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [154] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [155] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [155] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |

Font: 10.5 pt

| Page 242: [156] Formatted | pawan | 12/30/2010 12:19:00 AM |
| :---: | :---: | :---: |
| Font: 10.5 pt |  |  |
| Page 242: [156] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [156] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [156] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [156] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [157] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [157] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [157] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [157] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [158] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [158] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [158] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [158] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [158] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [158] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [159] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [159] Formatted | pawan | 12/30/2010 12:19:00 AM |

Font: 10.5 pt

| Page 242: [159] Formatted | pawan | 12/ 30/ 2010 12:19:00 AM |
| :--- | :--- | :--- |



| Page 242: [165] Formatted | pawan | 12/30/2010 12:19:00 AM |
| :---: | :---: | :---: |
| Font: 10.5 pt |  |  |
| Page 242: [165] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [165] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [165] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [165] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [166] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [166] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [166] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [166] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [167] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [167] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [167] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [167] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [167] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [167] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [167] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [167] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [168] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |

Font: 10.5 pt

| Page 242: [168] Formatted | pawan | 12/30/2010 12:19:00 AM |
| :---: | :---: | :---: |
| Font: 10.5 pt |  |  |
| Page 242: [168] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [169] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [169] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [169] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 242: [169] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [170] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [170] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [170] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [170] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [170] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [170] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [171] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [171] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [171] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [172] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [172] Formatted | pawan | 12/30/2010 12:19:00 AM |

Font: 10.5 pt

| Page 243: [172] Formatted | pawan | 12/ 30/2010 12:19:00 AM |
| :--- | :--- | :--- |


| Page 243: [172] Formatted | pawan | 12/30/2010 12:19:00 AM |
| :---: | :---: | :---: |
| Font: 10.5 pt |  |  |
| Page 243: [172] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [173] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [173] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [173] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [173] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [174] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [174] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [174] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [174] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [175] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [175] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [175] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [175] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [175] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [175] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [176] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [176] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |

Font: 10.5 pt

| Page 243: [177] Formatted | pawan | 12/30/2010 12:19:00 AM |
| :---: | :---: | :---: |
| Font: 10.5 pt |  |  |
| Page 243: [177] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [177] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [177] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [177] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt |  |  |
| Page 243: [178] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 243: [178] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 243: [178] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 243: [178] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 243: [178] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 243: [178] Formatted | pawan | 12/30/2010 12:19:00 AM |
| Font: 10.5 pt, Font color: Auto |  |  |
| Page 243: [179] Formatted | pawan | 1/12/2011 6:31:00 PM |
| Condensed by 0.1 pt |  |  |
| Page 243: [179] Formatted | pawan | 1/12/2011 6:31:00 PM |
| Condensed by 0.1 pt |  |  |
| Page 243: [179] Formatted | pawan | 1/12/2011 6:31:00 PM |
| Condensed by 0.1 pt |  |  |
| Page 243: [179] Formatted | pawan | 1/ 12/ 2011 6:31:00 PM |
| Condensed by 0.1 pt |  |  |
| Page 243: [179] Formatted | pawan | 1/12/2011 6:31:00 PM |
| Condensed by 0.1 pt |  |  |
| Page 243: [179] Formatted | pawan | 1/12/2011 6:31:00 PM |
| Condensed by 0.1 pt |  |  |
| Page 243: [179] Formatted | pawan | 1/12/2011 6:31:00 PM |



