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ABSTRACT 
 

Aerodynamic forces and moments on scaled models are measured in wind tunnels by multi-component strain gauge 
balances whose performance and accuracy are characterized by careful calibrations. It is well recognized that calibration loads 
that are representative of the combined loads experienced by the balance/model in wind tunnel test conditions lead to high 
accuracy of the measured loads. But, in the traditional method the calibration loads are restricted to single-component and two-
component loads that are unrepresentative of model loads. A recently developed method called Global Regression Method (GRM) 
places no such restrictions and therefore, permits application of multi-component calibration loads similar to model loads, leading 
to improved accuracy of measured loads. In addition, with use of GRM it is possible to substantially reduce the number of 
calibration loads and hence, the calibration effort by optimization of load schedule. 
 The GRM was recently implemented and a MATLAB software developed for balance calibration data analysis at NAL. In 
order to illustrate the application of GRM and use of the computer program calibrations of a 6-component internal balance were 
carried out with different types and number of calibration loads that included combined loads similar to model loads and the data 
were analyzed using GRM. The balance accuracy was assessed for a set of check loads consisting primarily of combined loads. 
Results showed that the accuracy when the calibration loads were similar to model loads was significantly better than that 
obtained using single- and two–component calibration loads. It was also found that improved accuracy could be obtained with 
substantially reduced number of loadings. 
 The paper presents an overview of the GRM and brief details of application of the GRM to calibration of multi-
component balances. A description of the above calibrations and discussions of the results are included. 
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1. INTRODUCTION 
 

Multi-component strain gauge balances are the 
primary instruments used for measurement of 
aerodynamic forces and moments on scaled models in 
wind tunnels. Careful calibration of a balance is 
necessary to characterize its performance and determine 
its accuracy. It is well known that apart from design and 
fabrication aspects, accuracy of a balance depends on the 
mathematical model adopted and the type of loadings 
applied for balance calibration (Ref.1and 2). Accuracy 
of the measured aerodynamic loads can therefore be 
expected to be highest when the calibration loads are 
similar to those experienced by the balance/model 
during wind tunnel tests, and an appropriate math model 
is chosen. 

In the traditional method the balance is calibrated by 
applying only single-component and two-component 
loads, and ‘piece-wise’ curve fits to the output vs load 
data are obtained from each of the loading sequences. 
Slope of these fits are the desired  
calibration coefficients (Ref.3). Such ‘piece-wise’ curve 
fitting procedure, sometimes called as Cooke’s method, 
requires that the load combinations be restricted to a 
maximum of two components (Ref.1). Consequently, the 
calibration loadings in the traditional method are also 
restricted to a maximum of two components, although 

such loadings are generally unrepresentative of actual 
wind tunnel test conditions. 

With improvement in computational capability a 
new calibration data processing method that does not 
place any restrictions on the type of calibration loadings 
has been developed (Ref. 1). The method known as least 
square Global Regression Method (GRM) permits 
simultaneous loadings of any arbitrary combinations 
upto six components and it therefore, enables the 
calibration of a balance with load combinations similar 
to those experienced by the balance in actual wind 
tunnel test conditions.  

It is also noted that the Ground Testing Technical 
Committee (GTTC) of the American Institute of 
Aeronautics and Astronautics (AIAA) which recently 
reviewed various practices adopted at major facilities in 
USA and Canada on calibration and use of internal 
balances, recommended adoption of GRM for deriving 
the calibration matrix (Ref.1). Following this 
recommendation most major wind tunnel facilities have 
adopted the GRM for balance calibration data anlysis 
(e.g. Ref. 4 and 5). 

Calibration of half-model balances and other 
external balances are frequently made by application of 
loads with points of application that are laterally offset 
from the balance. Such loading conditions result in 
multi-component loading of the balance. For example, a 
normal force on a half-model results in combined 
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loading of three components viz., normal force, pitching 
moment and rolling moment on the balance. Use of 
piece-wise curve fitting of such combined load 
calibration data is not possible and it is necessary to 
utilize the global regression method to determine the 
calibration coefficients of such balances. 

Balance calibration procedures at NAL have so far 
followed the traditional method and efforts are now 
underway to bring these procedures on par with state-of-
the-art and widely accepted practices in the wind tunnel 
community. As part of these efforts, the least squares 
global regression method for determination of balance 
calibration coefficients has recently been implemented at 
NAL and a computer program has been developed using 
MATLAB for this purpose. 

To illustrate the application of the GRM and 
demonstrate its advantages, calibrations of a six-
component internal balance were made with combined 
loads that were representative of typical model loads and 
also with traditional single-component and two-
component loads. Data from these calibrations which 
were carried out in an Automatic Balance Calibration 
System at NAL were analyzed using the GRM. 

The report presents details of the above work along 
with a brief description of the GRM with emphasis on its 
application to balance calibration data analysis.  

 
2.  CALIBRATION PROCESS OF A   
     BALANCE 
 

Before describing the application of GRM to 
balance calibration data a summary of calibration 
process is included as a background. 

A balance is calibrated by applying known loads 
and electrical outputs from the strain gauge bridges on 
the balance elements are recorded. The outputs from the 
balance elements are related to the applied loads on the 
balance and this relationship is expressed through a 
polynomial equation called as the math model of the 
balance. The most general form of the equation features 
first order, second order and a limited number of third 
order load terms (Ref.1). This model, called a third order 
math model also accounts for the dependency of balance 
outputs on the sign of loads through the use of ‘signed’ 
and ‘absolute’ values of component loads. 

 
The third order model expressing the output Re from 

the eth balance element as a function of the applied loads 

( )kjF F , can be written as (adapted from Ref.1): 
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The above math model defines the balance behaviour for 
the following types of loads : 

‘linear’ + and – loads 
‘load squared’ + and – loads 
‘load cubed’ + and – loads 
‘load cross product’  ++,  + –,  – + and  

   – – second order load combinations 
This model features a total of 2q(q+2) 

calibration coefficients for each component of a q-
component balance. The third order model for a         6-
component balance will lead to a 6x96 calibration 
matrix. 

As noted earlier the traditional calibration 
procedure involves application of single-component 
loads followed by two-component loads which are 
applied by varying the load on one element while the 
load on the other is held constant. The unknown 
calibration coefficients are determined by making 
separate or piece-wise curve fits to the output vs. load 
term for each of the load terms of the math model (see 
Ref. 1-3 for more details). This procedure requires that 
the calibration loads be restricted to a maximum of two 
components, which is infrequent in most wind tunnel 
test conditions. 

As noted earlier, the recently developed GRM 
does not place any such restrictions on the type of 
calibration loads and, in particular, this method permits 
simultaneous loading of any combinations of 
components upto a maximum of six. The GRM therefore 
enables the calibration loading design to be 
representative of the model loads in a wind tunnel. A 
brief description of GRM follows. 

 
3.  A BRIEF REVIEW OF GRM 
 

Regression analysis is a widely used statistical 
technique for investigating and modeling the relationship 
between variables in various fields including engineering 
and physical sciences. As noted earlier, regression 
analysis has recently been applied for balance calibration 
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data processing at several wind tunnel facilities. But 
details of application of the regression analysis to 
balance calibration are not available, at least in the open 
literature. It was therefore considered appropriate to 
include here a brief review of regression analysis with 
emphasis on its application to determination of 
calibration coefficients of multi-component balances. 
The review is based primarily on the material presented 
in Ref. 6 and 7.  
 Adopting notations commonly used in 
regression analysis the functional relation between the 
response y  of a system to a set of independent 

variables jx ,   j = 1, 2  k⋅ ⋅ ⋅ ⋅ ⋅  is expressed by the 

following equation: 
 

22     1 ko 1 ky = β + β x  +  β x +  + β x + ε ⋅ ⋅ ⋅ … (2) 

 
where ε  is the difference between the observed and 
fitted values of  y , and jx s are called as predictors or 

regressors. The above equation is also called the 
regression model of the system under consideration. The 
model represented by eqn. (2) is called a multiple linear 
regression model with k  regressors and the coefficients 

 ,   jβ j = 0, 1,  k ⋅ ⋅ ⋅  are called the regression 

coefficients. The term linear is used because eqn. (2) is a 
linear function in unknown parameters jβ , while the 

regressor jx  can take any form (such as 3x , sin x etc.). 

The term multiple refers to the fact that the equation 
involves more than one regressor. 
 In order to find the unknown coefficients of 
eqn. (2) measurements of the response y are made for 

n  different sets of predictorsjx . When the number of 

measurements is greater than the number of unknown 
coefficients, i.e.  n k+1>  the method of least squares 
can be used to estimate the regression coefficients as 
noted below. 
 The set of response values y for different sets 

of predictor values jx  can be written in matrix notation 

as: 
                       y = X β + ε                            … (3) 

where y is a n 1x  vector of response values, X  is a 

n  px  matrix of the levels of regressor variables, β is a 

p 1x  vector of unknown regression coefficients and  ε   

is a  n 1x  vector of random errors, where         p= 
k+1.  

Using the least squares method matrix of 
estimated regression coefficients can be obtained as (see 
Ref. 6 for derivations) : 

     ( )ˆ   -1
β = X'  X  X'  y                          … (4) 

provided that the inverse matrix ( ) -1X'  X  exists. The 

vector of fitted values of response corresponding to the 
measured values i.e. the fitted regression model is given 
by:  

 

              ( )ˆˆ    = -1y X β = X X'  X  X'  y               … (5) 

 As part of regression analysis an assessment of 
the fitted regression model is made to ascertain the 
adequacy and quality of fit through statistical procedures 
called as  ‘hypothesis testing’ and ‘tests for significance’ 
and using various quality metrics. Some of the 
commonly used quality metrics are : standard error of 
regressionσ̂ , coefficient of variation CV, coefficient of 

multiple determination 2R , t-statistic and variance 
inflation factor VIF (Ref. 6 and 7). Estimates of standard 
error and confidence interval widths of the estimated 
regression coefficients are also used to assess the quality 
of fitted math model.  The above metrics are obtained 
using certain statistical quantities that are computed 
using the measured and fitted response data and the 
estimated regression coefficients. These statistical 
quantities are usually summarized in an analysis of 
variance (ANOVA)  Table, a format of which is shown in 
Table.1 

Table 1.    Analysis of variance (ANOVA) for 
significance of regression 

Equations for the various quantities noted in the 
ANOVA  Table and the quality metrics are presented in 
Ref. 6. 

4. APPLICATION OF GRM TO BALANCE 
CALIBRATION  DATA  ANALYSIS 

Regression analysis methods described in the 
previous section are applied to determine the calibration 
coefficients of multi-component balances. For this 
purpose the polynomial equation representing the 
balance math model (such as eqn (1)) is expressed in the 
format used in regression analysis, eqn (3). In order to 
do this, the various types of loads 
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3
,  ,   ........ j j j j k j

2 F  F  , F F F  F  in the polynomial 

equation are rewritten as load terms 

j ,   j = 1 , 2 .... kg , and the coefficients 

a ,  b1 ,  b2 ,  … .  d2e e e e are written as           

, ,,  ,e o e  jC C j = 1 , 2 .... k respectively. 

 With these new symbols the balance math 
model can be written as : 

k

e , i e , o e , j j ,i
j=1

R  = C + C  g     i = 1, 2 ... n∑   … (6) 

where

output in   element due to   loading  th thR   e i Le , i i=  

calibration coefficient of    element associated 

                with  load term             

thC  ee , j 

thj g j

=  

value of  load term    due to  loading  thg     j i Lj , i i=  

loadingthL   = i  i     

In general, each applied load denoted by iL  

will cause loading of any one of the balance elements 
(single-component load) or simultaneous loading of two 
or more components (i.e. multi-component or combined 
loading). The load terms or regressors 

j,i   , j = 1 , 2 .... kg resulting from each such loading 

iL  are computed from the functional relationships 

between jg  and component loadsF , F  ...  F1 2 q. These 

functional relationships are obtained from the chosen 
math model.  

  Eqn. (6) represents the multiple linear 
regression model of the balance and the sets of measured 
values of balance outputs e,iR   and the known values of 

load terms j,ig are utilized in a regression analysis to 

determine the unknown coefficients e, jC  as noted 

below. 

Eqn. (6) is written in matrix format as : 

                 
          

   (1, n)     (1, p)   (p, n)
e E NR   =   C   G

                      … (7)                                                          

where eR  is a the vector of outputs of the eth element 

due to loadings  ,  iL   i = 1, 2 ... n  , and is given by : 

    e,1 e,2 e,n  [R    R   .............R ]eR   =    

EC  is the extended vector of calibration 

coefficients of the eth element and is given by : 

e,0 e,1 e,2 e,j e,k   [C    C   C   ....C .........C ]EC   =    

NG   is the extended load matrix consisting of 

values of load terms jg for each of the loadings 

,iL    i = 1, 2 ... n, and  is written as :  
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The matrix equation (7) representing the math 
model of the balance is in row format (which is 
customary in balance calibration data analysis), and this 
is converted to the column matrix format commonly 
adopted in regression analysis by taking the transpose of 
both sides of the eqn. (7) and including the error vector 
the math model of the balance is written as :  

          + ' ' '
e N E  R = G C ε                       … (8) 

where ‘  indicates transposed quantities. 

Comparing eqn. (8) with eqn. (3) the following 
equivalence of the terms used in balance calibration field 
with those used in regression analysis can be written:        

vector of response y  ≡ vector of balance outputs  'eR       

matrix of predictors X  ≡ matrix of load   terms '
NG     

vector of estimated regression coefficients β̂  ≡ vector of 

calibration coefficients '
EC  . 

Using the above equivalence relations in   eqn. 
(4) and after carrying out simplifications, the matrix of 
calibration coefficients is obtained as: 
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                  ( )' ' -1
E e N N N   C = R  G G  G            … (9) 

The fitted regression model of the balance is 
given by: 

ˆ ' ' -1
e e N N N NR = R  G  (G  G )  G         … (10) 

An assessment of the adequacy and quality of 
the above fitted regression model of the balance can be 
made using various quality metrics noted in section 3.  

In order to implement the above GRM concepts 
for balance calibration, a MATLAB software was 
developed. The software computes the calibration matrix 
of a q-component balance (q can be between 1 and 6) for 
the chosen math model. In addition, the program 
computes the quality metrics used to assess the adequacy 
and quality of the fitted regression model, noted in 
section 3. Computed quality metrics and other data can 
also be utilized to carry out further analysis to choose the 
most appropriate math model or reduce the number of 
terms in the model by deleting insignificant terms. 

Although as per the current practice the choice 
is either second order or third order math model with or 
without considering the asymmetric behaviour of the 
balance, the program can also handle higher order math 
models that include higher powers of component loads 
and load cross product terms with more than two 
combinations of component loads. 

 
5. ESTIMATION OF BALANCE 

ACCURACY  
 

Accuracy of a balance is estimated by 
comparing ‘back-calculated loads’ with actual applied 
loads on the balance. The ‘back-calculated loads’ are the 
loads computed utilizing the calibration matrix generated 
from regression analysis and the recorded balance 
outputs for the applied loads.  In general such back 
calculation of loads are made for all the calibration loads 
and also for a set of check loads that are not identical to 
the calibration loads. 

The difference ∆Fe between the back-calculated 
load and the actual applied load in a balance element e is 
the residual load error in the computed load Fe. A 
standard deviation of the residual load errors in the eth 
balance element is computed from the following 
equation : 

    

1
2n

2
e e,i

i =1

1
σ   =    ∆ F

n 1

 
 

−  
∑       … (11) 

where , e iF∆  is the residual error of i th load in the eth 

balance element and n is the total number of applied 
loads. 

The above standard deviation normalized with 
respect to its rated load is regarded as a measure of the 
accuracy of the balance element, i.e., 

th e

e Rated

σ
Accuracy of e balance element =  100  % 

F
x  

Balance element accuracies are computed separately for 
the calibration loads and the check loads. 

 
6. CALIBRATIONS OF A 6-COMPONENT 

BALANCE  
 

To illustrate the application of the GRM and 
use of the computer program developed for this purpose 
and also to bring out the advantages of the GRM, 
calibrations of a 6-component internal balance  

 

 
 

Figure 1.   1.5" diameter floating frame balance 
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Figure 2.  Automatic Balance Calibration System 
 
 
 

were carried out and the calibration data were analyzed 
using the program. Details of these calibrations and 
some results are presented below. 

The balance is of floating-frame type and strain 
gauged to measure 5 forces viz. N1, N2, S1, S2 and AF 
and one moment i.e. RM. Figure 1 shows the major 
dimensions, sign conventions of the load components 
and the rated loads of the balance. The balance was 
calibrated in an Automatic Balance Calibration System 
(ABCS) at NAL (Figure 2). The ABCS is of non-re-
positioning type featuring 6 servo-controlled hydraulic 
actuators for load application and the loads are measured 
by 0.02% accuracy load cells. Six high resolution optical 
sensors incorporated in the ABCS measure the balance 
deflections to an accuracy of 1 micron. More details of 
the ABCS are found in Ref. 8. 

The three calibrations differed in the type and 
total number of calibration loads as noted below  : 

 
(i) Cal 1 : a ‘standard’ calibration featuring 935 loads 

consisting of 84 single-component loads and 851 
two-component loads  

(ii)  Cal 2 : the  loads were similar to those in (i), but, 
the total number of loads was 300 consisting of 
43 single-component and 257 two-component 
loads, and  

(iii)  Cal 3 : a ‘combined load’ calibration featuring 
300 loads consisting of 35 three-component loads, 
37 four-component loads, 38 six-component loads 
in addition to 30 single-component and 161 two-
component loads. The magnitude of the three-

component and six-component loads were similar 
to those on a typical model at subsonic / transonic 
speeds in the NAL 1.2m tunnel. 

 
Calibration data from the above calibrations 

were analyzed using the GRM and three different third-
order regression models and corresponding 6x96 
calibration matrices were obtained. Assessment of the 
fitted regression model was also made using the various 
quality metrics noted in section 3 for the three 
calibration models.  

R2 value which is often used as a measure of the 
overall success of the regression model                       
was > 0.997 for all three calibration models (R2= 1 
implies a perfect fit). Overall quality of the three fits was 
therefore judged excellent. A typical ANOVA table and 
values of some of the quality metrics are shown in Table 
2.  

 
Table 2.   ANOVA table for AF element 
 

Source Deg of 
Freedom 

Sum of 
Squares 

Mean 
Square F 

 
Regression 
Residual 

Total 

 
96 
838 
934 

 
101.01 

1.49E-03 
101.01 

 
1.05 

1.7E-6 

 
5.8E+05 

 
Element       Std Error of       Coeff of            R^2 Statistic     

                              Regression       Variation 
 
            AF             1.78E-06             0.134                     0.999 
 
 

For determining the balance accuracy for these 
calibrations a set of 64 check loads consisting of 12 
single-component loads, 28 four-component loads and 
24 six-component loads were applied and balance 
outputs were recorded. The four-component and six-
component loads were generally similar to the loads  
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b) Cal. 2 
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c) Cal. 3 
 
Figure 3.   Comparison of typical residual load  

   error distributions 
 
 

on a typical model during actual wind tunnel tests in the 
NAL 1.2m tunnel, and magnitude of the check loads 
were different from those of the calibration loads. 
Balance outputs due to the check loads were processed 
using the computed calibration matrix for back-
calculation of check loads for each of the three 
calibrations. These back-calculated loads were compared 
with known check loads, and residual load errors and 
balance accuracies were computed as described in 
section 5 for the three calibrations. 

Figure 3 shows a comparison of a typical 
residual load error distribution for the three calibrations. 
Magnitudes of the load errors are, in general, lowest for 
Cal 3 (which includes combined loadings similar to 
check loads) compared to those for 
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Figure 4.  Comparison of balance element accuracies  
for calibrations with different types and 
number of calibration loads 
 
 
Cal 1 and Cal 2 (which feature only single-component 
and two-component calibration loads).   

Figure 4 shows the accuracy of the six elements 
of the balance for the three calibrations. It is seen that 
the balance element accuracies for Cal 3 were 
substantially better than those for the other two 
calibrations. As noted earlier, application of such 
combined loads during calibration is permissible only 
when the data analysis is made using GRM. It is also 
seen that these accuracy improvements have been 
obtained with a substantially reduced number of 
calibration loadings. The improvement in balance 
accuracy and the use of reduced number of calibration 
loads thus bring out the advantages of the GRM for 
balance calibration. However, it is to be noted that 
application of combined loads similar to model loads on 
the balance is practical only with automatic loading 
machines such as the ABCS. 
 
7. CONCLUSIONS 

 
The traditional method for calibration of multi-

component balances restricts the load combinations in 
the calibration load design to a maximum of two 
components, which are generally unrepresentative of 
actual wind tunnel test conditions. The Global 
Regression Method does not place any such restrictions 
and permits multi-component calibration loads with load 
combinations of more than two components that are 
representative of wind tunnel loads. It has been shown 
that calibration with such multi-component loads along 
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with use of GRM leads to significant improvements in 
balance accuracy. It has also been shown that such 
improvements in accuracy can be obtained with a 
substantially reduced number of calibration loads and a 
consequent reduction of calibration effort.  

Use of GRM also enables adoption of higher 
order math models (higher than the third order used 
currently) including load cross product terms with more 
than two load combinations for balance calibrations. 
Inclusion of load product terms featuring load 
combinations similar to those on a model under wind 
tunnel test conditions may lead to further improvements 
in accuracy of measured aerodynamic forces and 
moments. 
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