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ABSTRACT 

This paper explores the application of artificial neural network approach for aircraft engine health monitoring. The 
Digital Flight Data Recorder (DFDR) has volumes of data which if mined appropriately can provide valuable information about 
the aircraft health. The Flight Crew Operating Manual (FCOM) lays down operational profiles, which are recommended to be 
followed for efficient fuel usage and for minimizing maintenance effort. In the proposed system, the information from FCOM 
profiles and ‘known’ flight data has been fused to train a backpropagation feed-forward neural network. The predictions made 
by the neural network regarding the expected data of required engine parameters have been used to monitor the flight data and 
diagnose the health of the aircraft engine in relevance to the FCOM profiles. A Matlab GUI has been developed to simulate the 
‘unknown’ flight data through a Simulink model for the neural network. Data from the A320 family of aircrafts has been used for 
training and simulating the model and preliminary results are detailed in the paper. The simulation results exhibit that the data 
used is fairly healthy and show a very low level of severity of degradation with respect to the profiles studied.  
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NOMENCLATURE   
CAS          Calibrated Air Speed 

EGT       Exhaust Gas Temperature  

EHM      Engine Health Monitoring 

FCOM   Flight Crew Operating Manual 

FDM       Flight Data Monitoring 

DFDR   Digital Flight Data Recorder   

FF           Fuel Flow 

FL          Flight Level 

GUI        Graphical User Interface 

N1           Speed of LP compressor /turbine  

N2         Speed of HP compressor /turbine 

RMSE    Root Mean Square Error 

TLA         Throttle Lever Angle  

 

1. INTRODUCTION 

Flight Data Monitoring (FDM) is an 
indispensable, non-punitive, risk management tool 
that allows operators to identify threats and mitigate 
risks, thus leading to better flight safety and 
efficiently managed timely maintenance.  

FDM during the flight is the very basic level 
of diagnosis. Flight Data Recorder has voluminous 
data and in practice hardly fifty percent of data is 
being analyzed. If looked at carefully, tremendous 
amount of information can be extracted for the 
analysis and diagnostics of aircraft components. 

Engine and its sub-systems are the most 
critical systems of an aircraft. So, engine data 
analysis and hence monitoring the health of the 
engine, leads to safer flights. It not only helps in 
avoiding premature part removal but also caters to 
timely maintenance, irrespective of the statistically 
estimated maintenance schedules. The system being 
explained here is purely a ground-based system 
where all the processing is being taken up offline. 
The proposed system is part of a larger and more 
sophisticated Integrated Vehicle Health Management 
System being proposed in NAL, Bangalore. 

The idea of validation of flight data for 
Flight Crew Operating Manual (FCOM) profiles has 
never been explored before. So an attempt has been 
made to investigate the potential of neural networks 
for Aircraft Engine Health Management System. The 
key issue in this method is to use the flight data as 
base source for the complete analysis instead of 
specific instrumentation for health monitoring. There 
are so many systems in the industry which use 
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specific sensors and instrumentation for merely 
health monitoring. 

 

2. FCOM PROFILES 

The Flight Crew Operating Manual (FCOM) 
contains a wealth of information on the 
recommended operational regimes for the pilot in 
order to manoeuvre the aircraft safely and have better 
fuel efficiency. FCOM is the key manual for crew 
during and after flight.  FCOM provides complete 
information about the aircraft systems, profiles and 
normal operating performance limits. Some profiles, 
which have relevance in the indication of the health 
of the aircraft engine, are given in Table 1, Table 2, 
Table 3 and Table 4.  

In these tables, ‘Profile’ is the name of the 
profile which has been extracted from the FCOM. 
The next row lays down the parameters of the flight 
data being considered during training and simulation 
of the Neural Network Model being proposed. The 
third and fourth row splits the parameter set of the 
second row into 2 sets – first, Input to NN states the 
parameters to be used as the input vector to the NN 
model and second, Target Output specifies the output 
parameter whose data is used as the target output 
vector during training.  Target Output also represents 
the parameter whose values are predicted by the NN 
model during simulation with ‘unknown’ flight data 
and finally compared with the values of the same 
parameter from the actual ‘unknown’ flight data to 
estimate the deviation from the expected trend. 

Table 1. Profile 1 

Profile Altitude-Crossover 
Table 

Parameters Considered Altitude, Mach 
Number, Calibrated 

Air Speed(CAS) 
Input to NN [Altitude;  

Mach Number] 
Target Output [CAS] 

Table 2. Profile 2 

Profile Stability of 
Parameters After 

Engine Start 
Parameters Considered Engine rpm(N1, 

N2), Fuel 
Flow(FF),  

Exhaust Gas 
Temperature(EGT) 

Input to NN [N1; N2; FF] 
Target Output [EGT] 

Table 3. Profile 3 

Profile Protection from Fan 
Flutter 

Parameters Considered Engine rpm(N1), 
Ground Speed(GS), 

Throttle Lever 
Angle(TLA) 

Input to NN [GS; TLA] 
Target Output [N1] 

Table 4. Profile 4 

Profile Recommended Thrust 
during Turbulence 

Parameters Considered Altitude, CAS, Gross 
Weight(GWt), Engine 

rpm(N1) 
Input to NN [Altitude; CAS; GWt] 

Target Output [N1] 

 

3. THE DIAGNOSTIC APPROACH 

Neural Networks has been proposed in the 
system, being developed, due to the following 
reasons: 

� Ability to learn the faulty and normal 
operating signatures from actual test data 

� Reliable classification of faults in engines 
without requiring detailed system models  

�  A thorough neuralnetwork-based diagnostic 
tool requires the collection of extensive 
training data. NAL has a huge collection of 
flight data encompassing both nominal as 
well as faulty conditions 

� Bayesian classifier is another possible 
approach, but the estimation of prior 
probabilities is a deterrent  
 

Since the flight data itself is being used for 
training the neural network, no other physical model 
is required to simulate the target system. This proves 
to be an advantage in terms of the computation time 
and the complexity of logic development. 

Another important feature of this system is 
that, only existing flight data parameters recorded by 
DFDR are made use of, thus demanding no extra 
instrumentation for the data used in the engine health 
monitoring system. A ‘backpropagation feed-forward 
(BFF) Neural Network’ has been used for this data-
driven diagnostic model.  

The flight data used for developing and 
simulating the neural network for each profile has 
been taken from the flight data from A320 class of 
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aircrafts. Depending on the parameters required for 
input and the target output of the Neural Network, the 
data is extracted and fed to the neural network.  

Basically the data used for training is 
healthy in nature. So deviation from these values 
implies degradation. Once the neural network has 
been validated and tested, it is ready to be used for 
simulating the ‘unknown’ data. Depending on the 
profile being validated, the NN predicts the expected 
value of the engine health indicator parameter/s. This 
is compared to the actual value of these indicators in 
the flight data. The deviation is recorded and 
depending on the extent of deviation, the goodness of 
that output parameter is ascertained. If the deviation 
is significantly beyond an allowed confidence 
threshold, then it indicates the degradation of the 
aircraft engine. 

  

4. MODEL DEVELOPMENT 

Basically Matlab/Simulink Neural Network 
Toolbox has been used to create the neural network 
for the system. A backpropagation feed-forward 
(BFF) Neural Network has been used where 
basically, apart from the input and output layer, a 
single hidden layer with 20 neurons has been created. 
The tansig activation function has been used between 
the input and hidden layer, whereas, the transfer 
function between the hidden and the output layers is 
purelin.   

Each profile maintains a metric file which 
holds relevant information pertaining to that 
particular profile parameters along with the accept-
reject thresholds, the severity levels, maintenance and 
safety impact and so on. Once the neural network 
predicts the output for a given ‘unknown’ input, 
using information from the corresponding metric file 
and the actual data, the model determines the amount 
of deviation. The deviation extent gives an idea about 
the severity of the degradation of the data with 
respect to the profile. The basic architecture of the 
system is given in figure 1. The Neural Network 
model is first created by using available healthy flight 
data to train the network. In this, for each profile, 
according to the profile tables given in Table 1,2,3,4, 
the input and the target output data are provided for 
training the model. It is then tested by using some of 
the ‘known’ healthy flight data. Once the training 
seems to be satisfactory, the NN model is ready to be 
used on ‘unknown’ data. For the ‘unknown’ data, 
again according to the profile tables, the input data is 
given to the model. Depending on its knowledge, the 
NN model predicts the values for the output 

parameter for the healthy condition. A module then 
extracts the threshold information from the metric file 
for the profile being checked. Then the quantifier 
ascertains the deviation of the actual data of the 
output parameter, available in the ‘unknown’ data, 
from the predicted values of the NN model. If the 
RMSE is within the allowable threshold, then the 
profile is said to be adhered to and the components 
are healthy with respect to that particular profile. 
Finally the reports, stating the results, are generated. 

The GUI used to simulate the neural 
network for selected profile has been developed using 
Matlab. A screenshot of the GUI is given in Figure 2. 
The Aircraft type, the Profile to be simulated and the 
‘new’ data for simulation can be selected. Once the 
Simulink NN model to be used for simulation is also 
chosen, pressing the Simulate NN button in the GUI 
executes the NN model. Along with the RMSE, the 
slope and the regression coefficient of the curve fit 
for the points for the actual values of the output 
parameter in flight data plotted against the predicted 
values from the model, are displayed. Apart from 
this, a plot of the deviation of the actual values of the 
output parameter from flight data from the predicted 
values is also generated in the GUI. 

The model training will be extended in the 
phase II for the predictive maintenance schedules of 
the aircraft engine and sub-systems. Typically the 
maintenance schedules are pre-fixed based on either 
number of flight hours or fixed durations. This has 
disadvantage in cases where the systems are operated 
sparingly. In such cases time-based maintenance calls 
for unwanted maintenance operations which affects 
both time and money. 

With the trained system being used, the 
maintenance schedules could be dynamically tuned 
based on the system analysis using the NN. 

5. ANALYSIS & DISCUSSION 

The BFF Neural Network has been 
simulated using flight data taken from the A320 class 
of aircrafts. The model has been tested for four 
profiles.   

The mean-squared error is one of the most 
commonly used measures of success for numeric 
prediction. This value is computed by taking the 
average of the squared differences between each 
predicted value and its corresponding actual value. 
The Root Mean-Squared Error (RMSE) is simply the 
square root of the mean-squared-error. RMSE has 
been used here to assert the accuracy of the NN 
predictor. 
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Plots of the Predicted and Actual values for 
the stated profiles are given in figures 3, 4, 5 and 6. 

For the simulation of profile 1, when the  
parameter values of the ALTITUDE and MACH 
NUMBER from the ‘unknown’ flight data are given 
as input to the NN model, it predicts the value for the 
CAS parameter(Output parameter for the first profile 
stated in Table 1). Figure 1 displays these predicted  
values  and the actual CAS values from the 
‘unknown’ flight data being considered plotted 
against  the ALTITUDE. The scale used shows that  
the difference between the two is within the 
allowable threshold. 

For the second profile, the input to the NN 
model are the values for N1, N2 and FF from the 
‘unknown’ flight data. The predicted values from the 
model for the output parameter EGT has been plotted 
along with the actual values of EGT from the flight 
data against N1 in Figure 4. 

For the third profile, the input set to the NN 
model has the GS and TLA from the flight data and 
the predicted values from the model are for N1. 
Figure 5 shows the plot of these predicted values for 
N1 and the actual valus of N1 from the flight data 
with the Ground Speed. 

For profile 4, the NN model takes the 
ALTITUDE, CAS and Gross Weight as input and 
predicts the values for N1. The plot for this Vs 
Altitude is shown in Figure 6. 

From the plots it can be inferred that for all 
the four profiles, the differences between the 
predicted and the actual output values are within the 
acceptable limits. So the flight data used for the 
simulation can be said to be following the healthy 
trend laid down by the FCOM profiles. 

The root mean square error found for each 
profile when simulated with more than 1000 data 
samples is given in Table 5. However the NN is 
being trained with voluminous data from the actual 
flight data having more than 50 sectors spread over 
more than 10 aircrafts flown across spatially 
distributed scenarios.  

Table 5. RMSE for each profile 

Profile RMSE 

Profile 1 1.534 

Profile 2 3.569 

Profile 3 2.817 

Profile 4 1.579 

 

6. CONCLUSION 

The model developed is of a generic nature 
and can be used for monitoring flight data of any 
aircraft type with minor modifications, with respect 
to the identified FCOM profiles. The flight data of 
A320 family of aircrafts which has been used for 
simulation here shows that the data is following the 
recommended FCOM standards with minor 
deviations and is quite healthy as understood from the 
RMSE which is less than 5 for all the profiles. 

Use of the neural network approach has 
resulted in fairly accurate predictions of the aircraft 
engine health indicator parameters and can be 
enhanced to incorporate more profiles and models. 
The refined system will be extremely helpful in 
ascertaining the health of the aircraft in order to 
trigger maintenance whenever required, irrespective 
of the maintenance schedule. This will definitely lead 
to safer flights and utmost usage of aircraft 
components. The use of dynamic feed-forward neural 
networks can be explored in future to assert its 
accuracy in the field of aircraft engine health 
monitoring. 

The model will be enhanced with multiple 
profiles and predictive features for the health 
monitoring, health management and predictive 
maintenance. The network is planned to be integrated 
with the higher level Aircraft Integrated Vehicle 
Health Management System (IVHM) for whole 
aircraft level multi-system and sub-system health 
monitoring. 
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Figure 1.  Architecture of the EHM System 

 
 
 
 

 
Figure 2.  GUI of the EHM System
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Figure 3. Profile 1-Predicted and Actual CAS Vs 
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Figure 4. Profile 2 – Predicted and Actual EGT Vs 
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Figure 5. Profile 3 – Predicted and Actual N1 Vs 
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Figure 6. Profile 4 – Predicted and Actual N1 Vs 
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