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ABSTRACT

This paper explores the application of artificisdural network approach for aircraft engine healttomitoring. The
Digital Flight Data Recorder (DFDR) has volumesdafta which if mined appropriately can provide vadleinformation about
the aircraft health. The Flight Crew Operating Mah{FCOM) lays down operational profiles, which aecommended to be
followed for efficient fuel usage and for minimgimaintenance effort. In the proposed system, ifemation from FCOM
profiles and ‘known’ flight data has been fusedrtin a backpropagation feed-forward neural netwofke predictions made
by the neural network regarding the expected d&taequired engine parameters have been used totordhie flight data and
diagnose the health of the aircraft engine in ralese to the FCOM profiles. A Matlab GUI has beemeligped to simulate the
‘unknown’ flight data through a Simulink model fbe neural network. Data from the A320 family ateifts has been used for
training and simulating the model and preliminassults are detailed in the paper. The simulaticsules exhibit that the data
used is fairly healthy and show a very low levedeferity of degradation with respect to the pefistudied
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1. INTRODUCTION

NOMENCLATURE Flight Data Monitoring (FDM) is an

CAS Calibrated Air Speed indispensable, non-punitive, risk management tool
that allows operators to identify threats and nraitiy

EGT Exhaust Gas Temperature risks, thus leading to better flight safety and

EHM Engine Health Monitoring efficiently managed timely maintenance.

) ] FDM during the flight is the very basic level
FCOM Flight Crew Operating Manual of diagnosis. Flight Data Recorder has voluminous
. I data and in practice hardly fifty percent of daga i
FDM Flight Data Monitoring being analyzed. If looked at carefully, tremendous
DFDR Digital Flight Data Recorder amount of information can be extracted for the
analysis and diagnostics of aircraft components.

FF Fuel Flow Engine and its sub-systems are the most
. critical systems of an aircraft. So, engine data
FL Flight Level analysis and hence monitoring the health of the
GUI Graphical User Interface engine, leads to safer flights. It not only helps i
avoiding premature part removal but also caters to
N1 Speed of LP compressor /turbine timely maintenance, irrespective of the statiskjcal
estimated maintenance schedules. The system being
N2 Speed of HP compressor /turbine explained here is purely a ground-based system
where all the processing is being taken up offline.
RMSE Root Mean Square Error The proposed system is part of a larger and more
TLA Throttle Lever Angle sophisticated Integrated Vehicle Health Management
System being proposed in NAL, Bangalore.
The idea of validation of flight data for
Flight Crew Operating Manual (FCOM) profiles has
never been explored before. So an attempt has been
made to investigate the potential of neural network
“Scientist, National Trisonic Aerodynamigacilities for Aircraft Engine Health Management System. The
Division, CSIR-NAL key issue in this method is to use the flight daga

base source for the complete analysis instead of
specific instrumentation for health monitoring. Tée
are so many systems in the industry which use

" Scientist, Aerospace Electronics & Systems
Division, CSIR-NAL



https://core.ac.uk/display/11874778?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Anjana Krishnan and C M Ananda

specific sensors and
health monitoring.

instrumentation for merely

2. FCOM PROFILES

The Flight Crew Operating Manual (FCOM)
contains a wealth of information on the
recommended operational regimes for the pilot in
order to manoeuvre the aircraft safely and haviebet
fuel efficiency. FCOM is the key manual for crew
during and after flight. FCOM provides complete
information about the aircraft systems, profilesd an
normal operating performance limits. Some profiles,
which have relevance in the indication of the Healt
of the aircraft engine, are given in Table 1, Table
Table 3 and Table 4.

In these tables,Profile’ is the name of the
profile which has been extracted from the FCOM.
The next row lays down the parameters of the flight
data being considered during training and simutatio
of the Neural Network Model being proposed. The
third and fourth row splits the parameter set & th
second row into 2 sets — firdhput to NNstates the
parameters to be used as the input vector to the NN
model and second,arget Outputspecifies the output

parameter whose data is used as the target output

vector during training.Target Outputalso represents
the parameter whose values are predicted by the NN
model during simulation with ‘unknown’ flight data
and finally compared with the values of the same
parameter from theactual ‘unknown’ flight data to
estimate the deviation from the expected trend.

Table 1. Profile 1

Profile

Altitude-Crossover
Table

Altitude, Mach

Number, Calibrated

Parameters Considered

Air Speed(CAS)
Input to NN [Altitude;
Mach Numbet
Target Output [CAS]

Table 2. Profile 2

Profile

Stability of
Parameters After
Engine Stai
Engine rpm(N1
N2), Fuel
Flow(FF),
Exhaust Gas
Temperature(EG”
[N1; N2; FF]
[EGT]

Parameters Considered

Input to NN
Target Output

Table 3. Profile 3

Protection from Fan
Flutter
Engine rpm(N1)
Ground Speed(GS),
Throttle Lever

Profile

Parameters Considered

Angle(TLA)
Input to NN [GS; TLA]
Target Outpt [N1]

Table 4. Profile 4

—

Recommended Thrusg
during Turbulence

Altitude, CAS, Gross

Weight(GWt), Engine

Profile

Parameters Considered

rpm(N1)
Input to NN [Altitude; CAS; GWH]
Target Outpt [N1]

3. THE DIAGNOSTIC APPROACH

Neural Networks has been proposed in the
system, being developed, due to the following
reasons:

Ability to learn the faulty and normal
operating signatures from actual test data
Reliable classification of faults in engines
without requiring detailed system models
A thorough neuralnetwork-based diagnostic
tool requires the collection of extensive
training data. NAL has a huge collection of
flight data encompassing both nominal as
well as faulty conditions
» Bayesian classifier is another possible
approach, but the estimation of prior
probabilities is a deterrent

A\

Since the flight data itself is being used for
training the neural network, no other physical niode
is required to simulate the target system. Thivgso
to be an advantage in terms of gt@mputation time
and thecomplexity of logic development

Anotherimportant feature of this system is
that, onlyexistingflight data parameters recorded by
DFDR are made use of, thus demandimg extra
instrumentatiorfor the data used in the engine health
monitoring system. Abackpropagation feed-forward
(BFF) Neural Network’has been used for this data-
driven diagnostic model.

The flight data used for developing and
simulating the neural network for each profile has
been taken from the flight data from A320 class of
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aircrafts. Depending on the parameters required for
input and the target output of the Neural Netwdhk,
data is extracted and fed to the neural network.

Basically the data used for training is
healthy in nature. So deviation from these values
implies degradation. Once the neural network has
been validated and tested, it is ready to be ueed f
simulating the ‘unknown’ data. Depending on the
profile being validated, the NN predicts the expdct
value of the engine health indicator parametenfss T
is compared to the actual value of these indicdtors
the flight data. The deviation is recorded and
depending on the extent of deviation, the goodoéss
that output parameter is ascertained. If the dieviat
is significantly beyond an allowed confidence
threshold, then it indicates the degradation of the
aircraft engine.

4. MODEL DEVELOPMENT

Basically Matlab/Simulink Neural Network
Toolbox has been used to create the neural network
for the system. Abackpropagation feed-forward
(BFF) Neural Network has been used where
basically, apart from the input and output layer, a
single hidden layer with 20 neurons has been aleate
Thetansigactivation function has been used between
the input and hidden layer, whereas, the transfer
function between the hidden and the output layers i
purelin.

Each profile maintains a metric file which
holds relevant information pertaining to that
particular profile parameters along with the aceept
reject thresholds, the severity levels, maintenamzk
safety impact and so on. Once the neural network
predicts the output for a given ‘unknown’ input,
using information from the corresponding metrie fil
and the actual data, the model determines the amoun
of deviation. The deviation extent gives an ideautb
the severity of the degradation of the data with
respect to the profile. The basic architecture haf t
system is given in figure 1. The Neural Network
model is first created by using available healtight
data to train the network. In this, for each pefil
according to the profile tables given in Table 3,2,
the input and the target output data are provided f
training the model. It is then tested by using sarhe
the ‘known’ healthy flight data. Once the training
seems to be satisfactory, the NN model is readyeto
used on ‘unknown’ data. For the ‘unknown’ data,
again according to the profile tables, the inputda
given to the model. Depending on its knowledge, the
NN model predicts the values for the output

parameter for the healthy condition. A module then
extracts the threshold information from the mefite

for the profile being checked. Then the quantifier
ascertains the deviation of the actual data of the
output parameter, available in the ‘unknown’ data,
from the predicted values of the NN model. If the
RMSE is within the allowable threshold, then the
profile is said to be adhered to and the components
are healthy with respect to that particular profile
Finally the reports, stating the results, are gateel.

The GUI used to simulate the neural
network for selected profile has been developedgusi
Matlab. A screenshot of the GUI is given in Fig@re
The Aircraft type, the Profile to be simulated ahd
‘new’ data for simulation can be selected. Once the
Simulink NN model to be used for simulation is also
chosen, pressing tH@imulate NNbutton in the GUI
executes the NN model. Along with the RMSE, the
slope and the regression coefficient of the cuive f
for the points for the actual values of the output
parameter in flight data plotted against the predic
values from the model, are displayed. Apart from
this, a plot of the deviation of the actual valoéshe
output parameter from flight data from the predicte
values is also generated in the GUI.

The model training will be extended in the

phase Il for the predictive maintenance schedufes o
the aircraft engine and sub-systems. Typically the
maintenance schedules are pre-fixed based on either
number of flight hours or fixed durations. This has
disadvantage in cases where the systems are aperate
sparingly. In such cases time-based maintenants cal
for unwanted maintenance operations which affects
both time and money.

With the trained system being used, the
maintenance schedules could be dynamically tuned
based on the system analysis using the NN.

5. ANALYSIS & DISCUSSION

The BFF Neural Network has been
simulated using flight data taken from the A32G0ssla
of aircrafts. The model has been tested for four
profiles.

The mean-squared error is one of the most
commonly used measures of success for numeric
prediction. This value is computed by taking the
average of the squared differences between each
predicted value and its corresponding actual value.
The Root Mean-Squared Error (RMSE) is simply the
square root of the mean-squared-error. RMSE has
been used here to assert the accuracy of the NN
predictor.
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Plots of the Predicted and Actual values for
the stated profiles are given in figures 3, 4, 8 &n

For the simulation of profile 1, when the
parameter values of the ALTITUDE and MACH
NUMBER from the ‘unknown’ flight data are given
as input to the NN model, it predicts the valuetfor
CAS parameter(Output parameter for the first peofil
stated in Table 1). Figure 1 displays these predict
values and the actual CAS values from the
‘unknown’ flight data being considered plotted
against the ALTITUDE. The scale used shows that
the difference between the two is within the
allowable threshold.

For the second profile, the input to the NN
model are the values for N1, N2 and FF from the
‘unknown’ flight data. The predicted values froneth
model for the output parameter EGT has been plotted
along with the actual values of EGT from the flight
data against N1 in Figure 4.

For the third profile, the input set to the NN
model has the GS and TLA from the flight data and
the predicted values from the model are for N1.
Figure 5 shows the plot of these predicted valoes f
N1 and the actual valus of N1 from the flight data
with the Ground Speed.

For profile 4, the NN model takes the
ALTITUDE, CAS and Gross Weight as input and
predicts the values for N1. The plot for this Vs
Altitude is shown in Figure 6.

From the plots it can be inferred that for all
the four profiles, the differences between the
predicted and the actual output values are withe t
acceptable limits. So the flight data used for the
simulation can be said to be following the healthy

trend laid down by the FCOM profiles

The root mean square error found for each
profile when simulated with more than 1000 data
samples is given in Table 5. However the NN is
being trained with voluminous data from the actual
flight data having more than 50 sectors spread over
more than 10 aircrafts flown across spatially

distributed scenarios

Table 5. RMSE for each profile

Profile RMSE
Profile 1 1534
Profile 2 3.569
Profile 3 2.817
Profile 4 1.579

6. CONCLUSION

The model developed is of a generic nature
and can be used for monitoring flight data of any
aircraft type with minor modifications, with respec
to the identified FCOM profiles. The flight data of
A320 family of aircrafts which has been used for
simulation here shows that the data is following th
recommended FCOM standards with minor
deviations and is quite healthy as understood tioen
RMSE which is less than 5 for all the profiles.

Use of the neural network approach has
resulted in fairly accurate predictions of the ft
engine health indicator parameters and can be
enhanced to incorporate more profiles anddels.
The refined system will be extremely helpful in
ascertaining the health of the aircraft in order to
trigger maintenance whenever required, irrespective
of the maintenance schedule. This will definitedad
to safer flights and utmost usage of aircraft
components. The use of dynamic feed-forward neural
networks can be explored in future to assert its
accuracy in the field of aircraft engine health
monitoring.

The model will be enhanced with multiple
profiles and predictive features for the health
monitoring, health management and predictive
maintenance. The network is planned to be intedrate
with the higher level Aircraft Integrated Vehicle
Health Management System (IVHM) for whole
aircraft level multi-system and sub-system health
monitoring.
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