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Abstract
We study the effects of both convective and unsteady inertia on the dynamics
and rheology of a dilute suspension of periodically forced neutrally buoyant
spherical particles, at low Reynolds numbers, in a quiescent Newtonian fluid.
The inclusion of inertia results in additional terms in the equation governing
the dynamics of the particle that represent a fading memory of the entire history
of the particle motion. The inclusion of convective inertia in the low Reynolds
number limit makes the memory term nonlinear. Several tests were performed
to show that the results presented in this paper are physically reasonable and
correct. A perturbation analysis of the problem yields strong evidence that the
results of our simulations are correct. It is observed that there is a preferred
direction in this system which manifests itself in the properties of the solution.
This preferred direction is identified as the direction of the initial motion of
the particle. We present here results on the behavior of various parameters
with respect to Reynolds numbers and the amplitude of the periodic force.
These include phase-space plots between particle displacement and particle
velocity and the variation of a rheological parameter, namely a ‘normal stress’
with respect to Reynolds number and the amplitude of the periodic force. We
believe that our results may be technologically important since the rheological
parameter depends strongly on controllable parameters such as the Reynolds
number and the amplitude of the periodic force. Further, this system is one of
the simplest systems whose rheology shows non-Newtonian behavior, such as
the presence of a normal stress. In addition, this system represents a physically
realizable system for experimentally testing the frameworks developed to
calculate the collective behavior of systems of oscillators with memory.
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1. Introduction

The flow due to a spherical body moving in a viscous, incompressible fluid at small Reynolds
number has been a problem of both practical and theoretical importance. The translation
of a rigid sphere was first considered by Stokes (1851), motivated by his interest in the
effects of fluid friction on the motion of pendulums. Lovalenti and Brady (1993) have
summarized relevant studies conducted prior to 1993 and have also derived an expression
for the hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at
small Reynolds numbers, using the reciprocal theorem. Leshansky and Brady (2004) have
calculated the hydrodynamic force on a sphere using the generalized reciprocal theorem
considering only unsteady inertia. The effect of inertia on the sedimentation of a sphere near
a plane wall has been studied by Becker et al (1996). Jansons (2007) studied the effect of
inertia on stochastic Stokes’ drift. The influence of fluid inertia on the motion of a finite
assemblage of solid spherical particles in a slowly changing uniform flow at small Reynolds
number Re and moderate Strouhal number Sl has been studied by Leshansky et al (2004).
A simulation of flow around spheres and cylinders at finite Reynolds numbers was carried
out by Kim and Phillips (2004). The effects of the history force on an oscillating rigid sphere
at low Reynolds numbers was studied by Abbad and Souhar (2004). The stationary shear
flow around fixed and free bodies at finite Reynolds numbers was studied by Mikulencak
and Morris (2004). Roscoe worked on the rheology of a suspension of viscoelastic spheres
in a viscous liquid (Roscoe 1967). The unsteady flow about a sphere at low to moderate
Reynolds numbers with oscillatory motion was studied by Chang and Maxey (1994). In
addition, the study of the dynamics and rheology of a suspension of periodically forced
particles in a sheared Newtonian fluid has gained importance for over a decade because of
its fundamental consequences and its potential technological implications. The main results
pertaining to this area have been summarized in a review by Asokan et al (2005). The
system considered is an ideal physical system for testing the effects of periodic forcing at
the level of individual particles on rheological parameters at a macroscopic level. Since the
rheological parameters are obtained by suitable averages over all the individual particles, this
system is an ideal system to study the fundamentally and technologically important question
of the conditions under which an average over a large number of individually chaotically
varying particles itself varies chaotically. The work summarized by Asokan et al (2005)
has provided some partial answers to this question. In the case of dilute suspensions, the
periodic forcing appears both in the equations of the dynamics of the individual particles and
in the equations of the rheological properties. Thus, there is a nonlinear coupling between
the microscopic level of the individual particle and the macroscopic level of the rheological
parameters and hence chaos at the microlevel can lead to chaos at the macrolevel of the
rheological parameters. It has also been demonstrated that fluctuations in a suspension of
sheared spheres, including the effects of multiple hydrodynamic interactions simulated by
the Stokesian dynamics technique are governed by a low dimensional chaotic attractor
(Kumar and Ramamohan 1995). This suggests that chaos at the level of the individual
particles can also lead to chaos at the level of the averages when hydrodynamic interactions
are included. All of the above results were obtained at zero Reynolds number or by
complete neglect of particle and fluid inertia. The aim of the present paper is to take the
first step towards extending these results to the regime of low Reynolds numbers. The
main impact of inertia in the low Reynolds number regime is to introduce a lag between
the imposition of the force and the response of the particle. Mathematically this results
in the equation containing terms representing a fading memory of the entire history of
the particle motion (Kumar et al 1998, Radhakrishnan et al 1999, Dasan et al 2002).
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If we include convective inertia in the problem (in addition to unsteady inertia), even at
low Reynolds numbers, we find that the character of the fading memory term changes
and it becomes nonlinear. As a first step in considering the effect of these terms on
the dynamics and rheology of periodically forced suspensions of particles, we study the
dynamics and rheology of a dilute suspension of periodically forced spherical particles in
a quiescent Newtonian fluid at low Reynolds number. The problem considered here and
the results obtained herein may also serve as a test of more advanced models when we
develop the area further. Further, our analysis leads to the development of an expression
for a macroscopic, experimentally realizable parameter from the equations for the dynamics
of an individual particle and thus may serve as a test for the techniques of averaging
that relate the rheology of a suspension to the dynamics of individual particles with
memory.

In the next section, we present the governing equations of the problem. In section 3, we
formulate the problem by using the hydrodynamic force expression for a spherical particle
given by Lovalenti and Brady (1993). In section 4, the methodology and tests performed for
the consistency of the software are given, and the results are discussed in section 5. In the last
section, we conclude with a brief summary of the main results.

2. Governing equation

The problem is governed by the full Navier–Stokes equations

− ∇ p′ + µ∇
2u′

= ρ

(
∂u′

∂t
+ u′

· ∇u′

)
, (2.1a)

∇ · u′
= 0, (2.1b)

with the boundary conditions

u′
= Up(t) on the surface of the particle, (2.1c)

u′
→ U∞(t), p′

→ p∞ as
∣∣x − Y p(t)

∣∣→ ∞. (2.1d)

Here, U∞(t) is the uniform undistributed flow far from the particle and Y p(t) is the position
vector of the centre of mass of the particle. The pressure p∞ satisfies

− ∇ p∞
= ρU̇∞

(t). (2.2)

For our purposes, it is more convenient to consider the problem in a translating coordinate
system with the origin at the instantaneous centre of the particle. Thus assuming r = x −

Y p(t), u = u′
− U∞(t) and p = p′

− p∞, the problem becomes in dimensionless form

− ∇ p + ∇
2u = Re Sl

∂u
∂t

+ Re u · ∇u − Re U s(t) · ∇u, (2.3a)

∇ · u = 0, (2.3b)

with

u = U s(t) on the surface of the particle, (2.3c)

u, p → 0, as |r| → ∞. (2.3d)

− ∇ p∞
= Re Sl U̇∞

(t). (2.4)
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Here, the slip velocity of the particle U s(t) = Up(t) − U∞(t). The Reynolds number Re =

aU c/ν and the Strouhal number is Sl = (a/U c)/τc, where a, Uc and τc are the characteristic
particle dimension, particle slip velocity and timescale, respectively. U s(t) and u have been
non-dimensionalized by Uc, r by a and p by µUc/a. u remains bounded for all time,
−∞ < t <∞.

3. Formulation of the problem

The Lovalenti and Brady (1993) formalism for the hydrodynamic force on a rigid sphere
undergoing arbitrary time-dependent motion in an arbitrary time-dependent uniform flow field
at small Reynolds numbers is given by the following expression:

F H(t) =
4π

3
Re Sl U̇∞

(t) − 6πU s(t) −
2π

3
Re Sl U̇ s(t) +

3

8

(
Re Sl

π

)1/2

×

{∫ t

−∞

[
2

3
F H ||

s (t) −

{
1

|A|
2

(
π

1/2

2 |A|
erf (|A|) − exp

(
− |A|

2))} F
H ||

s (s)

+
2

3
F H⊥

s (t) −

{
exp(−|A|

2) −
1

2 |A|
2

(
π

1/2

2 |A|
erf(|A|) − exp(−|A|

2)

)}
F H⊥

s

]

×
2ds

(t − s)3/2

}
+ O(Re). (3.1)

This expression is obtained by using the reciprocal theorem. The details of the derivation can
be found in the work by Leshansky et al (2004). Here, U s = Up − U∞ is the slip velocity
of the fluid; Up is the velocity of the particle; and U s has been non-dimensionalized by
Uc. The acceleration terms U̇ s and U̇∞

are non-dimensionalized by Uc/τc, where τc is the
characteristic timescale; U∞ is the velocity of the fluid as |r | → ∞; Re is the Reynolds
number, defined as Re = aU c/ν based on a characteristic slip velocity, Uc; a denotes the
characteristic particle dimension; and ν is the kinematic viscosity of the fluid. F H‖

s = −6πU s ·

pp and F H⊥

s = −6πU s · (δ − pp), where δ is the same tensor of order 2 and unit vector

p =
Y s(t) − Y s(s)

|Y s(t) − Y s(s)|
,

where Y s(t) − Y s(s) is the integrated displacement of the particle relative to the fluid from
time s to the current time t. Note that Sl is the Strouhal number and

A =
Re

2

(
t − s

Re Sl

)1/2 (
Y s(t) − Ys(s)

t − s

)
· F H

is scaled by µaU c.
For this problem, we consider a neutrally buoyant spherical particle in an infinite body

of quiescent fluid and consider the effects of an external periodic force acting on the sphere
along the x-axis as shown in figure 1.

We use equation (3.1) to obtain the equation governing the unidirectional motion of a
sphere in a quiescent fluid, starting with zero velocity at time t = 0, with U s = Up where Up

is the velocity of the particle, scaled with respect to the size of the particle and the frequency
of the external periodic force, ω, i.e. we take Uc = aω and U∞

= 0. Under these conditions,

4
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Figure 1. A neutrally buoyant spherical particle in a quiescent Newtonian fluid, on which an
external periodic force is applied along the x-axis.

equation (3.1) reduces to

F H(t) = −6πUp(t) −
2π

3
Re SlU̇p(t) +

3

8

(
Re Sl

π

)1/2 ∫ t

0

[
−8πUp(t) ds

(t − s)3/2

−

{
1

|A|
2

(
π1/2

2 |A|
erf (|A|) − exp

(
− |A|

2))} −12πUp(s) ds

(t − s)3/2

]
.

(3.2)

We note that the integral in equation (3.2) contains a singularity at s = t . In order to take into
account this singularity, the integral was split into the intervals [0, t − ε] and [t − ε, t] for a
small positive ε. Thus, we obtained two expressions for the integral.
Here,

A =
Re

2

(
t − s

Re Sl

)1/2 (Y s(t) − Y s(s)

t − s

)
.

That is, we obtain

F H(t) = −6πUp(t) −
2π

3
Re SlU̇p(t) +

3

8

(
Re Sl

π

)1/2

(P + Q) (3.3)

where

P =

∫ t−ε

0

[
−8πUp(t) ds

(t − s)3/2
−

{
1

|A|
2

(
π1/2

2 |A|
erf (|A|) − exp(−|A|

2)

)}
−12πUp(s) ds

(t − s)3/2

]
(3.3a)

5
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and

Q =

∫ t

t−ε

[
−8πUp(t) ds

(t − s)3/2
−

{
1

|A|
2

(
π1/2

2 |A|
erf (|A|) − exp(−|A|

2)

)}
−12πUp(s) ds

(t − s)3/2

]
.

(3.3b)

Denoting the components of F H(t), Up(t), U̇p, A, P and Q along the direction of the force
field by F H (t), Up(t), U̇p, A, P and Q and then transforming the integral with respect to A,
we obtain

Q =

∫ c
√

ε

0

8πU 2
p (t)Re dA

(Re Sl)1/2 A2 −

∫ c
√

ε

0

1∣∣A2
∣∣
( √

π

2 |A|
erf (|A|) − exp(−|A2

|)

)
12πU 2

p (t)Re dA

(Re Sl)1/2 A2

(3.3c)

where

c =
ReUp(t)

2
√

Re Sl
.

Note that Q vanishes as ε tends to zero; that is, as s → t ,

1

|A2|

(√
π

2|A|
erf(|A|) − exp

(
−|A2

|
))

→
2

3
.

Hence, the two singular terms cancel each other as s → t , and thus we obtain an expression
for the hydrodynamic force on a sphere in a quiescent fluid as

F H(t) = −6πUp(t) −
2π

3
Re SlU̇p(t) +

3

8

(
Re Sl

π

)1/2

×

{∫ t−ε

0

[{
1

|A|
2

(
π1/2

2 |A|
erf (|A|) − exp(−|A|

2)

)}
12πUp(s) ds

(t − s)3/2

]

+16πUp(t)

[
1

√
t
−

1
√

ε

]}
. (3.4)

The equation of motion for a neutrally buoyant particle immersed in a fluid is given by

mpU̇p(t)

µa2ω
= Fext(t) + F H(t). (3.5)

Using equation (3.4) with the external periodic force Fext
= F0sin(t), where time has

been scaled with respect to the frequency of the external periodic force field, along
the x-direction, and using Newton’s law, we obtain equations for the particle velocity
Up and position Yp with the velocity and position being equal to zero at t = 0 in the
form

dYp

dt
= Up, (3.5a)

dUp

dt
=

1

Re∗

[
ReF sin(t) − 6πUp +

3

8

(
Re Sl

π

)1/2

(J1 + I1)

]
. (3.5b)

6
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Here,

J1 = 16πUp(t)

[
1

√
t
−

1
√

ε

]
and

I1 =

∫ t−ε

0

{
1

A2

( √
π

2 |A|
erf(A) − exp(−A2)

)}
12πUp(s)

(t − s)3/2
ds.

Note that

Re∗
=

4π

3
Re +

2π

3
Re Sl, ReF =

F0

µa2ω
and Re =

ρa2ω

µ
,

where a is the particle size, ω is the frequency of the applied external periodic force, µ is the
viscosity of the fluid and ρ is the density of the particle and the fluid (since the particle is
assumed to be neutrally buoyant).

4. Methodology

We developed a program using Numerical Recipes in FORTRAN 77 (Press et al 1992) to solve
equations (3.5a) and (3.5b) using an embedded Runge–Kutta method with adaptive step size.
The integral in equation (3.5b) was evaluated at each time step by Romberg extrapolation.
The function with respect to A was defined by a user-supplied function subprogram. We
used the ODEINT, RKQS and RKCK subroutines from Numerical Recipes to implement
the Runge–Kutta method. The Romberg extrapolation was performed using the QROMB
subroutine. The integral was evaluated using TRAPZD and the interpolation during the
numerical quadrature was performed by POLINT. The main function calls the ODEINT
routine, which in turn calls the RKCK and RKQS routines to implement the Runge–Kutta
fourth order method with adaptive step size. The Runge–Kutta method was implemented
using the subroutine DERIVS, which contained the two differential equations. The integrals
involved in calculating the function in DERIVS were written as a separate function and this
integration at each iteration was performed using the QROMB subroutine in DERIVS. The
QROMB subroutine called the TRAPZD routine to perform the integration. The tolerance,
defined as

(Error in successive iterations)/(Value of the function in the previous step),

for both the Romberg extrapolation and the Runge–Kutta solver was taken as 10−5. Further
reduction of the tolerance did not result in any significant change in our results. The entire
program was written in double precision. The initial conditions for both the velocity and
the position of the particle were taken as zero. ε was taken as 0.04; smaller values of ε did
not significantly change the results for ReF greater than approximately 0.01, but for ReF

O(0.01) lower values of ε were needed for numerical errors to be avoided. However, this
resulted in a large increase in computational time. The software was tested for consistency
by compiling the program with two compilers, namely Intel Fortran and F90. We generated
5000 data points taken at an interval of π/200 in both the dimensionless velocity and the
dimensionless position. Further increase of the resolution did not lead to any change in our
results.

In addition to this, the following tests were performed to validate the simulation.

Test 1: Perturbation analysis

We performed a perturbation analysis of the system of equations (3.5a) and (3.5b). The
perturbation parameter in this system was taken to be Re1/2 and the velocity and displacement

7
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Figure 2. The velocity time series of both the numerical solution (solid line) and the perturbation
solution (dashed line) for Re = 0.01 and ReF = 0.03.

of the particle were obtained up to O(Re).

U0 =
ReF sin(t)

6π
O(1), (4.3a)

U1 =
ReF

6π

(
Sl

π

)1/2 (
sin(t)

(
1

√
t
−

1
√

ε

)
+

1

2

∫ t−ε

0

sin(s) ds

(t − s)3/2

)
O(Re1/2), (4.3b)

U2 =
1

6π

[
−k ReF cos(t)

6π
+ReF

(
Sl

π

)(
sin(t)

(
1

√
t
−

1
√

ε

)2

+
1

2

∫ t−ε

0

sin(s) ds

(t − s)3/2

+
1

2

[∫ t−ε

0

{
sin(s)

(t − s)3/2

(
1

√
s

−
1

√
ε

)
ds

+
1

2

∫ s

0

sin(s1)

(s − s1)3/2
ds1

ds

(t − s)3/2

}])]
O(Re). (4.3c)

Here,

k =

(
4π

3
+

2π Sl

3

)
.

We obtained the corresponding value of Yp by solving the differential equation (3.5a).
A Fortran code and a Matlab script were written in order to obtain the values of Up and Yp

and these were compared with the time series and phase plots obtained for the full solution,
both including the nonlinear term and excluding the nonlinear term. We found that at low
values of Re both the perturbation solution and the numerical solution matched (typically up to
Re ≈ 0.05). Figure 2 presents a comparison of the velocity time series of the full solution with
that of the perturbation solution for Re = 0.01 and ReF = 0.03. The differences in the values

8
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of the numerical solution and perturbation solution such as deviation from the perturbation
solution at high acceleration are possibly due to our linear approximation of the nonlinear
memory term. Even though Re is small, the parameter A in equation (3.1) need not be O(Re)
even at low Reynolds numbers, for all t and s.

Test 2: The solution to the problem of the motion of a spherical particle of greater density
than the fluid starting from rest derived using the assumptions of Reynolds number Re � 1
and the Strouhal number Sl known from the literature (figure 5 of Leshansky et al (2004)) was
reproduced.

Test 3: The velocity of the fluid at infinity was assumed to be a constant, i.e. U∞
= U0, and

with ReF = 0, it was obtained that Up → U0 as t → ∞, which is as expected.

Test 4: A number of outputs were generated with U0 = 0 and U0 6= 0 and the results were
compared as U0 → 0. The results matched for U0 = 0 and U0 → 0, up to an order of 10−5 in
the relative fractional error.

Test 5: When the initial direction of the motion was reversed, namely by replacing ReF with
−ReF, the phase-space plot was reflected about the zero velocity axis. That is, a reflection of
the phase-space attractor about the zero velocity axis when the direction of the first motion
is reversed was obtained, which can be considered as an important result that increases our
confidence in our results. The results showed a preferred direction in the solution. Since the
only physical direction in our problem is the initial direction of the external force, a reversal of
that direction should result in a reversal of direction in the solution, which was indeed the case.

Test 6: We observed that there is a shift in the position of the attractors when we change the
initial condition of Yp. Changing Yp at t = 0 results in a shift in the position of attractors as
there is only a change in the frame of reference, which does not affect the physics of the
problem. This confirms that a change in the initial position only results in a change in the
coordinate system and not in any physical parameter. This further increases our confidence in
our results.

We note here that Up 6= 0 at t = 0 does not make any physical sense, since if we consider
Up 6= 0 at t = 0, then there must be some particle velocity at negative time too. Moreover, in
a quiescent fluid, the particle velocity is due to the application of the external periodic force,
which is applied only from t = 0.

These tests give us considerable confidence in our results.

5. Results and discussions

Typical phase-space plots (plots of particle velocity versus particle position) are plotted
in figures 3–5 for different values of the Reynolds number Re and the amplitude of the
periodic force ReF. These plots represent a bounded region of phase space and hence the
plots represent an attractor in phase space. Here, as ReF increases, the attractor size also
increases, establishing the obvious relation between the amplitude ReF of the forcing term
and the size of the attractors. As the amplitude of the periodic force increases, the particle also
oscillates with greater amplitude, covering a greater surface area in the attractor plot. One can
observe from the two figures, figures 3 and 4, that as Re increases, the area bounded by the
attractors decreases, showing the effect of inertia on the motion of the particle. Re represents
the magnitude of the inertial term, namely a resistance to change in motion. We also note here
that as Re increases, the resistance to the change in motion also increases, diminishing the size
of the attractors.

9
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Yp Yp
Yp

Yp Yp Yp

Yp Yp

UpUpUp

Up Up Up

UpUpUp

Re = 0.01 and Re = 0.4F

Re = 0.03 and Re = 0.4F

Re = 0.05 and Re = 0.4F Re = 0.05 and Re = 0.5F Re = 0.05 and Re = 0.6F

Re = 0.03 and Re = 0.6FRe = 0.03 and Re = 0.5F

Re = 0.01 and Re = 0.5F
Re = 0.01 and Re = 0.6F

Yp  

Figure 3. The phase portrait for various low values of Re and high values of ReF. These attractors
show the effect of the amplitude of the periodic force, ReF, on the phase plot.

Figure 5 gives an example of the phase plot at Re = 0.5 and ReF = 0.01. This was
computed with ε = 0.004 in order to avoid numerical errors in the phase plots. The other
plots in figures 3 and 4 were generated with a much higher ε, namely ε = 0.04. Further
reduction in the ε value did not change the results at higher values of ReF. For ReF = 0.01 with
ε = 0.009, we could avoid numerical errors. However, the generation of figure 5 consumed a

10
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Figure 4. The phase portrait for various values of Re and at ReF = 0.03. These attractors show the
effect of the Reynolds number Re on the attractors.

Figure 5. The typical phase portrait for ReF = 0.01.

large amount of computational time (around 50 days to compute 5000 lines of data on an SGI
Altix350 machine).

Figure 6 shows the power spectrum for different ReF and for Re = 0.3. This figure shows
that for the values of Re that we have considered, there are no higher harmonics present in the
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Figure 6. Power spectrum for various values of Re and at ReF = 0.03.

time series. We analyzed the behavior of the system by neglecting the nonlinear term and we
compared it with the attractors obtained by including the nonlinearity (figures 3–5).

Figure 7 shows the plot of the attractors obtained by setting the nonlinear term to be equal
to zero. We observe that the attractors follow a spiral in all cases. There is a slight drift of the
particle from its mean position in the long time limit in a particular direction. This direction
can be identified as the direction of the first motion of the particle. When we compare figure 7
with figures 3 and 4, we observe that figures 3 and 4 have greater surface area and there is a
greater drift in the initial motion of the particle. This is due to the nonlinearity of the system.
In these regions the inertia is high and hence nonlinear effects are also high.

Figures 3, 4 and 7 show that the limit cycle of Stokes’ flow is replaced by a slight spiral.
This may be due to there being a small net displacement of the particle after every cycle and
hence a small drift, resulting in a relatively small spiral motion. The direction of the drift is
in the same direction as the direction of first motion. In addition, there is a net displacement
of the mean position of the particle from zero. The direction of this displacement is also the
same as the direction of first motion, which is the only physical direction in the problem. The
numerical solution obtained was compared with the Stokes’ flow results. The amplitudes of
the time series of the velocity of the particle and of the Stokes’ flow case were compared. As
Re tends to zero, the amplitudes of both Stokes’ flow and the numerical solution approach
each other. Figure 8 shows a surface plot of Re and ReF against the amplitude ratio. Here, the
amplitude ratio is the ratio of the amplitude of the velocity of the particle in our problem with
a similar velocity for Stokes’ flow. We note that the plot shows a decreasing trend. This is due
to the effect of inertia of the fluid. As Re increases the amplitude ratio decreases, showing
the effect of inertia is to reduce the amplitude of the motion as compared with the Stokes’
flow case. Since there is a slight drift of the particle, the relationship of the mean of the

12
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Re = 0.01 Re = 0.03 Re = 0.05

Re = 0.3

Re = 0.6Re = 0.5Re = 0.4
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YpYpYp
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Up
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Figure 7. The phase portraits for various Re and ReF = 0.01, neglecting the nonlinear term.

displacement of the particle Yp,mean (the average position of the particle) with Re and ReF is
obtained and is shown in figure 9. We observed that there is a definite relationship between
the mean particle displacement Yp,mean and the amplitude of the external periodic force ReF.
This is as expected, since the magnitude of the initial motion is determined by the amplitude
of the periodic external force and by the value of Re. As Re increases we note that Yp,mean

decreases, and as ReF increases Yp,mean increases.
When we apply a phase shift of π to the sinusoidal forcing term the attractors shift

their direction. That is, when we apply a force in an initially negative direction (the opposite
direction), Yp shows a reflection about the Yp = 0 axis and thus we obtain a reflection of the
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Figure 8. A plot of the amplitude ratio against Re and ReF. We note that as Re increases, the
amplitude ratio decreases.

attractor. Figure 10 shows the phase plots when the direction of the amplitude of the force is
changed and the attractors form a reflection of each other about the axis Yp = 0, as expected.
Since the direction of the force represents the direction of initial motion and also since there
is a fading memory, the particle shows an initial displacement and at large times the periodic
motion manifests itself, approximately.

The mean particle velocity is very small and in regions of low ReF and high Re is in
the direction of first motion of the particle. This is as expected because the periodic nature
of the force dominates at long times. The initial shift before the particle settles down to an
approximate oscillatory motion about a mean is determined by the initial motion. In the long
time limit, the effect of the memory of the initial motion is manifested mainly on the position
of the particle and not on the velocity of the particle. However, we observe that there is a small
mean drift velocity of the order of 10−6 in certain regions of Re and ReF. The relationship of
Re and ReF with the amplitude of the velocity of the particle was obtained and this is shown
in figure 11. This figure gives the behavior of the amplitude of velocity with respect to Re
and ReF. If we suppose that a periodic force is applied on the particle through an electric
field, then the magnitude of the charge on the particle could be obtained by the known values
of the electric field E, the Reynolds number Re and ReF and the plot of the amplitude of
velocity, or any of the other plots presented here that show dependence of an observable
property on Re and ReF. We observe that the amplitude of velocity increases with an increase
in ReF and decreases with an increase in Re, describing the effect of the periodic force and
the effect of inertia on the amplitude of the velocity of the particle. However, the plot of Up
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Figure 9. A surface plot showing the relationship of Yp,mean with Re and ReF.

amplitude against Re and ReF also shows a reflection property, increasing our confidence in
our simulation.

We tested our solutions for chaos and found that there was no chaos in the system in the
parametric regime that we have considered (Kantz and Schrieber 2005).

Our problem can be considered to consist of an excitable medium, as the periodic force
when applied on the particle creates stresses in the fluid due to the motion of the fluid
and particle. An analogy can be the effect of Brownian motion leading to a contribution
to the stress tensor in a sheared suspension. The Brownian motion can be considered to be
replaced by a periodic force in our problem. Thus, the only significant rheological parameter
in the problem, namely a ‘normal stress’, was computed following Batchelor’s technique
(Batchelor 1970). Batchelor developed a method for computing the bulk stress generated
by a flowing suspension in terms of volume averages. In this formulation we consider a
suspension of particles in a quiescent Newtonian fluid. We assume that the particles are
far enough from each other such that there is no interaction between the particles, i.e. the
volume fraction φ is assumed to be small. Hence, the particle contribution to the bulk stress
is given by Lin et al (1970), Kulkarni and Morris (2008) and Patankar and Hu (2002) at
low Reynolds numbers. Since the particle motion is approximately oscillatory, we assumed
that there was no net motion of the particle through the fluid. Under these assumptions, we
obtain

6 p
=

1

V

∑
i

Si −
Re

V

∑
i

∫
Vp

1

2
(ax + xa) dVi −

Re

V

∫
V

u′u′ dV . (5.1)
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Up

Yp

Re = 0.3

Re = 0.1F
Re = - 0.1F

Figure 10. The phase portrait obtained at Re = 0.3 and ReF = ±0.1. The phase portrait shows the
reflection property of the solutions of our problem, indicating that there is a physical basis to our
results.

Here, the first term represents the stresslet, or symmetric first moment of surface stress, exerted
by a particle i, given for a rigid particle by

Si =

∫
Ap

1

2
(xσ · n + σ · nx) dAi . (5.2)

Here, n is the normal directed outward from the particle surface into the fluid phase. Following
Brady and Bossis (1988), the expression for bulk stress at zero Re is given as〈∑〉

= IT + 2ηE∞ +

(
N

V

){〈
SH 〉+ 〈SP 〉+ 〈SB 〉} . (5.3)

Here, IT is an isotropic term.

E∞
=

1

2
(∇u∞ + ∇u∞

T
). (5.4)

The above term is zero as u∞ is a function of t alone. SH is a mechanical or contact stress
transmitted by the fluid due to shear flow. However, in our problem there is negligible shear
and the value of this term is zero. 〈SP

〉 = −〈x P P
〉 and SB is the direct contribution from the

Brownian motion that is also zero for our problem.
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Figure 11. A surface plot of the amplitude of the particle velocity versus Re and ReF.

Thus, for our problem bulk stress is given by

6 p
= −

〈
x F P 〉

−
Re

V

∑
i

∫
Vp

1

2
(ax + xa) dVi −

Re

V

∫
V

u′u′ dV . (5.5)

The first term is the average of the product of the external force on the particle and
displacement of the particle. The second and the third terms in the expression (5.5) of the
particle stress denote the stress due to acceleration of the particles and the Reynolds stress,
respectively. The expression (5.5) directly shows that the contributions to the bulk stress from
the acceleration and Reynolds stress are dependent on Re; the stresslet is dependent on Re
through the flow field. For a dilute suspension, the interactions between the particles can be
neglected and the solution for a single particle can be used to calculate the particle stress.
Further, for our problem, the force is the external force Fext and the displacement vector
is (x0 + Yp, y0, z0) for a particle. Here, (x0, y0, z0) are the coordinates of the rest position
of one particle. Since the particle displacement Yp isonly along the x-axis, only

∑p
xx is

significant. All the other components of the stress tensor will be negligible when the mean
position of the suspension is set to zero. We note here that when the initial displacement of the
particle is changed, the attractor just changes its coordinates and no other change is observed
in the attractor. Hence, to calculate the normal stress, we can choose 6x0 = 0; similarly,
6y0 = 6z0 = 0 over the position of the particles. That is, we choose the mean displacement
of the averages of the rest position of the particles to be zero. The evaluation of the third term
on the rhs of equation (5.1) which at least, in principle, contributes non-zero terms to the other
components of the stress tensor is shown below to be negligible.
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Figure 12. Surface plots showing the relationship of the amplitudes of the normal stress with
Re and ReF.

Calculation of the integral
∫

V u′u′ dV

In spherical coordinates, we have the velocity components for a flow past a moving
sphere as:

vr = −
1

2
U cos θ

(
1

r

)2 (1

r
− 3r

)
,

vθ = −
1

4
U sin θ

(
1

r

)[(
1

r

)2

+ 3

]
,

vϕ = 0.

(5.6)

In the Cartesian coordinate system, we obtain

vx =
3U xz

4r5

(
r2

− 1
)
,

vy =
3U yz

4r5

(
r2

− 1
)
,

vz =
U

4r

(
3z2

r2
−

3z2

r4
+ 3 +

1

r2

)
,

(5.7)

where r =
√

x2 + y2 + z2 and U = Up.
Hence, we obtain u′

= (vx , vy, vz).
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Figure 13. Relationship between mean normal stress and different volume fractions.

We took the tensor product u′u′ after removing the contribution due to the Stokeslet,
since the effect of the force field on the stress tensor has been included in the first term in
equation (5.1), and obtained nine components which are integrated in the Cartesian coordinate
system. We performed the integration using the limit of a sum concept for the triple integral
using Matlab. The limit upon Up was considered and the diminishing of u′u′ was evident
during the integration as (x, y, z) tends to infinity. The numerical integration was performed
by taking the step size h = 0.01 and x, y and z varying from 1 to 10. Further change in the
parameters did not affect the values of the integral up to four significant digits.

Thus, the components of the particle stress are found to be

6
p
xx =

3

4π
ϕYp(t)ReF sin(t) −

ReRe2
Fϕ cos(t)(1 − cos(t))

36π2

− 2.07ReU 2
p (10−10),

6
p
xy = 6

p
yx = 6

p
yy = −2.07ReU 2

p (10−10) ∼ 0,

6
p
xz = −8.3056ReU 2

p (10−10) ∼ 0,

6
p
xz = 6

p
zx = 6

p
zy = 6

p
yz,

6
p
zz = −3.33ReU 2

p (10−9) ∼ 0.

(5.8)
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Hence, the only significant term is 6
p
xx . This is correct only to O(Re). We have not considered

higher orders of Re in the problem as our equations are valid only up to O(Re). For the Stokes’
flow case the stress in the suspension is given by

6 p
xx =

3

4π
ϕRe2

F sin(t)(1 − cos(t)). (5.9)

We varied φ, Re and ReF and studied their effect on the normal stress. As φ increases, the
normal stress increases, and the normal stress also increases with an increase in both Re and
ReF. Figure 12 shows the relationship of the amplitudes of the normal stress with Re and ReF.
Figure 13 shows its relationship with φ. The normal stress can be measured more easily than
the motion of the particle and hence it can be more easily correlated to system parameters.

The presence of a normal stress in the dilute suspension is evidence for non-Newtonian
behavior. Hence, this system exhibits non-Newtonian rheology.

The strong relationship between Re, ReF and normal stress, evident from figure 13,
makes our results interesting, as we see that small changes in controllable parameters lead to
relatively large changes in the rheological parameters. Here, we observe that the amplitude of
the normal stress is approximately linearly dependent on ReF at low Re, and as Re increases,
the amplitude of the normal stress increases more rapidly with ReF. Similarly, at low ReF, the
amplitude of the normal stress increases slowly with Re, and at high ReF, the amplitude of the
normal stress increases rapidly with Re.

6. Conclusions

In this paper, we have attempted to determine the effects of a periodic force on a sphere in
a quiescent fluid at low Reynolds numbers. We observe that the particle oscillates around a
mean position, due to the periodic force on the particle. There is a net displacement of the
mean position of the particle in the direction of the first motion. We have compared the results
obtained in our simulations with the results of Stokes’ flow. We set the nonlinear term in our
equations to be equal to zero and compared our results with those solutions. It is observed
that an increase in Re was responsible for an increase in the resistance to change in particle
motion and hence a decrease in attractor area and an increase in ReF lead to an increase in the
amplitude of motion of the particle. In addition, a reflection of the attractor about the position
axis is obtained by changing the initial direction of motion. Our results on the dependence of
the mean position of the particle and the amplitude of the velocity of a particle on the problem
parameters, such as Re and ReF, may be used to estimate appropriate physical parameters
of the system by suitable experiments. We have also shown here that there is a strong direct
relationship between a rheological parameter and physical parameters such as Re and ReF.
Thus, we have shown that the rheology of the system can be controlled by changing the
physical parameters, which may be a technologically important result. We have presented
physical arguments that support our results. We also note that the rheology of suspensions
of such particles exhibits non-Newtonian behavior. We further note that this is a physically
realizable system that can be used to probe the relation between the dynamics of individual
oscillators with memory and the methods used to derive macroscopic averages from them. We
hope that this work will excite further interest in this area.
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