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Abstract 

We introduce the concept of f i e l d  consistent cepresenta- 

tion of continuum problems in s t r u c t u r a l  mechanics which 

require definition by more than one f i c l d  variable. In 

some practical situations, t h e  engineering dimensions of 

the problem require that t h e  many f i e l d  variables needed 

to m o d e l  the deformation of the continuum may have to be 

constrained among themselves *in a suitable way, If t h i s  

is not properly accommodated in t h e  f i n i t e  element model, 

severe errors can r e su l t ,  

Here, we consider a new terminology f o r  such errors and 

examine a simple case in which such e r rors  can lead to 

t h e  @lockingg phenomenon, Techniques. most of which 

originated on an ad-hoc b a s i s  even before the mechanics 

of f f eld-consistency was establ i shed,  can now be re- inter-  

preted to show how they successfully i n t r o d w e  a consis- 

tent repnsenta%ion of the cons t ra ined  s t ra in-f  i e lds  and 

t h u s  remove the spurious constraintst t h a t  lead to' e r r o r s  

of t h e  second kindg 



The early developments in the finite element method proceeded from sn a 

posteriori understanding of the behaviour of the structural situation the 

elements were to model. However, a subsequent invasion of mathemaaticaf rigom 

resulted in an asis on the matheggahfcal pr i~ciples  that should ensure the 

convergence of finite elemaptdiscretlsatian. This, we shall examine below. 

1.1 for convergenee - the conventionall 

The convemtional wisdom ashes the mathesnat+al pxe~ision of the 

problem s t a t  . The letmess of the polynomial fields used as shape 

functitms is considered to be atibil ity,  or in  other words, 

the continuity of these functions their derivatives, where required, 

across inter-element boundaries is another W r t a n t  criterion. Two other 

conditions, conssdered to be of vital rtance, are the rigid-body umtfon 

requirenlmt, i. e. that rigid-body rrrotion of the element would be strain-freer , 

and the constant strain-rate requirememt, i-e. in the limit the constant 

st rains are correctly recovered. 

However, it was soon noticed that in some situations, elmenks that were 

carefully constructed ta satisfy these rigid principles could still behave fn 

dramatically erratic ways. It was clear that the cardinal virtues of coaapat- 

ibil&ty, rigid-body lotion requirement and constant strain-rate rquire 

were not sufficient to ensure the convergence of these elerreenps. 



leg ts far Mmvergence - field consistency in multi-nu 

fsed at this time, that special difficulties arose in prob- 

in structural mechanics that needed a description of its continuum 

behavfoar by mre t one f i e l d  variable, and which required that  certain 

atrain f ie lds  had to be constrained in particular ways. This meant that  the 

tw~;~rg~olation P~mctisns for the field variables s b u l d  be able to ensure t h e  

recovery of only the true constrained strain fields in the limit* situ- 

ations. This reqniremant is called 'field consistency'. In this paper, we 

examine this problem in which the inability of the chosen field intarpa- 

lations to represent consistently, tbe constrained strain f i e l d s ,  can result 

as ' lockingv . 

2 1 Field Conaistenq. 

Inn the dwelopment of a finite element, we interpolate the field variables 

wia$ intcerqolal;ian fulnrcticlraas of- a certain order. The riunnber af constants 

used will depend on the number of nodal variables and any additional nodeless 

variables that may be introduced. From these definitions, one can compute the 

strain fields also as interpolations associated with these constants by 

obtaining the correct derivatives of the field variables. In a mlti-field 

problem, .$hese strain fields will have as coefficients terns from more than 

one field variable. Dependink on the order o'f derivativ-es of each f ield varf - 
&'$la wpsaofag in tlas d e f h i t i o n  of that strain field and on thcs orden" of tha 

inaterlpolatfan funnetions used for each contributing field variable, the eaef- 
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ficients of the strain-field interpolations may have constants from all con- 

tributing field variable interpolations or from only one or some of these. In 

some limiting cases of physical behaviour, it will become necessary for these 

strain fields to be constrained to zero values. These can arise naturally, 

but indirectly, from classical variational statements (eg. the minimum ener- 

gy principle in displacement type elements) on which the finite element mod- 

els are based, in certain geometrical situations, eg. vanishing thickness of 

shear flexible beams, plates and shells, or- they can arise directly in exte- 

rior penalty type formulations , eg. the discrete Kirchhof f hypothesis 

enforcement in thin plates and shells by a large penalty factor. 

Where the strain-field is such that all the terms in it (i .e.  the 

constant, linear, quadratic etc. ) have, associated with it, coefficients 

containing contributions from all the independent interpolations of the 

field variables that appear in the definition of that strain-field, the con- 

straint that appears in the limit can be correctly enforced. Such a represen- 

tation is said to be field consistent. The constraints thus enforced are 

called 'true constraints ' . Where the strain field has coefficients in which 
the contributions from some of the field variables are absent, the con- 

straints may incorrectly constrain the contributions from the field vari- 

ables present. These are called 'spurious constraints ' . 

2.2 Errors of first and second kind. 

We now distinguish the special errors that arise due to the 'spurious con- 

straints' from the other, more familiar errors of discretisation. In an 

unconstrained continuum problem with only a single field variable. the errors 

of discretisation are of simple form and these usually vanish rapidly as the 



msh sfze is xedued. Hwever, in a aultb-field proiblem in which at  limiting 

cases, constrained s t r a i n  f i e l d s  must be enforced, the 'spurious 

constraints' can give r i s e  t o  a fom of e r r o r s  t h a t  vanish verg slowly with 

redaction in mesh size, md whose sl sss ab eonvergencB and mawitude of 

error is greatly exa~erated by changes in the structural pasmeters that 

ewhsise the appearance of the  l h i t i n g  phys Jcal. situations. 

WaBz et a l e  [ 4  j( xe~ognised the existence of these two kinds of e r ro r s .  Thf s 

interpretation i n  terns  of ' e r ro r s  of the f i r s t  kind' and 'errors of t b ~  sec- 

ond kind' was found useful when Prathap and Bhashyam(Z1 separated t h e  spuri- 

o m  ~constraht,%; from Lbe t rue  constnaints for an exactly integraged shear 

flexible elm&. It was seen that w field consis tent  element obtained bs 

xerdltpcd SntwragHm and which had only t he  true Kirchhsf f constraints had 

errors which vmishd rapidly as the mesh size was reduced. These errors were 

ant of the lraelevmt structural parameter - the thinness of the be-, 
[L/t) - d Lhese were identified as errors of t h e  first kind. On the other 

hand, the f i e l d  hconsistant element which would result from an exact inte- 

gration and which will have the additional spurious const ra in ts ,  will have 

errors due to these constraints  which are exaggerated i n  a ( ~ 1 - t ) ~  fashion. 

In the very thin l imi ts ,  these e r ro r s  are so large as to make the r e s u l t s  v i r -  

tually meaningless. This phenomenon is known as ' locking', and these locking 

errors were called ' e r rors  af the  second kind'. 

Bere, w e  introduce a procedure which was found to be useful in making 

quantitative estimates of the  e r ro r s  of the second kind. T t  was seen tha t  

with elements of f i n i t e  size ( i . e .  a p r a c t i c a l  l eve l  of d i sc re t i sa t ion  a t  
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which reasonably accurate r e s u l t s  can be expected) , the er rors  of a special  

nature tha t  arise because the s t r a i n  f i e l d s  are  not consistently interpolated 

with terms from a l l  the  independent f i e l d  functions tha t  contr ibute t o  it, 

can be predicted by a technique introduced i n  References 2-4. 

The method of functional reconsti tut ion a f t e r  d iscre t i sa t ion  has been 

explained very c lear ly  in  Reference 2 t o  show how shear locking emerges in a 

s imple  l inear shear f l ex ib le  beam element in  which the  normal displacement w 

and face rotat ion 8 are  independently interpolated.  We s h a l l  elaborate on 

this when we consider the  curved beam element i n  greater  d e t a i l  i n  the  next 

section. Here, w e  s h a l l  b r i e f l y  describe the technique. 

We recagnise f i r s t  t h a t  the  problem of locking ar ises  becayse o f t h e  need 

t o  work with a f i n i t e  s i z e  element. Thus, i n  a f i n i t e  element ideal isa t ion,  

the mathematical operations of defining a small but non-infinitesimal ele- 

ment, prescribing interpolat ions for the  f i e l d  variables over t h i s  domain &o 

a cer ta in  order of polynomial, and of subsequently integrat ing the  functional 

for the s t r a i n  energy of the  element w i l l  r e su l t  i n  a d iscre t i sed  estimate 

fox t h e  strain energy of t h a t  region i n  terms of the  values of the  f i e l d  vari- 

ables a t  the nodes and the  element sizes. In many pract ica l  s i tua t ions ,  it is 

required tha t  i n  l imi t ing  s i tua t ions ,  some of the  s t r a i n  f i e lds  must vanish 

and t h a t  the s t r a i n  energies associated with it must also vanish. This w i l l  

be possible i f  the s t ruc tu ra l  parameters multiplying the s t r a i n  energy telrs 

take large values i n  a penalty- l imit ing sense and t h e  energy terms associated 

with it re f l ec t  t rue  constraints .  However, because the or ig inal  interpo- 

la t ions  are not ' f i e ld  consistent '  , we have terms i n  which a s t r u c t u r a l  

parameter involving an element dimension mult ipl ies a 'spurious constraint  ' . 
In  on ideal infinitesimal case of vanishing s i z e  of the  element, t h i s  stmc- 



tu ra l  parameter vanishes, leaving the  'spurious cons t ra in t  ' unenforced. How- 

ever, i n  a p rac t i ca l  analysis ,  we need t o  work with elements of reasonably 

f i n i t e  s ize .  In  t h i s  case, the s t ruc tu ra l  parameter enforces the  'spurious 

constraints ' and adds an additional 'spurious energyq and therefore an ' addi- 

t ional  s t i f fening8 e f fec t .  These const ra in ts  a r e  physical ly equivalent t o  an 

al tered system i n  the  non-penalty regime, which we can obtain by reconstitut- 

ing a f a c t i o n a l  for the  ef fec t ive  strain energy of an element based on a 

f i n i t e  s i z e  d iscre t i sa t ion .  This is  done, by carrying out t h e  d iscre t i sa t ion  

operations fo r  a f i n i t e  s i z e  element, re-grouping t h e  t r u e  energy terms, the 

energy terms t h a t  should vanish due t o  t h e  t r u e  const ra in ts  and t h e  energy 
.. 

terms tha t  do not vanish due t o  the  spurious cons t ra in t s .  The s t r a i n  energy 

density of such a discre t i sed  element is obtained by dividing this s t r a i n  

enera  by the element volume. This s t r a i n  energy density represents a phys- 

i c a l  system t h a t  contains tbe ' lockingv e f f e c t  due t o  f i e l d  inconsistency. 

This procedure of abtaining a s t r a i n  energy funct ional  fo r  the field incon- 

s i s t e n t  5ystem w i l l  be cal led functional r econs t i tu t ion  and sha l l  be further 

elaborated when w e  study t h e  curved beam element l a t e r .  

2.4 The additiondl stiffening pameter. 

Conventional e r ro r  analyses norms i n  t h e  finite element method are based 

on the percentage er ror  o r  equivalent i n  some computed value as compared t o  

the theore t ica l ly  predicted value. In  mul t i - f i e ld  problems which are incon- 

s i s t en t ly  modelled, the  er rors  of the second kind can be exaggerated without 

l i m i t  as the s t r u c t u r a l  parameter t h a t  a c t s  a s  a penalty mul t ip l ier  becomes 

indefini tely large. The percentage e r ro r  .narms therefore  sa tura te  quickly t o  

a value approaching 100% and do not sens ib ly  r e f l e c t  the relat ionship 

between error  and the  s t ruc tu ra l  parameter even on a logarithmic p l o t .  



Reference 5 introduced a new error norm called the addit ional  s t i f fening 

parameter, e . This helps t o  recogaise the manner in  which the  er rors  of the 

second kind can be blown out of proportion by a large var ia t ion  i n  the  stntc-  

t u t a l  parameter. Essential ly,  this takes i n t o  account, the  fac t  t h a t  the  spu- 

rious constraints give rise to a spurious energy term and consequently a l t e r s  

the rigidity of the system being modell3d. In  many examples, it was seen tha t  

the r ig id i ty ,  I . of the f i e l d  consistent system and the  r i g i d i t y ,  I' . of 
t h e  inconsistent system, were re la ted  t o  the s t ructura l  parameters i n  the  

form, 

where L is an element dimension and t is the element thickness. Thus, if 

~ ( t h e o r y )  is the deflection of  a reference point as predicted by theory and 

w(fem) is the  deflection predicted by a f i e l d  inconsistent f i n i t e  element 

model, w e  would expect 

w (theory) 
e = --------- 

w ( fern) 

A logarithmic plot  of the new e r ro r  norm against the parameter (L / t )  w i l l  

show a quadratic relat ionship that w i l l  continue indefini tely as  ( L / t )  is 

increased. This was found to be t r ue  of the many mult i-f ield problems 

reviewed i n  Reference 5 and t h i s  will be further described i n  the  subsequent 

sect ions . 



In this section, w e  take up a w e l l  known multi-field problem ;in s t r u c t u r a l  

analysis which has exhibited these e r r o r s  sf  t h e  second kind i . e .  t h e  poor 

bending response of the curved beam element can be shown to be due t o  

locking. 

3 .1  Paor ben&g response of mwed elements - membrane lo 

Bexe, we t r y  t o  understand t h e  errors t h a t  arise i n  curved finite elements 

which undergo bath f lexuxal arrd membrane deformations. I t  is  shown t h a t  with 

elements of f i n i t e  size ( i - e .  a p r a c t i c a l  level of d i sc re t i sa t ion  a t  which 

reasonably accurate resu l t s  can be expected). , there can be errors of a spe- 

c i a l  nature t h a t  a r i s e  because the membrane s t r a i n  f i e l d s  are not consistent- 

l y  interpolated with tems from the  two independent f ie ld  functions that 

characterise such a problem, These lead to  errors, described here as of the 

'second kind' and a physical phenomenon named as 'membrane locking'. 

Recently, the  ro le  t h a t  reduced in tegra t ion can play i n  evaluating the 

extensional energy of a curved beam was identified[2,6-71. In  Reference 2,  

Pxathap and Bhashyam examined a shallow curved Timoshenko beam and showed 

t h a t  an exact integration of the  extensional, energyterrn created a mechanism 

that they cal led 'in-plane locking'. This delayed convergence and it was 

seen tha t  reduced integration qf these tems improved t h e  performance of the 

shallow curved beam, H o a r  and Pe te r s  [lij observed that inextensional (ox near- 

l y  inextensional) deformat ions are poorly represented by st if fness modela 

based on exact integrat ion af law-order independent in terpola t ions  for dis- 

placement and ro ta t ional  components unless a reduced integration of the dis- 



placement rrlodel or equivalently, a. discontinuous force field mhed 

used. 

StoParski. and Belytschka[ 7 j observed that when.,l&-order h-glme dis- 

placement fields were used For tib Marguerre type sha l lm shell theoq  to 

a curved beam, an exact integration caused an apparent hcrease irn bend 

stifffiess due to the curvature coupled membrane strains am$ that this can be 

allevia-tad by using xeduced integration on the extensional energy terms. This 
F 

act ion was called ' membrane lockingp 

Here, we unify these observations in terms of the f i e l d  consistency 

approach. It is  seen that when low-order interpolations are used for the 

in-plane displacement terms, the inconsistency in the nnmber of c9mstants 

required to define interpolations for the u , ~  and w/R terms in the exten- 

sional strain energy functianal produces spurious constrain-l;~ in the penalty 

l i m i t  of extreme thinness Ci.e. nearly inextensional bebaviour) and these 

cause the locking of the solution. These errors of the second k h d  can be 

removed by optimally integrating the extensional energy tern sathat  only 

the true constraints in the inextensional limit are retained. Thus the gener- 

a l  extensional deformation behaviour of a curved beam can be 

independently chosen low order polynomial functions and th is  will spill 

recover the inextensional case in the penalty limit without spurious eon- 

straints provided selective integration is used. 

I 

d 

In the next sect ion,  w e  re-work the 'cubic in w - linear in n' curved 

beam/arch/finite ring element (henceforth CL element) to show the presence of . 

'membrane locking' and its  removal by reduced integration. 
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3.2 The 'cubic in w - &eat. in uP element, 

We start with the simplest shape function representation in the litera- 

ture that ensures C' continuity for the tangential displacement u and C' 

continuity for the normal displacement w corresponding to the thin curved 

bem/deep arch/ f inite circular ring model , 

The extensional strain and change of curvature are 

and the total energy of an element of length 2L is 

3.3 Mscretisation of the strain energy functiond . 

Following Reference 4 ,  we examine the terms arising from the discretised 

functional U above. We have 



where 

After carrying out the discretisation and regrouping of term&, we have 

Ebt 
2.2. 

2. a L u z --- 
2 

- 2a3 ) + 36 A- 
24 3 

Comparing the energy terms, and following the arguments of Reference 4 ,  we 

sea that in the penalty limit of extreme thinness, thare are penalty terms 

that tend to enforce the following constraints, 



The first constraint has terms from both in terpola t ion functions and 

therefore enforces a valid constraint  that implies the inextensibility con- 

dition 

P where w is  the  normal deflect ion of some reference poidt on t h e  element mid 

the subscript 0 indicates the  value a t  the mid-point of the  element. This 

therefore is  a simple measure of the averaged constant membrane s t r a in  fn t he  

element and in  t h e  penalty l i m i t  ,, it i s  constrained t o  take a zero value. 

On the other hand, ( a y 9  t i 3 , ,  a+) -t O imply that  ( w , ~ ) ~  (wYy)@ and 

( w , ~ ) , ,  -+ 0 are enforced i n  the penalty l i m i t  and a re  therefore spurious 

constraints .  These lead t o  the locking phenomenon which we described as 

' in-plane locking' i n  Reference 2, or  as 'membrane locking' i n  References 

4,7. It is qui te  simple t o  remove the locking terms by redaced integration. 

For the  orders of the interpolat ion functions chosen above, g ople point Gaus- 

sian integrat ion would give only the single t r u e  inex tens ib i l i ty  constraint, 

Any higher order integrat ion r u l e  w i l l  introduce the spvrious constraints and 

an order tha t  ensures exact in tegra t ion  w i l l  introduce a l l  three spurious 

constraints .  These spurious const ra in ts  are responsible f o r  the errors  of the 

second kind as defined i n  Reference 5 and cause t h e  severe deteriorat ion of 

results with increasing penalty mul t ip l i e r  value i . e. ( L / t )  . I t  is instruc- 



Qfvlar %a toea h0r03 t h i s  merges.. 

a.3 oreat3RxUon after discretisation with Pinib size elnent. 

Ye consider tbe strain energy i n  an elemental arch of length 2L in a t ru -  

l y  inextensional l imi t .  We recognise tha t  the extensional energy term due t o  

the true constraint w i l l  vanish i n  this l i m i t ,  but not the  extensional energy 

contributions f m  t h e  spurious terms. Thus for  the d iscre t i sed  element of 

finite length 2L , w e  observe tha t  the  s t r a in  energy density in an hexten-  

simal limit will bet of the type (here, we consider only the  two leading 

locking terms i n  U as these will have the  greater ef fec t )  

This ha8 laasn obtainsd by dividing the s t r a i n  energies of the  element in 

Eqn.(5) by its length. We observe now, the presence of the  L term in 

Eqn. (a). In the real in£ initesirnal l i m i t ,  the  contributions t o  t h e  exten- 

sional strain energy from the a 2 ,  a, and a+ terms w i l l  vanish due to van- 

ishing L without enforcing any constraints on these terms. However, i n  a 

real analysis, we need to work with a pract ica l  d iscre t i sa t ion  ( i .  e. a finite 

L ) and still expect reasonably accurate resul ts  t o  be obtaihed. This is the 

crux af t h e  problem. With f i n i t e  L, i n  the inextensional l i m i t  characterised 

by t >> t3 in Eqn. (81, the membrane s t r a i n  energy contribution is  made to 

vanish by a2 and a Jtending t o  zero. These constraints are physically equiv- 

alent t o  an altered system i n  t h e  non-penalty regime, which we can obtain by 



reconstituting a functional for the effective strain energy of an axcb ele- 

m u t  bmed on a P f r a i t e  size discretisation, as 

Thus when a finite size element of length L-  is used, the element after dis -  

cretisatlon of the functionals, acts as a system with an altered mdulus of 

. snd is further stiffened by a spurious in-plane farce F = E&x~'/~R!. It is 

necessary to recognise which of ehese two te. as w i l l  play the leading stiff- 

ening role. 

Consider the simple example of a very shallow circular arch of 1 

and radius of curvature R , simply-supported at the ends and subtending an 

angle B = 1 /R at the centre. A uniformly distributed load is assumed to act 

on it and we may take a simple one term approximation for the normal 



deflection in the farm, 

so Lhst t ,  when the entire arch is discretised by arch ellements of length 2L, 

ma total altered stiffness of the model can now be shown to be, 

Since 1 >> L when. a sufficiently large number of elements are used, the tern 

from the in-plane stiffening force will be the principal stiffening factor 

and we can identify the principal locking term to depend on a structural 

parameter of the type ($~/t) '  which will now act as the penalty multiplier 

term. Numerical experiments in the next section will establish that this is 1 

indeed true. 



3 .a Nmedcd expehesats CL dement. 

In the computer Bm~plementation of the Ch, eleraera.$, prsviskon was made ta 

evaluate the stiffness matrix contributions from the berndling e n e r e  and the 

membrme energy separately using Gauss lm btegra t ion  orders $hat could be 

var ied  in each case. The order of the energy functionaPs dictate a 4-point 

integrat ion rule for the exact evaluation of the membrane eazermtsms md ola 

2-point rule for the exact evaluation of the bending enesw terns, Wtions 

for a l l  rules from "8-gaint to 4-point were provided. 

One half of a cltunped-clamped arch with a central cancentrated load was 

s tud ied ,  with only two elements to model th i s  half af the structure. A shal- 

low and deep arch were defined to have a subtended angle B = l rscadim and a62 

radians rceage~tjively (See Fig.l). A previous earercisef51 has sh 

cases where the eonvergmce of f i n i t e  element results is delayed d%us to 

errors sf the second kind, it is useful to define an additional sd l f fenhg  

faceor e in terms of the f in i t e  element results w(fem) and .$he theore- 

t i ca l ly  predicted results ~ ( theory)  as 

w (theory) 
e = me----*-- -. 9 

w(fem) 

This parmeter would now be directly dependent on the structural parmeter ar 

parmetars that magnify the errors of the second kidd in the perralty limits 

Eind therefore causes that phenomenon BEn as "locking' . 

F i g .  2 shokas the variation of h g  e tr8 Log (L/t) for the shallow andl 

deep arches defined above. With a !-point integration of the membrane energg 
F 



(GLI),  these was no papid deterioration of the results wieh increase in the 

parameter Lit over a rkge 3.142 to 314.2 and 20.0 to 2000.0 in each 

caw, and any errors present can be attributed to those described as errors 

of the first kind in the terminology introduced in this  lecture. Hwever, 

with 2-point and 4-point integrations of the membrane energy ( CL2 ,CIA ), 

the lacking is nearly identical and in any case, too close go be sepaated on 

the Log-Lag plot in Fig. 2. The locking can be seen to vary almost exactly as 

(Lit)' ,showin& that errors of the second kind virtually dominate the behav- 

iour in such l i m i t s .  With increasing 63 , both the errors of %he first a3ad sec- 

ond kind increase. Our simple shallow circular arch example had predicted a 

stxuctural multiplier term df the type ( B L / ~ ) ' .  Thus a replot of the CL2 

and C I A  results  in the form Log re vs Log BL/t  in Fig.3 yidds a slope of 

2.00 and does indicate a locking term of the kind (BL/t)'  is indeed opera- 

tive unless removed by a 1-point integration of the extensional energy. 

3.7 Conclusions. 

Here, it has been pqssible to indicate general principles governing the 
w 

errors of the second kind associated with the use of low order indapada* 

polynomial fields for thin arch and shell structures, and show how the 

in-plane constraints  that ar i se  in the  very thin (inextensional) limit can be 

removed by an optimal application of integration rules.  bn old, familiar but 

till now discarded element has been reworked and shown to be useful, and 

should be a powerful candidate for inclusion in general purpose libraries 

which deal with elements with f e w  degrees of freedom per node. A shear flexi- 

ble version of t h i s  element would indeed be t h a t  used by Ahed and Peters[6] 

with linear interpolations for u , w and t h e  face rotations 0 and will have 

a one-point integrat ion r u l e  for t h e  membrane and shear energies. I t  is 



0 

le elernents in Reference 6 is 

a1 of spwfcrus menrbrma constraints in addition to the 

1 of spteriow shear eonatraintsl, 

In this section, we shall survey a few of the techniques that are used to 

fstency 5.n multi-field problems. The types of techniques 

vary greatly aund their number has been growing rapidly. Very often, the 

succressdul use of the technique pre~edes  the actual understanding of the 

aaa?theenic=s of 20;s operation. Hare, w e  shell  try t o  examine each in the context 

of f isfd dnsxfstms=p. 

This is perhaps the simplest to understand, as no ' tr ick'  such as reduced 

btegraticnr fs required. This pr~cseds from an understanding of the fact that 

f fefd iacoflgistlescg arises when equal order interpolations are used for f i e l d  

varPables which appear in different orders of its derivakives in the strain 

f i e ld  ghat has to be 6:onstrained. Thus, if one ensures that the strain f i e l d  

is consfstentlp represented by a proper a priori  choice of unequal order 

lations for the contributing f i e l d  variables, there would be no 'lock- 

ing'- 

le of this is the mixed linear/quadratic beam element con- 

sitdered in Reference 2 .  This has th ree  nodes for w and two nodes for O 



so that the shear strain. f i e l d  becomes 

It is clear t h a t  in t h e  penalty l i m i t ,  the t w o  consmafnts that appear C= 

correctly enforce the Kirchhoff constraint, 

h element based an t h i s  mequal order interpolation can easily be trans- 

formed into a two noded element by statically condenshg the additional 

degree of freedom fo r  w at the mid-side node. It wins found in Reference 8 

that such an element is identical .$s & ct~nventi~nal two noded element with 

equal order interpolations which has had its shear strain energy evaluated 

with a 'I p t .  integration[2,9f. 

This i s  perhaps the f i r s t  of the 'variational crimes' to be discovered[lO] 

and proved to be very effective although at first, difficult to justify. Ear- 

ly attempts t o  explain its effectiveness were based on t h e  number of con- 

straints introduced at integration points  and an its relation to the Lotal 

number of degrees available in  the model. Often, the orders of integration, 

although lower than the order needed far an exact evaluation of the strain 

energy functional, were still too high to remove locking. Sometimes, the 



orders were too low and introduced s h g u l a r i t i e s  and zero-energy mechanisms 

tha t  degraded the element ' s behaviour . This ied t o  cons iderable experiment a- 

t ion and often, confusion i n  the published l i t e r a tu re ,  . . 
I .  

Only very recently, did clearer guidelines about, the  orders bf optimal 

integration for multi-field problems with constrained s t r a i n  f ie lds  begin t o  

emerge. What is important is  tha t  t h e  par t  of the  s t r a i n  energy functional 

pertaining t o  the s t r a in  f i e lds  that  must be constrained i n  the  l imit  must be 

'consistentlyi represented. If the shape function definit ions were of equal 

order for a l l  variables, and thesje variables appear a t  differ ing orders of 
-- 

its derivatives, then an exact integration of t h i s  par t  of the s t r a in  energy 

w i l l  produce ' inconsistent ' terms where constraints a re  imposed on q u a i -  

ties from only one or some of the f i e l d  variables tha t  contribu%e t o  the 

s t r a in  f ie ld  definition. I f  an optimal order of integration could be found 

tha t  could correctly integrate a l l  the  'consistent '  terms and remove a l l  the 

' inconsistentq terms, then, one would have a l l  the  t rue  constraints and would 

have removed a l l  the spurious constraints.  If the  order of integration is not 

h i e  enough t o  cover a l l  the  'consistent'  terms, one or  more of the t rue con- 

s t ra in ts  may vanish, leading t o  a rank-deficiency and therefore a 

'zero-energy mechanism' t ha t  can degrade the element in certain 

applications. Again, a .  order of integration tha t  is high enough t o  retain 

even one spurious constraint, is enough t o  r e t a in  ' lockingf . We sha l l  discuss 

these by a survey of a f e w  of the  elements studied ea r l i e r  - 



4.2.1 b e a r  be= element. 

Consider a l inear  shear f l ex ib l e  beam element. The shear  s t r a i n  energy 

contribution is now for t h e  shear s t r a i n  (see Eqn. (13)) of t h e  form 

where c , is the  consis tent  par t  and c2 is the  inconsis tent  p a r t .  An exact  

evaluation of t h e  shear s t r a i n  energy f o r  an element of length L , w i l l  prod- 

uce an expression for the  shear s t r a i n  energy which w i l l  have t h e  independent 

eontribut ions 

2 
( c ,  4- c 6 / 2  1 and 

In t h e  w r y  t h i n  l i m i t ,  these two terms become independent cons t r a in t s .  It 

is  obvious tha t  the  l a t t e r  cons t ra in t  is  the term t h a t  causes locking. Fortu-  

nately, i n  this case, an optimal r u l e  e x i s t s  ( a  1 p t  . Gaussian in t eg ra t ion ) ,  

which w i l l  r e t a in  only the  ' cons is ten t '  contr ibut ion and remove t h e  'incon- 

s i s t e n t '  contribution t o  the shear s t r a i n  energy. This explains t h e  remark- 

able  eff iciency of the  l inear  beam element with a 1 p t .  i n t eg ra t ion  of the 

shear strain energy [2 ,9 ]  . 
1L 

4.3 Addition of incompatible modes. 

This is another in t e re s t ing  technique used t o  r e s to re  f i e l d  consis tency 

i n  a mult i -f ie ld problem. It w i l l  be i n s t r u c t i v e  here t o  demonstrate how the 

poor bending response of a plane s t r e s s  element can be improved dramat ica l ly  

by the  addition of properly chosen incompatible modes [ 11 ] . 



The original  f i e l d  def in i t ions  fo r  u and v are augmented by adding two 

a t ib le  modes associated with addi t ional  in te rna l  var iables .  The s i m -  

p l e s t  way t h i s  can be done is 

The shear s t r a in  f i e ld  now becc ..es 

Thus , the f i e ld  is now modelled consis tent ly  , as each of the  coeff ic ients  - 
ie. associated with constant , l inear  x , l inear  y - now comprise terms from 

both f i e ld  functions, Thus , i n  t he  very t h in  l i m i t  , they give rise to con- 

s i s t en t  constraints of t he  type 

There is now no spurious constra int  and hence no locking. It is important t o  

recognise tha t  the addition of incompatible modes must be done i n  i n  an opt i -  

mal way An arbitxary addit ion of polynomial terms t h a t  do not lead to a 

field consistent representation w i l l  lock! 



5. CONCLUDING IRKS. 

En this paper, we have surveyed an area that has generated considerable 

interest in recent years. 23s problem area has been identified and defined - 
as continuum field problems that need a multi-f iePd characterisation in which 

some f i e l d  functions are constrained. The nature of the problem has been giv- 

en a new name, and it is hoped that the requirement of 'field-consistency' 

will join the other more well known principles used in constructing efficient 

finite elements. The concept of 'errors of the second kindt to delineate a 

special form of discretisation errors' and the 'additional stiffness parame- 

ter' will also help to make a posteriori evaluatioos of such elements - 
whether there is locking or not. 

"fhe extension of these concepts to other similar field problems will be of 

further interest and the invention of new techniques or 'tricks' that can 

restore field-consistency will be interesting exercises. 
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Fig. 1 Clamped-clamped circular arch under central 
concent rated load. 
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