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Abstract

We introduce the concept of field consistent representa-
tion of continuum problems in structural mechanics which
require definition by more than one field variable. In

some practical situations, the engineering dimensions of
the problem require that the many field variables needed
to model the deformation of the continuum may have to be
constrained among themselves in a suitable way. If this
is not properly accommodated in the finite element model,

severe errors can result.

Here, we consider a new terminology for such errors and
examine a simple case in which such errors can lead to
the flocking' phenomenon. Techniques, most of which
originated on an ad-hec basis even before the mechanics

of field-consistency was established, can now be re-inter-
preted to show how they successfully introduce a consis-
tent representation of the constrained strain-fields and
thus remove the 'spurious constraints®' that lead to'errors

of the second kind!
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1. INTRODUCTION.

The early developments in the finite element method proceeded from an a
posteriori understanding of the behaviour of the structural situation the
elements were to model. However, a subsequent invasion of mathematical rigour
resulted in an emphasis on the mathematical principles that should ensure the

convergence of finite element discretisation. This, we shall examine below.

1.1 Requirements for convergence - the conventional wisdom.

The conventional wisdom emphasises the mathematical precision of the
problem statement. The completeness of the polynomial fields used as shape
functions is considered to be important. Compatibility, or in other words,
the continuity of these functions and their derivatives, where required,
across inter-element boundaries is another important criterion. Two other
conditions, considered to be of vital importance, are the rigid-body motion
requirement, i.e. that rigid-body motiom of the element would be strain-free,
and the constant strain-rate requirement, i.e. in the limit the constanf;

strains are correctly recovered.

However, it was soon noticed that in some situations, elements that were
carefully constructed to satisfy these rigid principles could still behave in
dramatically erratic ways. It was clear that the cardinal virtues of compat-
ibility, rigid-body motion requirement and constant strain-rate requirement

were not sufficient to ensure the convergence of these elements.
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1.2 Requirements for convergence - fileld consistenecy in multi-field

problems.

It was recognised at this time, that special difficulties arose in prob-
lems din structural mechanics that needed a description of its continuum
behaviour by more than ome field variable, and which required that certain
strain fields had to be constrained in particular ways. This meant that the
interpolation functions for the field variables should be able to ensure the
recovery of only the true constrained strain fields in the limiting situ-
ations. This requirement is called 'field conmsistency'. In this paper, we
examine this problem in which the imability of the chosen field interpo-
lations to represent consistently, the constrained strain fields, can result

in the very poor behaviour known as 'locking’.

2. DEFINITION OF NEW TERMINOLOGY.

2.1 Field Consistency.

In the development of a finite element, we interpolate the field variables
using interpolation functions of- a certain order. The riumber of constants
used will depend on the number of nodal variables and any additional nodeless
variables that may be introduced. From these definitions, one can compute the
strain fields also as interpolations associated with these comnstants by
obtaining the correct derivatives of the field variables. In a multi-field
problem, these strain fields will have as coefficients terms from more than
one field variable. Depending on the order of derivatives of each field vari-
able appearing in the definition of that strain field and on the order of the

interpolation functions used for each contributing field variable, the coef-
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ficients of the strain-field interpolations may have constants from all con-
tributing field variable interpolations or from only one or some of these. In
some limiting cases of physical behaviour, it will become necessary for these
strain fields to be constrained to zero values. These can arise naturally,
but indirectly, from classical variational statements (eg. the minimum ener-
gy principle in displacement type elements) on which the finite element mod-
els are based, in certain geometrical situations, eg. vanishing thickness of
shear flexible beams, plates and shells, or they can arise directly in exte-
rior penalty type formulations, eg. the discrete Kirchhoff hypothesis

enforcement in thin plates and shells by a large penalty factor.

Where the strain-field is such that all the terms in it (i.e. the
constant, linear, quadratic etc. ) have, associated with it, coefficients
containing contributions from all the independent interpolations of the
field variables that appear in the definition of that strain-field, the con-
straint that appears in the limit can be correctly enforced. Such a represen-
tation is said to be field consistent. The constraints thus enforced are
called "true constraints'. Where the strain field has coefficients in which
the contributions from some of the field variables are absent, the con-
straints may incorrectly constrain the contributions from the field vari-

ables present. These are called 'spurious constraints'.

2.2 Errors of first and second kind.

We now distinguish the special errors that arise due to the 'spurious con-
straints' from the other, more familiar errors of discretisation. In an
unconstrained continuum problem with only a single field variable, the errors

of discretisation are of simple form and these usually vanish rapidly as the
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mesh size is reduced. However, in a multi-field problem in which at limiting
cases, constrained strain fields must be enforced, the ‘'spurious
constraints’' can give rise to a forim of errors that vanish very slowly with
reduction in mesh size, and whose slowness of convergence and magnitude of
error is greatly exaggerated by changes in the structural parameters that

emphasise the appearance of the limiting physical situations.

Walz et al.[41] recognised the existence of these two kinds of erroxrs. This
interpretation in terms of ‘errors of the first kind' and ‘errors of the sec-
ond kind' was found useful when Prathap and Bhashyam|[2] separated the spuri-
ous constraints from the true constraints for an exactly integrated shear
flexible element. It was seenrthat a field consistent element obtained by
reduced integration and which had only the true Kirchhoff constraints had
errors which vanished rapidly as the mesh size was reduced. These errors were
independent of the relevant structural parameter - the thinness of the beam,
(L/t) - and these were identified as errors of the first kind. On the other
hand, the field inconsistent element which would result from an exact inte-
gration and which will have the additional spurious constraints, will have
errors due to these constraints which are exaggerated in a (L/t)? fashion.
In the very thin limits, these errors are so large as to make the results vir-
tually meaningless. This phenomenon is known as 'locking', and these locking

errors were called 'errors of the second kind'.

o

2.3 Functional reconstitution after discretisation.

Here, we introduce a procedure which was found to be useful in making
quantitative estimates of the errors of the second kind. It was séen that

with elements of finite size (i.e. a practical level of discretisation at
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which reasonably accurate results can be expected) , the errors of a special
nature that arise because the strain fields are not consistently interpolated
with terms from all the independent field functions that contribute to it,

can be predicted by a technique introduced in References 2-4.

The method of functional reconstitution after discretisation has been
explained very clearly in Reference 2 to show how shear locking emerges in a
siﬁple linear shear flexible beam element in which the normal displacement w
and face rotation 8 are independently interpolated. We shall elaborate on
this when we consider the curved bedm element in greater detail in the next

§éction. Here, we shall briefly describe the technique.

We recognise first that the problem of locking arises because of the need
to work with a finite size element. Thus, in a finite element idealisation,
the mathematical operations of defining a small but non-infinitesimal ele-
ment, prescribing interpolations for the field variables over this domain to
a certain order of polynomial, and of subsequently integrating the functional
for the strain energy of the element will result in a discretised estimate
for the strain energy of that region in terms of the values of the field vari-
ables at the nodes and the element sizes. In many practical situations, it is
required that in limiting situations, some of the strain fields must vanish
and that ﬁhe strain energies associated with it must also vanish. This will
be possible if the structural parameters multiplying the strain energy terms
take large values in a penalty-limiting sense and the energy terms associated
with it reflect true constraints. However, because the original interpo-
lations are not ‘field consistent’', we have terms in which a structural
parameter involving an element dimension multiplies a 'spurious constraint'.

In an ideal infinitesimal case of vanishing size of the element, this struc-

GP6



tural parameter vanishes, leaving the 'spurious constraint' unenforced. How-
ever, in a practical analysis, we need to work with elements of reasonably
finite size. In this case, the structural parameter enforces the 'spurious
constraints' and adds an additional ‘spurious energy' and therefore an 'addi-
tional stiffening' effect. These constraints are physically equivalent to an
altered system in the non-penalty regime, which we can obtain by reconstitut-
ing a functional for the effective strain energy of an element based on a
finite size discretisation. This is dome, by carrying out the discretisation
operations for a finite size element, re-grouping the true energy terms, the
energy terms that should vanish due to the true constraints and the energy
terms tha; do not vanish due to the spurious constraints. The strain energy
density of such a discretised element is obtained by dividing this strain
energy by the element volume. This strain energy density represents a phys-
ical system that contains the 'locking' effect due to field inconsistency.
This procedure of obtaining a strain energy functional for the field incon-
sistent system will be called functional reconstitution and shall be further

elaborated when we study the curved beam element later.

2.4 The additional stiffening parameter.

Conventional error analyses norms in the finite element method are based
on the percentage error or equivalent in some computed value as compared to
the theoretically predicted value. In multi-field problems which are incon-
sistently modelled, the errors of the second kind can be exaggerated without
limit as the structural parameter that acts as a penalty multiplier becomes
indefinitely large. The percentage error.norms therefore saturate quickly to
a value approaching 100% and do not sensibly reflect the relationship

between error and the structural parameter even on a logarithmic plot.
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Reference 5 introduced a new error norm called the additional stiffening
parameter, e . This helps to recognise the manner in which the errors of the
second kind can be blown out of proportion by a large variation in the struc-
tural parameter. Essentially, this takes into account, the fact that the spu-
rious constraints give rise to a spurious energy term and consequently alters
the rigidity of the system being modelled. In many examples, it was seen that
the rigidity, I , of the field consistent system and the rigidity, I' , of
the inconsistent system, were related to the structural parameters in the

form,

where L is an element dimension and t is the element thickness. Thus, if
w(theory) is the deflection of a reference point as predicted by theory and
w(fem) is the deflection predicted by a field inconsistent finite element

model, we would expect

w{(theory) L4
e = me-mosnme-e- - 1 = oK (-)
w(fem) =t

A logarithmic plot of the new error norm against the parameter (L/t) will
show a quadratic relationship that will continue indefinitely as (L/t) is
increased. This was found to be true of the many multi-field problems
reviewed in Reference 5 and this will be further described in the subsequent

sections.
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3. A SIMPLE PHYSICAL EXAMPLE - THEORY AND ANALYSIS,.

In this section, we take up a well known multi-field problem in structural
analysis which has exhibited these errors of the second kind i.e. the poor
bending response of the curved beam element can be shown to be due to

locking.

3.1 Poor bending response of curved elements - membrane locking.

Here, we try to understand the errors that arise in curved finite elements
which undergo both flexural and membl;ane deformations. It is shown that with
elements of finite size (i.e. a practical level of discretisation at which
reasonably accurate results can be expected) , there can be errors of a spe-
cial nature that arise because the membrane strain fields are not consistent-
ly interpolated with terms from the two independent field functions that
characterise such_ a problem. These lead to errors, described here as of the

'second kind' and a physical phenomenon named as 'membrane locking'.

Recently, the role that reduced integration can play in evaluating the
extensional energy of a curved beam was identified[2,6-7]. In Reference 2,
Prathap and Bhashyam examined a shallow curved Timoshenko beam and showed
that an exact integration of the extensional energy term created a mechanism
that they called 'in-plane locking'. This delayed convergence and it was
seen that reduced integration of these terms improved the performance of the
shallow curved beam. Noor and Peters[6] observed that inextensional (or near-
ly inextensional) deformations are poorly represented by stiffness models
based on exact integration of low-order independent interpolatioms for dis-

placement and rotational components unless a reduced integration of the dis-
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placement model or equivalently, a discontinuous force field mixed model is

used.

Stolarski and Belytschko[7] observed that when _low-order in-plane dis-
placement fields were used for a Marguerre type shailow shell theory to model
a curved beam, an exact integration caused an apparent increase in bending
stiffress due to the curvature coupled membrane strains and -t'hat this can be
alleviated by using reduced integration on the extensional energy terms. This

&=

action was called 'membrane locking'

Here, we unify these observations in terms of the field comsistency
approach. It is seen that when lowworder interpolations are used for the
in-plane displacement terms, the inconsistency in the number of constants
required to define interpolations for the u,y and w/R terms in the exten-
sional strain energy functional produces spurious constraints in the penalty
limit of extreme thinness (i.e. nearly inextensional behaviour) and these
cause the locking of the solution. These errors of the second kind can be
removed by optimally integrating the extensional energy terms so. that only
the true constraints in the inextensional limit are retained. Thus the gener-
al extensional deformation behaviour of a curved beam can be modelled by
independently chosen low order polynomial functions and this will still
recover the inextensional case in the penalty limit without spurious con-
straints provided selective integration is used.

2 4

In the next section, we re-work the 'cubic in w - linear im u' curved
beam/arch/finite ring element (henceforth CL element) to show the presence of

‘membrane locking' and its removal by reduced integration.
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3.2 The ‘cubic in w - lnear in u' element.

We start with the simplest shape function representation in the litera-
ture that ensures C° continuity for the tangential displacement u and C?
continuity for the normal displacement w corresponding to the thin curved

beam/deep arch/finite circular ring model ,

u = b‘ + by
. (1)
w=al+az_y-’-aay+5145;'z
The extensional strain and change of curvature are
€ = u,y + w/R
1 | (2)
X = - -
R u,‘y W,yy
and the total energy of an element of length 2L is
L EA EI 4
U= f (€ XD gy (3)
-L 2 2

3.3 Discretisation of the strain energy functional.

Following Reference 4, we examine the terms arising from the discretised

functional U above. We have
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where

Ebt ' ayy a3y'z a,y3 a
U = ---5 4 ee= 4 o= ¢+ === J dy
: R R R
(4)
Ebt ’b
U = I 2 28.3 - 6a+y ) dy.
-L R

After carrying out the discretisation and regrouping of terms, we have

9
Ebt a a,L- 1 a L 2
v = - anfeby+ - Syt L -Ey
2 R 3R 3 R

2
4 a.L 2 a,L
-2t LRy 1f-) + (-’f- M ®

45 R 5 R R
Ebt b it
2 2 8
U, = ---.2L [( -~ - 2a3) + 36 4.7
Z 2 R 3

3.4 Constraints in the inextensional limit.

Comparing the energy terms, and following the arguments of Reference 4, we
see that in the penalty limit of extreme thinness, there are penalty terms

that tend to enforce the following constraints,

a ast.
EMF
8 = 0 (6)
ay = 0
a4 = 0
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The first constraint has terms from both interpolation functions and
therefore enforces a valid constraint that implies the inextensibility con-

dition

Cuy)y - w/R = o0

where w/ is the normal deflection of some reference point on the element and
the subscript O indicates the value at the mid-point of the element. This
therefore is a simple measure of the averaged constant membrane strain i: the

element and in the penalty limit, it is constrained to take a zero value.

On the other hand, ( a,, az, a,_) -» 0 imply that (W’J)o s (w,yy)o and
(“"]_Yj)a -» 0 are enforced in the penalty limit and are therefore spurious
constraints. These lead to the locking phenomenon which we described as
'in-plane locking' in Reference 2, or as 'membrane locking' in References
4,7. It is quite simple to remove the locking terms by reduced integration.
For the orders of the interpolation functions chosen above, a ome point Gaus-

sian integration would give only the single true inextensibility comstraint,

+ = 0. (7)

Any higher order integration rule will introduce the sprrious constraints and
an order that ensures exact integration will introduce all three spurious
constraints. These spurious constraints are responsible for the erroxs of the
second kind as defined in Reference 5 and cause the severe deterioration of

results with increasing penalty multiplier value i.e. (L/t)?. It is instruc-

GP13



tive to see how this smerges..

3.5 Functional reconstitution after discretisation with finite size element.

We consider the strain energy in an elemental arch of length 2L in a tru-
1y inextensional limit. We recognise that the extensional energy term due to
the true constraint will vanish in this limit, but not the extensional energy
contributions from the spurious terms. Thus for the discretised element of
finite length 2L , we observe that the strain energy density in an inexten-
sional limit will be of the type (here, we consider only the two leading

locking terms in U as these will have the greater effect)

3 2 2
Ebt . by 2 a,L
U = - [( e = 253) + 36 ‘..1-J
24~ R i 3
2 (8)

Ebt 1 a,L 2, 4 a,L
i 2
4+ wo= L - ( PRpep ) + m ( -é- )
2 3 R 45 R

This has peen obtained by dividing the strain energies of the element in
Eqn.(5) by its length. We observe now, the presence of the L term in
Eqn.(8). In the real infinitesimal limit, the contributions to the exten-
sional strain energy from the a,, a; and a4 terms will vanish due to van-
ishing L without enforcing any constraints on these terms. Howeve}', in a
real analysis, we need to work with a practical discretisation (i.e. a finite
L ) and still expect reasonably accurate results to be obtained. This is the
crux of the problem. With finite L, in the inextensional limit characterised
by t >> t? in Eqn.(8), the membrane strain energy contribution is made to
vanish by a, and astending to zero. These constraints are physically equiv-

- alent to an altered system in the non-penalty regime, which we can obtain by
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reconstituting a functional for the effective strain energy of an arch ele-

ment based on a finite size discretisation, as

°

Ebt® AL
U = ~-~J- dgydy

24 V-1, .
Ebt ¢L 1 L , 101t .
L L P <~--> W dy
2 % 3 r 7 45 &
f Lt ) 1 AL .
1+ - (---) ) Wygydy + -.--2 W,y dy (%
Rt d 2 323 Y

Thus when a finite size element of length L. is used, the element after dis-
cretisation of the functionals, acts as a system with an altered modulus of

inertia

4& L
14
,I =I(1 Y --(-.. )2')
15 Rt

. -and is further stiffened by a spurious in-plane force F = EAL"/BR?' It is
necessary to recognise which of these two te as will play the leading stiff-

ening role.

Consider the simple example of a very shallow circular arch of lemgth 1
and radius of curvature R , simply-supported at the ends and subtending an
angle B = 1/R at the centre. A uniformly distributed load is assumed to act

on it and we may take a simple one term approximation for the normal
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deflection in the form,

w = c sin(==) (10)

so that, when the entire arch is discretised by arch elements of length 2L,

11 e I, & L wm
v =-f BT+ - (-5 --;_- sin (--) dy
2% 15. Rt 1 1

(11)
+ 1,1 EAL c.)t s
5 ===, -=g~ cos (--) dy

2

20 3R 1 1

The total altered stiffness of ‘the model can now be shown to be,

N ,

T 4 L 2 L 2 4 l1a L

I EI{ R GO NG NERESWCOWEES
15 R t * Rr t

Since 1 >> L when & sufficiently large number of elements are used, the term

from the in-plane stiffening force will be the principal stiffening factor

and we can identify the principal locking term to depend on a structural

parameter of the type (BL/t)? which will now act as the penalty multiplier

term. Numerical experiments in the next section will establish that this is

indeed true.
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3.6 Numerical experiments with the CL element.

In the computer implementation of thg CL element, provision was made to
evaluate the stiffness ﬁatrix contributions from the bending energy and the
membrane energy separately using CGaussian integration orders that could be
varied in each case. The order of the energy functionals dictate a 4-point
integration rule for the exact evaluation of the membrane energy terms and a
Z-point rule for the exact evaluation of the bending energy terms. Options

for all rules from 1~-point to 4-point were provided.

One half of a clamped-clamped arch with a central concentrated load was
studied, with only two elements to model this half of the structure. A shal~
low and deep arch were defined to have a subtended angle B = 1 radian and /2
radians respectively (See Fig.1). A previous eyercise[5] has shown that in
cases where the convergence of finite element results is delayed due to
errors of the second kind, it is useful to define an additional stiffening
factor e in terms of the finite element results w(fem) and the theore-

tically predicted results w(theory) as

w(theory)

This parameter would now be directly dependent on the structural parameter or
parameters that magnify the errors of the second kind in the penalty limits

and therefore causes that phenomenon known as "locking'.

Fig.2 shows the variation of ILog e vs Log (L/t) for the shallow and

deep arches defined above. With a f-point integration of the membrane energy
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(CL1), there was no fapid deterioration of the results with increase in the
parameter L/t over a xzénge 3.142 to 314.2 and 20.0 to 2000.0 in each
case, and any errors present can be attributed to those described as errors
of the first kind in the terminology introduced in this lecture. However,
with 2-point and 4-point integrations of the membrane energy ( CL2 ,CL4 ),
the 1ockihg is nearly identical and in any case, too close to be separated on
the Log-loyg plot in Fig.2. Thé locking can be seen to vary almost exactly as
(L/t)’,showiné that errors of the second kind virtually dominate the behav-
jour in such limits. With increasing B , both the errors of the first and sec-
ond kind increase. Our simple shallow circular arch example had predicted a
structural multiplier term of the type (BL/t)2. Thus a replot of the CL2
and CL4 results in the form Log e vs Log BL/t in Fig.3 yields a slope of
2.00 and does indicate a locking term of the kind (BL/t)? is indeed opera-

tive unless removed by a 1-point integration of the extensional energy.

3.7 Conclusions.

Here, it has been possible to indicate general principles governing the
errors of the second kind associated with the use of low order independent
polynomial fields for thin arch and shell structures, and show how the
in-plane constraints that arise in the very thin (inextensional) limit can be
removed by an optimal application of integration rules. An old, familiar but
till now discarded element has been reworked and shown to be useful, and
should be a powerful candidate for inclusion in general purpose libraries
which deal with elements with few degrees of freedom per node. A shear flexi-
ble version of this element would indeed be that used by Ahmed and Peters[6]

with linear interpolations for u , w and the face rotations 6 and will have

a one-point integration rule for the membrane and shear energies. It is
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“clear that the unexpected accuracy of such simple elements in Reference 6 is
due to the removal of spurious membrane constraints in addition to the

removal of spurious shear constraints.

4. TECHNIQUES TO INTRODUCE FIELD CONSISTENCY.

In this section, we shall survey a few of the techniques that are used to
ensure field comsistency in multi-field problems. The types of techniques
used vary greatly and their number has been growing rapidly. Very often, the
successful use of the technique precedes the actual understanding of the
mechanics of its operation. Here, we shall try to examine each in the context

of field consistency.

4.1 Unequal order interpolation.

This is perhaps the simplest to understand, as mo ‘trick' such as reduced
integration is required. This proceeds from an understanding of the fact that
field inconsistency arises when equal order interpolations are used for field
variables which appear in different orders of its derivatives in the strain
field that has to be constrained. Thus, if one ensures that the strain field
is consistently represented by a proper a priori choice of unequal order

interpolations for the contributing field variables, there would be no 'lock-

ing"'.

A simple example of this is the mixed linear/quadratic beam element con-
sidered in Referemce 2. This has three nodes for w and two nodes for 8

resulting in
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2
v o= a + a,x + agx

(12)
g = b1 + bzx
so that the shear strain field becomes
"2 = @ - w
" (13)

= (bE- 32’) + (b:?." Zaé)x

It is clear that in the penalty limit, the two comstraints that appear can

correctly enforce the Kirchhoff constraint.

An element based on this unequal order interpolation can easily be trans-
formed into a two noded element by statically condensing the additional
degree of freedom for w at the mid-side node. It was found in Reference 8
that such an element is identical to 2 conventional two noded element with
equal order interpolations t;hich has had its shear strain energy evaluated

with a 1 pt. integration2,9}.

a

4.2 Reduced integration.

This is perhaps the first of the 'variational crimes' to be discovered[10]
and proved to be very effective although at first, difficult to justify. Ear-
ly attempts to explain its effectiveness were based on the number of con-
straints introduced at integration points and on its relation to the total
number of degrees available in the model. Often, the orders of integration,
although lower than the order needed for an exact evaluation of the strain

energy functional, were still too high to remove locking. Sometimes, the
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orders were too low and introduced singularities and zero-energy mechanisms
that degraded the element's behaviour. This led to considerable experimenta-~

tion and often, confusion in the published literature.

Only very recently? did clearer guidelines 'about, the orders bf-\bptimal
integration for multi-field problems with constrained strain fields begin to
emerge. What is important is that the part of the strain energy functional
pertaining to the strain fields that must be constrained in the limit must be
'consistently’' represented. If the shape function definitions were of esqual

.order for all variables, and these variables appear at differing orders of

—

its derivatives, then an exact integ'ra»tion of this part of the strain energy
will produce 'inconsistent' terms where constraints are imposed on quanti-
ties from only one or some of the field variables that contribute to the
strain field definition. If an optimal order of integration could be found
that could correctly integrate all the 'consistent' terms and remove all the
'inconsistent' terms, then, one would have all the true constraints and would
have removed all the spurious constraints. If the order of integration is not
higjx enough to cover all the 'consistent' terms, one or more of the true con-
stfaints may vanish, leading to a rank-deficiency and therefore a
'zero-energy mechanism' that can degrade the element in certain
applications. Again, an order of integration that is high enough to retain
even one spurious constraint, is enough to retain 'locking' . We shall discuss

these by a survey of a few of the elements studied earlier.
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4.2.1 The linear beam element.

Consider a linear shear flexible beam element. The shear strain energy

contribution is now for the shear strain (see Eqn.(13)) of the form

4 = ¢ + cgx (14)

where ¢, is the consistent part and c, is the inconsistent part. An exact

\
evaluation of the shear strain energy for an element of length L , will prod-
uce an expression for the shear strain energy which will have the independent

contributions

2
( €, + c,g,/z ) and (czI,)2712 (56)

In the very thin limit, these two terms become independent constraints. It
is obvious that the latter constraint is the term that causes locking. Fortu-
nately, in this case, an optimal rule exists (a 1 pt. Gaussian integratiom),
which will retain only the 'consistent' contribution and remove the 'incon-
sistent' contribution to the shear strain energy. This explains the remark-
able efficiency of the linear beam element with a 1 pt. integration of the

shear strain energy[2,9].

4.3 Addition of incompatible modes.

This is another interesting technique used to restore field consistency
in a multi-field problem. It will be instructive here to demonstrate how the
poor bending response of a plane stress element can be improved dramatically

by the addition of properly chosen incompatible modes[11].
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The original field definitions for u and v are augmented by adding two
incompatible modes associated with additional intermal variables. The sim-

plest way this can be done is

2 2
u=a, +ax+ ayy + azxy + a+(1-x ) + 85(1')7 )

<
]

by + byx + byy + baxy + be(1-x") + be(1-yH)

The shear strain field now becc .es

u,J t Vy = (a2_+ b[) + (a‘3 - Zb‘,_)x + (b3 - 255)y

Thus , the field is now modelled consistently , as each of the coefficients -
ie. associated with constant , linear x , linear y - now comprise terms from
both field functions. Thus , in the very thin limit , they give rise to con-

sistent constraints of the type

ag + b; =0
83"2b+.=0

b3‘2&5=0

There is now no spurious constraint and hence no locking. It is important to
recognise that the addition of incompatible modes must be done in in an opti-
mal way An arbitrary addition of polynomial terms that do not lead to a

field consistent representation will lock!
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5. CONCLUDING REMARKS.

In this paper, we have surveyed an area that has generated comsiderable
interest in recent years. The problem area has been identified and defined -
as continuum field problems that need a multi-field characterisation in which
some field functions are constrained. The nature of the problem has been giv-
en a new name, and it is hoped that the requirement of 'field-consistency'
will join the other more well known principles used in constructing efficient '
finite elements. The concept of 'errors of the second kind' to delineate a
special form of discretisation errors' and the 'additional stiffness parame-
ter' will also hélp to make a posteriori evaluations of such elements -

whether there is locking or not.

The extension of these concepts to other similar field problems will be of
further interest and the invention of new techniques or 'tricks' that can

restore field-consistency will be interesting exercises.

-

6. ACKNOWLEDGEMENTS.

The author is very grateful to Mr.B.R.Somashekar, Head, Structural Sciences
Division, National Aeronautical Laboratory, Bangalore, India and Dr.Ing.
H.W.Bergmann, Director of the DFVLR Institute of Structural Mechanics at

Braunschweig for their encouragement and help during his DAAD Exchange Fel-

lowship Programmme. .

GP2Y



7. REFERENCES.

1. J.E.Walz, R.E.Fulton, N.J.Cyrus and R.T.Eppink, 'Accuracy of finite
element approximations to structural problems', NASA TN-D 5728 (1970).

2. G.Prathap and G.R.Bhashyam, 'Reduced integration and the shear
flexible beam element', Int. J. num. Meth. Engng, 18, 195-210 (1982).

3. G.Prathap, 'The poor bending response of the four node plane stress
quadrilateral', Int. J. num. Meth. Engng, (to appear).

4. G.Prathap, 'The curved beam/deep arch/finite ring element re-
visited', Int. J. num. Meth. Engng, (to appear).

5. G.Prathap, 'An additional stiffness parameter measure of error of
the second kind in the finite element method', Int. J. num. Meth. Engng,
(to appear).

6. A.K.Noor and J.M.Peters, 'Mixed models and‘reduced/selective
integration displacement models for non-linear analysis of curved
beams', Int. J. Num. Meth. Engng., 17,615-631(1981).

7. H.Stolarski and T.Belytschko, 'Membrane locking and reduced
integration for curved elements', J. Appl. Mech., 49,172-178(1982).

8. A.Tessler and S.B.Dong, 'On a hierarchy of conforming Timoshenko
beam elements', Comput. Structures 14, 335-344 (1981).

9. T.J.R.Hughes, R.L.Taylor and W.Kanoknukulchal, 'A simple and
efficient finite element for plate bending', Int. J. num. Meth. Engng,
11, 1529-1543(1977).

10. W.P.Doherty, E.L.Wilson and R.L.Taylor,'Stress analyses of ax{-
symmetric solids using higher order quadrilateral finite clements',
Report 69-3,Structural Engineering Laboratory, University of
California, Berkeley(1969).

GP25 .

-
i



1. E.LlWilson, R.L.Taylor, W.P.Doherty and T.Ghabussi, 'Incompatible
displacement models', in Numerical and Computer Methods in Structural

Mechanics (ed. S.J.Fenves et al) Academic Press, New York 1973,
Pp.43-57.

GP26




8. LIST OF FIGURE CAPTIONS.

Fig. 1

Fig. 2

Fig. 3

Clamped-clamped circular arch under central

concentrated load.

Additional stiffness parameter for clamped arch
under central concentrated load.

Additional stiffness parameter for clamped arch
under central concentrated load.
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Additional stiffness parameter for clamped arch
under central concentrated load.

GP29



lOG.e

Fig. 3

3 N
& o
3
z
2 D=
F 1 § i g
°rs g s 2 3 ')
Lo, BL7D
c-l -

Additional stiffness parameter for clamped arch
under central concentrated load.

. GP30





