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The effect of rotational Brownian motion on the rheology of a dilute suspension of dipolar spheroids
in a simple shear flow under the action of an external force field, is investigated through a
generalized Langevin equation approach. The force field is assumed to be either constant or
periodic. In the case of constant external fields earlier results in the literature are reproduced, while
for the case of periodic forcing certain parametric regimes corresponding to weak Brownian
diffusion are identified where the rheological parameters evolve chaotically and settle onto a low
dimensional attractor. The response of the system to variations in the strengths of the force field and
diffusion is also analyzed through numerical experiments. These results correspond to the region of
weak Brownian motion where usual methods render the problem intractable. ©2004 American
Institute of Physics.@DOI: 10.1063/1.1635821#

I. INTRODUCTION

The study of suspensions of dipolar particles subjected
to an external rotational torque has important engineering
applications, such as controlling the processing of fiber com-
posites, magnetofluidization,1 magnetostriction of ferromag-
netic particle suspensions,2 characterization of magnetorheo-
logical suspensions,3 etc. Ferrofluids, which contain small
single-domain particles in a nonmagnetic solvent, are an im-
portant example of dipolar suspensions. They have many in-
dustrial applications such as in rotary seals, inertia dampers,
magnetic domain detection, and biomedical uses like the
concentration of drugs at body sites.4,5 When brought under
the influence of a magnetic field, the particles in a ferrofluid
experience additional torques due to the external field tend-
ing to align the particle dipole axis along the field direction,
and this affects their macroscopic behavior substantially. In
turn, the development of models for the dynamics and bulk
properties of such suspensions is useful in designing new
suspensions with desired properties, controlling and testing
the quality of suspensions, improving the processing condi-
tions of heterogeneous media,4 etc. As an example of natural
phenomena analogous to the above, Pedley and Kessler6,7

refer to certain bacteria containing magnetic dipoles and
various species of algae possessing an asymmetric internal
mass distribution whose swimming directions are affected by
gravity. All of these systems can be modeled by the response
of a permanent dipole exposed to an external field.

The effect of fluid microstructure on macroscopic sus-
pension properties is usually measured by the stress tensor of
the suspension. In this paper we compute the stress tensor in

a sheared suspension of dipolar spheroids under the action of
hydrodynamic forces, Brownian rotations and an external
force field~which may be constant or periodic!. The apparent
viscosities and the first and second normal stress differences
are important stress components of a suspension that mea-
sure in some sense the collective behavior of all the particles
in the suspension. These can be expressed in terms of appro-
priate particle orientation averages, and the computation of
these averages is an important step in any investigation of
bulk suspension properties. This is generally made difficult
by the complicated manner in which the torques due to shear,
Brownian forces, and external field tend to orient and disori-
ent the particles. While suspensions in the absence of exter-
nal forcing have been extensively studied, only a relatively
few investigations are available for the case of dipolar par-
ticles, and most of these are restricted to the limit of weak
shear. The earliest of these studies were of Hall and
Busenberg8 and Brenner,9 concerning dilute suspensions of
dipolar non-Brownian spheres. Brenner and Weissman10 ex-
tended these studies incorporating Brownian diffusion effects
and obtained results mainly for particles that are spheres or
near-spheres. Further extensions of these results, including
the effect of the relative strengths of shear, Brownian diffu-
sion and external force on the particle dynamics, and rheol-
ogy, are available,11–13but most of these apply to the limit of
weak shear. Strand and Kim4 considered dilute dipolar sus-
pensions for a wider range of shear and diffusion parameters,
and analyzed the rheology for various orientations of the
external force. Almog and Frankel14,15present several results
for the long term behavior of the orientation distribution
function of dipolar particles in shear flow, and discuss the
implications of these results for the rheology of Brownian
dipolar axisymmetric particles. These results are not re-
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stricted to the limit of weak shear effects, unlike the previous
studies.

Ramamohanet al. introduced a class of problems, viz.,
the dynamics and rheology of periodically forced particles in
a simple shear flow, and obtained results that were theoreti-
cally interesting and had potential technical
applications.16–22 Kumar et al.17 and Kumar and
Ramamohan18 have demonstrated that both the dynamics and
the rheology of such suspensions can be chaotic in certain
parametric regimes. The dynamics in this regime is feature-
rich and presents a new class-I intermittency route to chaos20

while the chaotic response of the rheology has important
implications for certain aspects of chaos theory such as spa-
tiotemporal chaos.22 All the above results were limited to the
case of zero or negligible Brownian motion and were ob-
tained by a direct simulation of the equations of motion for
particle orientations. In the present work, we expand the
scope of their analysis to more realistic suspensions by in-
cluding the effects of rotary Brownian motion on the bulk
suspension properties and demonstrate that the fluctuations
in the bulk properties can still be chaotic, for certain ranges
of parameters, when the Brownian diffusion is weak.

In the presence of Brownian diffusion, the particle ori-
entations may be considered a stochastic process and may be
modeled either through a Fokker–Planck~diffusion! equa-
tion formalism or through a Langevin equation formalism. In
the first approach the system is studied through a partial
differential equation governing the time and space variation
of an appropriate density function for the stochastic variable,
called the orientation distribution function~ODF! in the
present case. In the second method the system is modeled
through a set of stochastic differential equations, called
Langevin equations, governing the evolution in time of the
stochastic variables. Most of the literature in this area fol-
lows the diffusion equation approach, in which the orienta-
tion averages are computed as moments of the ODF. The
ODF is the solution of the diffusion equation, and is usually
approximated by some numerical scheme appropriate to the
range of parameters of interest. Instead of solving the diffu-
sion equation, Kumar and Ramamohan18 obtained the mo-
ments by directly integrating a set of equations governing the
orientations of individual particles and employing a brute-
force computation. These equations were deterministic ordi-
nary differential equations since Brownian effects were ne-
glected in their work. A direct generalization of their method
to systems with noise would involve numerically integrating
a set of stochastic differential equations~Langevin equa-
tions! governing the evolution of the orientation vectors, but
this is usually difficult and prone to error. In this work, there-
fore, we use a generalized Langevin equation method to
evaluate the orientation moments, that leads to deterministic
differential equations for the moments even for systems with
Gaussian white noise. The basic ideas of this approach to
suspension problems have been developed by Asokanet al.23

in an earlier work for the case of force-free particles and is
easy to adapt to the present system involving dipolar par-
ticles exposed to an external field. A brief account of this
procedure is as follows. We set up the Langevin equations
governing the orientations of the particles by modifying the

corresponding equations for force-free particles derived in
Asokan et al.23 By using suitable time-averaged forms of
these equations we can obtain the exact equation of motion
for any desired orientation moment. These equations for mo-
ments are deterministic, unlike the original Langevin equa-
tions that are stochastic in nature, but may not be closed and
hence may not be easy to solve in general. However, by
considering them in suitable pairs we can generate the mo-
ments by applying a brute-force computation on an ensemble
of these equations. In the case of constant external force
fields our results are in good agreement with other results in
the literature obtained by the diffusion equation approach.
For periodic forcing we demonstrate the possibility of cha-
otic behavior of the rheological properties that may not pos-
sibly be picked up by the diffusion equation approach. The
chaotic response has been observed in some parameter re-
gimes where Brownian diffusion is weak, a region where the
problem becomes singular in the limit of zero diffusion. This
is a significant advantage of the Langevin method when used
along with the paired moment scheme presented in this
work.

The rest of the paper is organized as follows. The Lange-
vin equations for the orientation of the particles are obtained
in Sec. II using results derived in Asokanet al.23 The expres-
sions for the various stress components, including contribu-
tions from hydrodynamic forces, Brownian diffusion, and a
constant external force field, are presented in Sec. III. A
brute-force technique to compute the various orientation mo-
ments in suitable pairs is also described here. The intrinsic
viscosity of the system is evaluated for various values of the
diffusion coefficient and different strengths and orientations
of the external field and compared with known results. In
Sec. IV a periodic external force is considered for the case of
fibers and the observed fluctuations in the apparent viscosity
of the system are analyzed using dynamical and topological
tools for various strengths of the shear and external fields.
Finally, concluding remarks are given in Sec. V.

II. THE THEORY

We consider a dilute suspension of identical rigid, neu-
trally buoyant spheroids in an infinite incompressible New-
tonian fluid subjected to a simple shear flow defined by a
flow field, v5ġyi, where ġ is the shear rate,y is the y
coordinate, andi is the unit vector in theX direction. The
volume concentrationF of the particles in the solvent is
assumed sufficiently small that hydrodynamic interactions
among particles can be neglected. The shape of the spheroid
varies depending on its aspect ratio defined byr 5a/b,
wherea andb are, respectively, the polar and equatorial ra-
dii; spheres haver 51, and slender rods~fibers! correspond
to r→`. We choose a coordinate system that moves along
with the particle and is affixed to its center of mass, thus
neglecting any translatory motion, since it does not contrib-
ute to the bulk suspension properties in a dilute system. The
orientation of the spheroid is then represented by a unit vec-
tor u placed along the major axis of the spheroid and the
direction ofu can be specified by the polar coordinates~u,f!,
u~0<u<p! andf~0<f<2p! being the polar and azimuthal
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angles determined by the vectoru. An external force field
may affect the local dynamics if the particles are dipolar and
this may arise from several sources;4 ~1! the particles have
magnetic charges~e.g., ferromagnetic fibers in a ferrofluid!
and the suspension is exposed to a magnetic field or~2! the
particles are charged fibers~e.g., charged polymers in an
aqueous solution! and may respond to an external electric
field; or ~3! they may possess a gravitational dipole and may
be influenced by gravity~e.g., bioconvection set up by the
swimming of certain microorganisms6,7!. In all the above
cases the external field can be modeled as the cross-product
of the particle dipole momentm and the uniform external
field vectorH;

Text5mÃH.

The dipole momentm is assumed to be parallel to the par-
ticle symmetry axis, so that we can write

m5mu,

wherem is the magnitude of the dipole moment. The time
rate of change of the orientation vectoru can be expressed as
u̇5vÃu, wherev is the angular velocity of the particle, an
expression for which may be obtained by the angular mo-
mentum balance equation thus4 is

v5V1C@uÃ~E"u!#1z'
21mÃH.

Above, C5(r 221)/(r 211) is a shape factor for the spher-
oid that takes the value21 for disks, 0 for spheres, and11
for long fibers, andE and V are, respectively, the rate of
deformation tensor and the vorticity vector for the flow,
given by

E5 1
2 ~“v1“vT!,

V5 1
2 ~“Ãv!.

The effect of Brownian rotation can now be included by
superposition, assuming that it causes the angular velocity to
change by a white noise vector term;23

v5V1C@uÃ~E"u!#1z'
21mÃH1G~ t !.

The Cartesian componentsG i(t) are Gaussian random vari-
ables with zero mean and autocorrelation functions propor-
tional to thed function:

G j~ t !50, G i~ t !G j~ t8!52Dd i j d~ t2t8!, ~1!

where d i j is the Kronecker delta,d(t) is the Dirac delta
function, andD is the spectral density, which in this case is
equal to the rotary diffusivity defined byDr5kBT/z' ,
wherez' represents the rotational resistance in the direction
perpendicular to the particle symmetry axis,kB is the Boltz-
mann constant, andT is the absolute temperature. The over-
bars denote statistical averages over a large number of ran-
dom variables. This leads to

u̇5VÃu1C@uÃ~E"u!#Ãu1z'
21mÃHÃu1GÃu. ~2!

Equation~2! is the full Langevin equation for the Brownian
spheroid in the presence of an external force field. The par-

ticular form of the noise term in the above expression is
derived in Asokanet al.23 for force-free particlesby utilizing
a generalized Langevin equation approach presented by Cof-
fey et al.24 The reader is referred to Asokanet al.23 for fur-
ther details. In Cartesian componentsui of u andhi of H, Eq.
~2! can be written as

u̇15ġCu2~12u1
2!1ġS 12C

2 Du21
m

z'

@u3~u3h12u1h3!

2u2~u1h22u2h1!#1G2~ t !u32G3~ t !u2 ,

u̇252ġCu1u2
22ġS 12C

2 Du11
m

z'

@u1~u1h22u2h1!

2u3~u2h32u3h2!#1G3~ t !u12G1~ t !u3 , ~3!

u̇352ġCu1u2u31
m

z'

@u2~u2h32u3h2!2u1~u3h1

2u1h3!#2G1~ t !u22G2~ t !u1 ,

where thehi denote the components ofH.

III. THE STRESS TENSOR

Strand and Kim4 obtained the following expression for
the mean dimensional stress in the suspension that includes
contributions from both rotary Brownian diffusion and an
external force field,

s52pd12hsE12hsFH 2AHE:^uuuu&

12BHS E"^uu&1^uu&"E2
2

3
dE:^uu& D1CHE

1FHDr S ^uu&2
1

3
dD13D0

m

kT S ~12C!

2
^uH'&

2
~11C!

2
^H'u& D J . ~4!

The angular brackets indicate orientation averages over an
ensemble of particles. Herep is the pressure,hs is the vis-
cosity of the solvent,D0 is the rotary diffusivity of a sphere
of volume equal to that of the particle, andH'5H"(d
2uu) is the component of the external forceH in the direc-
tion perpendicular to the particle symmetry axis. The other
coefficientsAH , BH , CH , FH , called the stress coefficients,
are functions of the shape of the particle, the general expres-
sions for which are given in Strand and Kim.4 For general
spheroids these coefficients involve certain elliptic integrals,
but for some limiting cases such as spheres and long fibers,
these expressions can be considerably simplified. The limit-
ing values of the coefficients for long fibers (r→`) and near
spheres (r→1) are listed in Table I.4

The rheological properties of a suspension are usually
expressed in terms of material functions, such as the apparent
viscosities and the first and second normal stress differences.
For dilute suspensions these quantities involve the limit
F→0 and are therefore called intrinsic properties. The ex-
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pressions for these rheological properties for the case of
simple shear, defined below, can be obtained from Eq.~4!:

@h1#5 lim
F→0

S sxy2hsġ

Fhsġ
D

54AH^u1
2u2

2&12BH^u1
21u2

2&1CH1S 2FH

Pe D ^u1u1&

1S 2FH

3CPeD FC^~Skiui !u1u2&1S 12C

2 D ^u1&k2

2S 11C

2 D ^u2&k1G ,
@h2#5 lim

F→0
S syx2hsġ

Fhsġ
D

54AH^u1
2u2

2&12BH^u1
21u2

2&1CH1S 2FH

Pe D ^u1u1&

1S 2FH

3CPeD FC^~Skiui !u1u2&1S 12C

2 D ^u2&k1

2S 11C

2 D ^u1&k2G ,
@t1#5 lim

F→0
S sxx2szz

Fhsġ
D

54AH~^u1
3u2&2^u1u2u3

2&!14BH^u1u2&1S 2FH

Pe D
3^u1

22u3
2&1S 2FH

3PeD @^~Skiui !u1
2&2^~Skiui !u3

2&

1k3^u3&2k1^u1&#,

@t2#5 lim
F→0

S syy2szz

Fhsġ
D

54AH~^u1u2
3&2^u1u2u3

2&!14BH^u1u2&1S 2FH

Pe D
3^u2

22u3
2&1S 2FH

3 PeD @^~Skiui !u2
2&2^~Skiui !u3

2&

1k3^u3&2k2^u2&#.

For compactness we have used the Cartesian components to
denote the various averages. In obtaining the above forms for
the intrinsic properties from Eq.~4! we have followed the
scaling of Strand and Kim4 to make comparisons easier,
namely, time is scaled with respect to 6Dr and force with
respect to kBT. The dimensionless quantity Pe5ġ/Dr ,
called the Pe´clet number, measures the relative strengths of
the fluxes due to shear and diffusion. The external force is
assumed constant~i.e., without fluctuations!, the scaled di-
mensionless form of which is denoted byk in the above
equations withk5mH/kBT. We have also used the fact that
D0 /Dr5FH /(9C) to clear the expressions of the constant
D0 . In the scaled form the Langevin equations for the ori-
entation behavior of the spheroids, Eq.~3!, after being con-
verted to spherical coordinates, take the following form:

u̇5h12sinfG1~ t !1cosfG2~ t !,
~5!

ḟ5h22cotu cosfG1~ t !2sinf cotuG2~ t !1G3~ t !,

whereh1 andh2 are the deterministic parts of the equation,
given by

h15S Pe

6 DC sinu cosu sinf cosf

1
1

6
~k1 cosu cosf1k2 cosu sinf2k3 sinu!,

~6!

h252S Pe

6 DC sin2 f2S Pe

6 D S 12C

2 D
1

1

6
~2k1 sinf1k2 cosf!S 1

sinu D .

Note that the Gaussian random variablesG i(t) now satisfy,
after scaling, Eq.~1! with D51/6;

G j~ t !50, G i~ t !G j~ t8!5 1
3 d i j d~ t2t8!.

We now evaluate the intrinsic viscosity@h#5@h1# for a
number of ranges ofk and Pe and compare the results with
those of Strand and Kim4 and Brenner and Weissman.10

To compute the various orientation moments appearing
in the above expressions for rheological parameters, we re-
vert to the techniques developed in Asokanet al.23 Essen-
tially this procedure simplifies the computation of ensemble
averages in nonlinear systems with noise governed by sto-
chastic differential equations by simulating a set of ordinary
differential equations obtained by suitable time averaging.
Note that Eq.~5! is a pair of nonlinear Langevin equations
with multiplicative Gaussian noise terms describing the dy-
namics of the vectoru5~u,f!. Denoting the noise coeffi-
cients bygi j , it can be written concisely as

u̇ i~ t !5hi@u~ t !,t#1gi j @u~ t !,t#G j~ t !, ~7!

whereu15u, u25f. Using these equations and following
the procedure outlined in Asokanet al.,23 one obtains the
following equation for the dynamics of any moment
^B(u,f)&:

TABLE I. The limiting values of the stress coefficients.

Coefficient r→` r 511e(e→0)

AH
r2

4@ln~2r!23/2#

395

294
e2

BH
3 ln~2r!211/2

r 2

15

28
e2

895

1175
e2

CH 2
5

2
2

5

7
e1

235

294
e2

FH
3r2

ln~2r!21/2
9e
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d

dt
^B~u,f!&5^ f 1h1&1^ f 2h2&

1
1

6 K gk j

]

]uk
~ f 1g1 j1 f 2g2 j !L , ~8!

where we have used Einstein’s summation convention in the
last term. The ensemble average in the above is taken over a
set of tracer orientations~u,f! in orientation space.23 For a
given moment, however, Eq.~8! may not, in general, be
closed and easy to solve, hence we use an alternate method
to generate the desired moments in suitable pairs. Note that
the moment equations, Eq.~8!, corresponding to any two
moments, ^B1(u,f)& and ^B2(u,f)&, are collectively
equivalent to an ensemble of the following simultaneous
equations over a set of tracer orientations:

u̇5h11
1

6D S f 28gk j

]

]uk
~ f 1g1 j1 f 2g2 j !

2 f 2gk j

]

]uk
~ f 18g1 j1 f 28g2 j ! D ,

~9!

ḟ5h22
1

6D S f 18gk j

]

]uk
~ f 1g1 j1 f 2g2 j !

2 f 1gk j

]

]uk
~ f 18g1 j1 f 28g2 j ! D .

In the above,f i are the partial derivatives ofB1 and f i8 are
those ofB2 and the pairB1 , B2 may be so chosen thatD
5 f 1f 282 f 18 f 2 is not identically zero. The moments are now
obtained by employing a brute-force computation on an en-
semble of equations@Eq. ~9!# over a set of initial conditions
in the orientation space. Fix a positive integern and define
n2 points on theuf space@0,p#3@0,2p#, given by

u i05~u i1u i 11!/2
f j 05~u j1u j 11!/2J i , j 50,1,...,n,

whereu i5cos21@(2i/n)21# andf i52p/n, i 50,1̄ n. This
corresponds to a set of initial conditions distributed nearly
uniformly over the orientation space. We then considern2

copies of Eqs.~9! over the above set of initial conditions and
numerically integrate each pair simultaneously using the in-
tegratorodeintof Presset al.25 with adaptive step-size con-
trol within a tolerance of 0.001%. From the values (u i t ,f j t)
at the end of each iterative step, the numbersB1(u i t ,f j t) and
B2(u i t ,f j t) are computed and averaged to get an estimate of
the moment, and thus23

^Bi~u,f!&5
** Bi~u,f!d~u2u i t !d~f2f j t !d~cosu!df

**d~u2u i t !d~f2f j t !d~cosu!df

5
1

n2 (
i 51

n

(
j 51

n

Bi~u i t ,f j t !.

This is repeated for successive time steps using, at each step,
the values (u i ,f j ) obtained from numerical integration, and
continued until the values of the moments stabilize. This
procedure generates a numerical approximation to the dy-
namics of the momentsB1 andB2 .

Table II lists some of the moments appearing in the ex-
pressions for the rheological parameters and their pairing
used in our simulations, along with the noise term@the last
term on the right of Eq.~8!# corresponding to each moment.
Others can be easily obtained as linear combinations of those
in the table. The choice of the moment pairs was made based
on the symmetry in the noise terms~Table II! and the condi-
tion thatD be not identically zero for the chosen pairs. As in
Asokanet al.,23 the number of initial conditions was kept at
n25100 at which the results more or less stabilized.

Figure 1 shows plots of the intrinsic viscosity@h1# ver-
sus the external field strengthk for a fixed shear ratePe

52, and two different external field orientations. The azi-
muthal directionf is held at 90° while the polar directions
are 45° and 90°. The results for three different aspect ratios
are shown: prolate spheroids withr 51.6; oblate spheroids
with r 50.4 and spheres. The calculations are greatly simpli-
fied for spheres for whichAH5BH5FH50, CH55/2 and
FH /Pe59/2 ~see Table I!. These results are in good agree-
ment with those of Strand and Kim4 and Brenner and
Weissman10 ~see Fig. 2 in Strand and Kim4!. For external
force fields higher~.5!, @h1# stabilizes rapidly to the values
shown in the figure, but for smaller field strengths it takes
longer for the values to stabilize.

The effect of the Brownian and shear parameters on the
intrinsic viscosity@h1# are plotted in Fig. 2 for spheroids of
aspect ratior 50.4, 1.0, and 1.6 at two different field orien-
tations, keeping the strength of the external field constant at
k51. A comparison with Fig. 3 in Strand and Kim4 shows

TABLE II. The various moments in the expressions for the rheological
parameters and the corresponding noise terms.

Moments Noise terms

H^u1
2u2

2&
^u3

2&
H2 sin2 u220 sin4 u sin2 f cos2 f
2~3 cos2 u21!

H^u1
2&

^u2
2&

H226 sin2 u cos2 f
226 sin2 u cos2 f

H^u1
2u2&

^u1u2
2&

H2 sinu sinf212 sin3 u sinf cos2 f
2 sinu cosf212 sin3 u cosf sin2 f

H^u1u2u3&
^u3

3&
H26 cosu sin2 u sin 2f

23~cosu1cos 3u!

H^u1&
^u2&

H22 sinu cosf
22 sinu sinf

H^u1u2&
^u3

2&
H23 sin2 u sin 2f
22~3 cos2 u21!

H^u1u2
3&

^u1
3u2&

H3 sin2 u sin 2f210 sin4 u sin2 f sin 2f
3 sin2 u sin 2f210 sin4 u cos2 f sin 2f

H^u1
2u3&

^u3u2
2&

H2 cosu212 sin2 u cos2 f cosu
2 cosu212 sin2 u sin2 f cosu

H^u1
3&

^u2
3&

H6 sinu cosf212 sin3 u cos3 f
6 sinu sinf212 sin3 u sin3 f
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that the results are in good agreement with those obtained by
the diffusion equation method.

IV. PERIODIC FORCING

If the external force is periodic, the dynamics and the
rheology of the suspension considered here can in some

cases exhibit complex behavior. The experimental feasibility
of setting up a suspension system under constant external
forcing has been reported by many authors26–29and periodic
forcing should cause no additional problem. Most of the
work on suspensions under periodic external forcing has
been done on electrorheological and magnetorheological flu-
ids. Ramamohanet al. have studied extensively suspensions
of periodically driven dipolar spheroids in the limit of neg-
ligible or zero Brownian motion and demonstrated the exis-
tence of parametric regimes where both the rotational dy-
namics and the intrinsic suspension properties evolve
chaotically.16–19A new type of class-I intermittency route to
chaos has also been shown to exist in the system they
studied,20 thus providing an example of a physically realiz-
able system showing a nonhysteretic form of class-I intermit-
tency. Further, a new and easy to implement chaos control
algorithm has been developed, which leads to a very efficient
scheme for separating particles.21 The microparticle suspen-
sion they studied is also one of the few examples of a physi-
cally realizable system showing spatiotemporal chaos and
nontrivial collective behavior.22 This system thus represents
one of the simplest physically realizable systems for study-
ing the average behavior of a large number of individually
chaotically varying elements. The system considered here is
therefore important, both from a theoretical as well a practi-
cal point of view.

All the above investigations were limited to zero or neg-
ligible Brownian motion. The method outlined in the previ-
ous section can be used to generalize these studies by includ-
ing the additional contributions to the stress due to Brownian
rotation of the individual particles. Under a sinusoidally
varying force field the Langevin equation~2! modifies to

u̇5VÃu1C@uÃ~E"u!#Ãu1z'
21mÃH cos~vt !Ãu

1GÃu, ~10!

wherev is the frequency of the external driver. The analysis
in this section will be restricted to the case of slender rods
~fibers! that correspond to the limitr→`, so that the stress
coefficients take a particularly simple form. We choose a
scaling that is appropriate to explore the system behavior vı`s
a vı̀s change in the Brownian flux, so time is scaled with
respect to the shear rate (ġ) and force withġz' , and write
k5(mH/ġz')cos(vt) . In this setting, the Langevin equation
~10! takes the following form in spherical coordinates:

u̇5h12sinfG1~ t !1cosfG2~ t !,

ḟ5h22cotu cosfG1~ t !2sinf cotuG2~ t !1G3~ t !,

whereh1 andh2 are, as before, the deterministic parts given
by

h15C sinu cosu sinf cosf1~k1 cosu cosf

1k2 cosu sinf2k3 sinu!,

h252C sin2 f2S 12C

2 D1~2k1 sinf1k2 cosf!

3S 1

sinu D .

FIG. 1. Plot of intrinsic viscosity@h1# for dipolar suspensions for various
strengths of the external field, for spheroids of aspect ratior 50.4, 1.0, and
1.6. Results fork i ~0,1,1! ~solid lines! and k i ~0,1,0! ~dotted lines! are
shown. Compare with Fig. 2 of Strand and Kim~Ref. 4!.

FIG. 2. Plot of intrinsic viscosity@h1# for dipolar suspensions for various
values of Pe, for spheroids of aspect ratior 50.4, 1.0, and 1.6. Results for
k i ~0,1,1! ~solid lines! and k i ~0,1,0! ~dotted lines! are shown. Compare
with Fig. 3 of Strand and Kim~Ref. 4!.
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In the present scalingG(t) satisfy~1! with D5Dr /ġ, which
we denote by P˜e, so that P˜e50 when Brownian motion is
switched off. The evolution equations~9! for the tracer ori-
entations corresponding to the moments^B1& and^B2& now
become

u̇5h11
P̃e

D S f 28gk j

]

]uk
~ f 1g1 j1 f 2g2 j !

2 f 2gk j

]

]uk
~ f 18g1 j1 f 28g2 j ! D ,

ḟ5h22
P̃e

D S f 18gk j

]

]uk
~ f 1g1 j1 f 2g2 j !

2 f 1gk j

]

]uk
~ f 18g1 j1 f 28g2 j ! D .

The limiting values of the stress coefficients for the case of
fibers, given in Table I, can be used to further simplify the
expressions for the rheological parameters by taking advan-
tage of the following limits:

lim
r→`

AHBH5 3
4 , lim

r→`

CHBH50,

lim
r→`

BHBH50, lim
r→`

FHBH59.

Hence, by scaling each of the rheological parameters with
BH and taking a second limit asr→`, we get

@h1#5 lim
F→0
r→`

F S sxy2hsġ

Fhsġ
DBHG

53^u1
2u2

2&118 P̃ê u1u1&1S 6 P̃e

C D
3FC^~Skiui !u1u2&1S 12C

2 D ^u1&k2

2S 11C

2 D ^u2&k1G ,

@h2#5 lim
F→0
r→`

F S syx2hsġ

Fhsġ
DBHG

53^u1
2u2

2&118 P̃ê u1u1&

1S 6 P̃e

C D FC^~Skiui !u1u2&1S 12C

2 D ^u2&k1

2S 11C

2 D ^u1&k2G ,
@t1#5 lim

F→0
r→`

F S sxx2szz

Fhsġ
DBHG

53~^u1
3u2&2^u1u2u3

2&!

118 P̃ê u1
22u3

2&16 P̃e@^~Skiui !u1
2&

2^~Skiui !u3
2&1k3^u3&2k1^u1&#,

@t2#5 lim
F→0
r→`

F S syy2szz

Fhsġ
DBHG

53~^u1u2
3&2^u1u2u3

2&!

118 P̃ê u2
22u3

2&16 P̃e@^~Skiui !u2
2&

2^~Skiui !u3
2&1k3^u3&2k2^u2&#.

V. ANALYSIS OF THE TIME SERIES

We generated a time series for each of the bulk suspen-
sion parameters above over a period of 100 000 dimension-
less time units using the computational techniques developed
in the previous section and deleted the first 20 000 data
points to remove any transients. Figure 3 shows a part of the
time series corresponding to the set of parametersk15k3

50, k250.10,v51, and P̃e50.01~weak diffusion!, and it is
clear from the figure that the apparent viscosity exhibits per-
sistent temporal fluctuations. A detailed study of these fluc-

FIG. 3. A part of the time series of

@h2# for P̃e50.01, k15k350, k2

50.1, andv51.
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tuations using the tools of nonlinear time series analysis may
reveal significant features of the dynamical system. A critical
review of the various topological and geometrical methods
for analyzing nonlinear data can be found in Kantz.30 We
used the softwares TISEAN31 and Chaos Data Analyzer Pro-
fessional Version 2.1 of the Academic Software Library of
the American Physical Society for performing the tests on
the time series.

Figure 4 plots the frequency decomposition of the shear
stress, which shows a broadband spectrum decaying expo-
nentially with frequency. This is characteristic of both deter-
ministic chaos and linear autocorrelated noise32,33 and sug-
gests a further analysis of the system. The first step in any
such investigation is the characterization of the attractor, a
bounded subset of the phase space to which the system be-
havior eventually converges. This is usually done by recon-
structing the attractor of the system from the time series us-
ing delay coordinates, a technique first suggested by Packard
et al.34 and successfully used by many others. The embed-
ding theorems of Takens35 and its extensions36,37 elucidate
the mathematical theory behind delay reconstruction.
Roughly, the embedding theorems assert that for determinis-
tic systems, the dynamics of then-dimensional state vector
x(t) can be recaptured from the dynamics of the delay vec-
tors of a single scalar function ofx, y(t)5h„x(t)…, under
rather general conditions. The mapping,

F„x~ t !…5„y~ t !,y~ t1t!,...,y~ t1~m21!t!…,

which mapsx to anm-dimensional delay vector with delayt,
is an embedding whenm>2n11. This means that most of
the significant characteristics of the original system, both dy-
namical and geometrical, are carried over to the recon-
structed phase space in a one-to-one manner.30,38 In particu-
lar, properties such as the fractal dimension, Lyapunov
exponents, and entropies are preserved under the reconstruc-
tion mapF and can be computed from the mirror dynamical
flow in the reconstructed space. There exist further generali-
zations that serve to reduce the bound on the embedding

dimension, and in many cases the smallest integer greater
than the correlation dimension is enough to fully embed the
attractor.36,37

Although the embedding theorems do not place any re-
striction on the choice of the time delay, in practice, the
choice of both the time delay and embedding dimension is
important and may significantly affect the inferences derived
from reconstruction, particularly when the data come from
experiment. Small delays lead to highly correlated vectors
F„x(t)…, while large delays yield vectors with more or less
uncorrelated components resulting in data randomly distrib-
uted in the embedding space. A first guess of the proper
choice of the delay may be obtained from the autocorrelation
function of the sample data; the time at which the autocorre-
lation attains its first zero, or its first local minimum, can be
taken as the optimal delay.30 For our time series this value
was aroundt515 and we got topologically identical attrac-
tors for other choices of delay around this value. As for the
embedding dimensionm, it should be large enough for the
attractor to fully unfold in the embedding space, but choos-
ing too large anm may cause the various algorithms to
underperform.30 A commonly used method to estimate the
optimal value ofm is the false nearest neighbor method,39,40

which is based on the idea that a small value form would not
unfold the true geometry of the attractor and there may be
self-intersections leading to false neighbors. Figure 5 plots
the fraction of false neighbors as a function of the embed-
ding dimensionm and yieldsm53 as an optimal choice,
since form>3 the fraction of false neighbors become very
small. This means that the behavior of the system can be
eventually described by utmost three, independent coordi-
nates. Figure 6 shows the attractor reconstructed from the
time series of@h2# with m53 andt515. We experimented
with higher dimensions and various delays, but in all cases
the attractor was found to be topologically identical to the
one in the figure. We note that there is a definite structure in
the phase phase plot of the stress component.

A quantitative measure of the structure and self-
similarity of the attractor is provided by various dimension
estimates such as the box-counting dimension, the Hausdorff
dimension, etc. The correlation dimension, introduced by
Grassberger,41 Grassberger and Procaccia,42 and others, is the

FIG. 4. Plot of the power versus frequency of@h2#. The figure is typical of
both chaotic and linear stochastic signals.

FIG. 5. Fraction of false nearest neighbors as a function of the embedding
dimensionm for the @h2# series.
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easiest to compute from a time series. The correlation dimen-
sion is estimated from the correlation sumC(e,N), which is
defined as the fraction of all possible pairs of points in the
attractor, which are closer than a given distancee in a given
norm;30

C~e,m!5
2

N~N21! (i 51

N

(
j 5 i 11

N

Q~e2ixi2xj i !, ~11!

where Q(x)51 if x.0, Q(x)50 if x<0 and x(t) is the
m-dimensional vector of time-delay coordinates. The corre-
lation dimension is then given by

D5 lim
e→0

] ln C~e,m!

] ln e
,

when m is sufficiently large. The scaling exponent
ln C(e,m)/ln e typically increases withm and saturates to a
final value for sufficiently largem, which is then taken as an
estimate forD. In practice, the values lnC(e,m)/ln e are plot-
ted againste for variousm and the value corresponding to a
plateau in the curves is identified as an approximation toD.
In calculations, however, one has to be careful that the sum
in Eq. ~11! is not biased by temporal correlations, that is, the
spatial closeness of the points appearing in Eq.~11! is not
due to their being temporally close.43 This is done by exclud-
ing from Eq.~11! the pairs of points that are closer in time by
less than aTheiler window, which is approximately equal to
the product of the time lag between the points and the em-
bedding dimension.43 In our calculations we used 50 as a
Theiler window. Figure 7 plots the correlation sumsC(e,m)
obtained with these choice of parameters, which shows a
convergence of the curves for largerm, an indication of low

dimensionality of the attractor, and a plateau for the scaling
exponent in the range 0.2<e<0.6, suggesting a dimension
equal to 2, approximately. Together with the presence of a
definite structure in the attractor, this indicates that the ap-
parent dimension of the system, governed by a set of 100
pairs of simultaneous equations, is far less than the number
of degrees of freedom.

An interesting feature of some dynamical systems is
their sensitive dependence on initial conditions, meaning that
trajectories that start from neighboring initial conditions may
diverge exponentially over time. An aperiodic bounded sys-
tem having this property is termed a chaotic system. The
Lyapunov exponents quantify the average rate of divergence
or convergence of nearby orbits, and the existence of a posi-
tive Lyapunov exponent is one of the most striking signa-
tures of chaos.32,44 Lyapunov exponents describe the long-
term behavior of nearby trajectories and are invariant under
smooth transformations of the attractor; hence they are pre-
served under delay reconstruction. We used the Kantz
algorithm30,45 to estimate the maximum Lyapunov exponent.
This proceeds by computing the sum

S~e,m,Dn!

5
1

N (
n051

N

lnS 1

uU~xn0
!u (

xnPU~xn0
!

uxn01Dn2xn01Dnu D ,

for a pointxn0
of the time series in the embedded space and

over a neighborhoodU(xn0
) of xn0

with diametere. If the
plot of S(e,m,Dn) againstDn is linear over smallDn and
for a reasonable range ofe, and all have an identical slope
for sufficiently large values of the embedding dimensionm,
then that slope can be taken as an estimate of the maximum
Lyapunov exponent.30 For our time series, Fig. 8 shows that
S(e,m,Dn) increases linearly withDn and that the slope is
roughly independent of the embedding dimensionm for large
m. An approximate estimate for the maximum Lyapunov ex-
ponent as obtained from the figure is 0.04. These evidences
show that the dynamics of the stress component is~weakly!
chaotic in the range of parameters considered and that the
system has a low-dimensional chaotic attractor in this case.

The response of the system to variations in the strength
of the force field, with the field orientation kept unchanged,

FIG. 6. Three-dimensional embedding of the attractor of@h2# reconstructed
from the time series with delay 15 andm53.

FIG. 7. Plot of lnC(m,e)/ln e vs e. The convergence of the curves for large
m indicates low dimensionality.

FIG. 8. The functionsS(e,m,Dn) vs Dn for various embedding dimen-
sions. The curves are approximately linear with an overall slope of 0.04.
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are plotted in Figs. 9~a!–9~d!. Shown in the figures are the
three-dimensional embeddings of the attractor of the system
for certain increasing values ofk2 , viz., k250.3, 0.42, 0.5,
and 1.0, respectively. For other values ofk2 in the range we
got attractors that are topologically identical to the ones in
the figures. This suggests that the system takes a quasiperi-
odic route to chaos as the parameterk2 is decreased from 1.0
to 0.1.

The flow parameterġ tends to drive the particle distri-
bution to an anisotropic state, which is either complemented
or opposed by the interaction of the imposed force field, and
the interplay between these forces can lead to chaotic fluc-
tuations, both in the dynamics and in the rheology, in the
absence of diffusion.17,18 The Brownian parameterDr has a
smoothing effect on the distribution and tends to drive the
system to an isotropic equilibrium. It is, therefore, interesting
to observe that the bulk system response can be chaotic in

the weak diffusion regime also, as we have demonstrated
above, and we expect the system to revert to regular behavior
when the diffusion gets stronger. This is illustrated by Figs.
10~a!–10~c!, plotting the three-dimensional embeddings of
the attractors corresponding to P˜e50.0, 0.1, and 1.0.

We note that all the above results pertain to the region of
small Brownian motion, where the solution of the Fokker–
Planck equation becomes otherwise intractable. In the limit
of weak diffusion, the diffusion equation changes from a
second-order partial differential equation to a first-order par-
tial differential equation and the fundamental character of the
equation changes from a diffusion equation type to a Liou-
ville type. In perturbation methods, this often leads to a
breakdown of the regular perturbation and requires a singular
perturbation to be used. This usually means sharp gradients
in the solution that are normally difficult to handle. The
Langevin equation method is more preferable in this case

FIG. 9. Three-dimensional embed-
dings of the attractor reconstructed
from the time series of@h2# for Pe
50.01,k15k350, and various values
of k2 ; ~a! k250.3, ~b! k250.42, ~c!
k250.5, and~d! k251.0.

FIG. 10. Three-dimensional embed-
dings of the attractor reconstructed
from the time series of@h2# for k2

50.1, k15k350, and various values
of P̃e; ~a! P̃e50.0, ~b! P̃e50.1, and~c!
P̃e51.0.
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since, together with the paired-moment scheme for generat-
ing moments, it works well even when diffusion is weak and
is capable of capturing possible complex behaviors of the
system which methods based on singular perturbations may
not be able to pick up.

Another important point to note is that the chaotic be-
havior of the rheological parameters could not have been
picked up by many of the diffusion equation approaches that
have been used to solve similar problems in the literature,
either due to the deficiency of the approximation schemes
employed to solve the diffusion equation or possibly due to
more fundamental problems. Strand and Kim,4 for example,
used an expansion of the ODF into a series of spherical har-
monics and applied the Galerkin method to an appropriately
truncated series to express the rheological parameters in
terms of the expansion coefficients. Strand46 has applied this
method to treat periodically forced systems of dipolar par-
ticle suspensions. Their expansion for the ODF permits only
the driving frequency and higher harmonics of the shear and
external field and is generally not valid in regimes where the
stress fluctuations may have subharmonic periodicity, such as
the chaotic parameter regimes we have explored, where the
range of the frequencies is a continuum. Thus, if we take the
Poincare´ sections of the time series@h2# vs @t1#, i.e., snap-
shots of the attractor@h2#3@t1# taken at regular time inter-
vals corresponding to the driving frequency, the method of
Strand should give only a single point, whereas our method
results in a continuum of points for the set of parameters
considered above~Fig. 11!. Thus, the existence of chaos in
the region of weak Brownian motion adds another dimension
to the computational difficulty of the problem with respect to
the diffusion equation approach.

VI. CONCLUSIONS

We have developed the Langevin equations for the ori-
entations of dipolar particles in a simple shear flow subject to
an external force field. Using an appropriate time-averaged
form of these equations various rheological parameters were
computed for different strengths of the diffusion and force
field. The fluctuations in the apparent viscosity have been
found to be chaotic for a set of parameters corresponding to

weak diffusion when the external force is periodic, but a
dominant Brownian motion or stronger force field tend to
drive the system to regular behavior. The attractor in this
case is low dimensional, showing that the system can be
eventually described by a few independent coordinates.

One advantage of the method presented in this paper is
that it picks up possible complexities in the dynamics of the
bulk properties, such as the existence of subharmonic fre-
quencies or sensitive dependence of the system behavior on
initial conditions, which may not be identifiable in the diffu-
sion equation approach. The important implication of this
observation is that systems which are in some sense gov-
erned by the Fokker–Planck equation can show chaos in
averages, and hence this system could become an important
physically realizable system to determine the conditions un-
der which chaos in microscopic dynamics can result in chaos
in macroscopic averages. It can also be applied to a wider
range of system parameters, unlike in the diffusion equation
method, which requires, for better accuracy, a change in the
strategy as the parameters are changed.23 It is also possible to
extend the technique to more general systems, e.g., the sus-
pension of charged fibers,47 which requires only an appropri-
ate modification to Eq.~3!.
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