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The rheology of a dilute suspension of Brownian dipolar spheroids
in a simple shear flow under the action of an external force
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The effect of rotational Brownian motion on the rheology of a dilute suspension of dipolar spheroids
in a simple shear flow under the action of an external force field, is investigated through a
generalized Langevin equation approach. The force field is assumed to be either constant or
periodic. In the case of constant external fields earlier results in the literature are reproduced, while
for the case of periodic forcing certain parametric regimes corresponding to weak Brownian
diffusion are identified where the rheological parameters evolve chaotically and settle onto a low
dimensional attractor. The response of the system to variations in the strengths of the force field and
diffusion is also analyzed through numerical experiments. These results correspond to the region of
weak Brownian motion where usual methods render the problem intractabl@00® American
Institute of Physics.[DOI: 10.1063/1.1635821

I. INTRODUCTION a sheared suspension of dipolar spheroids under the action of
hydrodynamic forces, Brownian rotations and an external
The study of suspensions of dipolar particles subjectedorce field(which may be constant or perioglid@he apparent
to an external rotational torque has important engineeringiscosities and the first and second normal stress differences
applications, such as controlling the processing of fiber comgre important stress components of a suspension that mea-
posites, magnetofiuidizationmagnetostriction of ferromag- syre in some sense the collective behavior of all the particles
netic particle suspensioAssharacterization of magnetorheo- in the suspension. These can be expressed in terms of appro-
logical suspgnsion%,etc.. Ferrofluids, which contain small jate particle orientation averages, and the computation of
single-domain pamclgs in & nonmagnetic solvent, are an IMhese averages is an important step in any investigation of
portant example of dipolar suspensions. They have many iy suspension properties. This is generally made difficult
dustrial applications such as in rotary seals, inertia damper%y the complicated manner in which the torques due to shear,

magnettlc tQOma?r; detec'g%n, danqt%g'svmed'%al usr?ts I";e th‘;Brownian forces, and external field tend to orient and disori-
concentration ot drugs at body sItesIvhen brought under - o, 4o particles. While suspensions in the absence of exter-

the influence of a magnetic field, the particles in a ferrofluid . . . .
al forcing have been extensively studied, only a relatively

experience additional torques due to the external field tenoFew investigations are available for the case of dipolar par-
ing to align the particle dipole axis along the field direction, 9 b P

and this affects their macroscopic behavior substantially. Iﬁ'ﬁles' a$g mostlpf iheie tﬁre res'E[n((:jt'ed o the I|nf1|tl_(|) f”W eal:j
turn, the development of models for the dynamics and bulRear: e eariiest ol these studies were of Hall an

properties of such suspensions is useful in designing neﬁusenber@ and Brenne¥, concerning dilute suspensions of

suspensions with desired properties, controlling and testingipOIar non-Brownian spheres. Brenner and V\_/eisé_fhaxr
the quality of suspensions, improving the processing conditended these studies incorporating Brownian diffusion effects

tions of heterogeneous mediafc. As an example of natural @nd obtained results mainly for particles that are spheres or
phenomena analogous to the above, Pedley and K&&slerear-spheres. Further extensions of these results, including
refer to certain bacteria containing magnetic dipoles andhe effect of the relative strengths of shear, Brownian diffu-
various species of algae possessing an asymmetric interngiPn and external force on the particle dynamics, and rheol-
mass distribution whose swimming directions are affected by, are availablé;**but most of these apply to the limit of
gravity. All of these systems can be modeled by the respons&eak shear. Strand and Kingonsidered dilute dipolar sus-
of a permanent dipole exposed to an external field. pensions for a wider range of shear and diffusion parameters,
The effect of fluid microstructure on macroscopic sus-and analyzed the rheology for various orientations of the
pension properties is usually measured by the stress tensor ekternal force. Almog and FrankR&{° present several results
the suspension. In this paper we compute the stress tensorfior the long term behavior of the orientation distribution
function of dipolar particles in shear flow, and discuss the
dAuthor to whom all correspondence should be addressed. Electronic maii.mplications of these results for the rheology of Brownian
trr@cmmacs.ernet.in dipolar axisymmetric particles. These results are not re-
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stricted to the limit of weak shear effects, unlike the previouscorresponding equations for force-free particles derived in
studies. Asokan et al®® By using suitable time-averaged forms of
Ramamoharet al. introduced a class of problems, viz., these equations we can obtain the exact equation of motion
the dynamics and rheology of periodically forced particles infor any desired orientation moment. These equations for mo-
a simple shear flow, and obtained results that were theoretinents are deterministic, unlike the original Langevin equa-
cally interesting and had potential technical tions that are stochastic in nature, but may not be closed and
applicationst®?2  Kumar etall” and Kumar and hence may not be easy to solve in general. However, by
Ramamohalf have demonstrated that both the dynamics andtonsidering them in suitable pairs we can generate the mo-
the rheology of such suspensions can be chaotic in certaiments by applying a brute-force computation on an ensemble
parametric regimes. The dynamics in this regime is featureof these equations. In the case of constant external force
rich and presents a new class-I intermittency route to dlaosfields our results are in good agreement with other results in
while the chaotic response of the rheology has importanthe literature obtained by the diffusion equation approach.
implications for certain aspects of chaos theory such as spé:or periodic forcing we demonstrate the possibility of cha-
tiotemporal chao&’ All the above results were limited to the otic behavior of the rheological properties that may not pos-
case of zero or negligible Brownian motion and were ob-sibly be picked up by the diffusion equation approach. The
tained by a direct simulation of the equations of motion forchaotic response has been observed in some parameter re-
particle orientations. In the present work, we expand the&imes where Brownian diffusion is weak, a region where the
scope of their analysis to more realistic suspensions by inproblem becomes singular in the limit of zero diffusion. This
cluding the effects of rotary Brownian motion on the bulk is a significant advantage of the Langevin method when used
suspension properties and demonstrate that the fluctuatioaéong with the paired moment scheme presented in this
in the bulk properties can still be chaotic, for certain rangesvork.
of parameters, when the Brownian diffusion is weak. The rest of the paper is organized as follows. The Lange-
In the presence of Brownian diffusion, the particle ori- vin equations for the orientation of the particles are obtained
entations may be considered a stochastic process and may ibeSec. Il using results derived in Asokahal* The expres-
modeled either through a Fokker—Plang@kffusion) equa-  sions for the various stress components, including contribu-
tion formalism or through a Langevin equation formalism. Intions from hydrodynamic forces, Brownian diffusion, and a
the first approach the system is studied through a partiagtonstant external force field, are presented in Sec. Ill. A
differential equation governing the time and space variatiorbrute-force technique to compute the various orientation mo-
of an appropriate density function for the stochastic variablements in suitable pairs is also described here. The intrinsic
called the orientation distribution functiofODF) in the  viscosity of the system is evaluated for various values of the
present case. In the second method the system is modeldiffusion coefficient and different strengths and orientations
through a set of stochastic differential equations, calledf the external field and compared with known results. In
Langevin equations, governing the evolution in time of theSec. IV a periodic external force is considered for the case of
stochastic variables. Most of the literature in this area folfibers and the observed fluctuations in the apparent viscosity
lows the diffusion equation approach, in which the orienta-of the system are analyzed using dynamical and topological
tion averages are computed as moments of the ODF. Thigols for various strengths of the shear and external fields.
ODF is the solution of the diffusion equation, and is usuallyFinally, concluding remarks are given in Sec. V.
approximated by some numerical scheme appropriate to the
range of pgrameters of interest. Instead of §olvmg the dlffu-“_ THE THEORY
sion equation, Kumar and Ramamofanbtained the mo-
ments by directly integrating a set of equations governing the  We consider a dilute suspension of identical rigid, neu-
orientations of individual particles and employing a brute-trally buoyant spheroids in an infinite incompressible New-
force computation. These equations were deterministic orditonian fluid subjected to a simple shear flow defined by a
nary differential equations since Brownian effects were neflow field, v=yyi, where y is the shear ratey is they
glected in their work. A direct generalization of their method coordinate, and is the unit vector in theX direction. The
to systems with noise would involve numerically integratingvolume concentrationb of the particles in the solvent is
a set of stochastic differential equatiofisangevin equa- assumed sufficiently small that hydrodynamic interactions
tions) governing the evolution of the orientation vectors, butamong particles can be neglected. The shape of the spheroid
this is usually difficult and prone to error. In this work, there- varies depending on its aspect ratio defined rizya/b,
fore, we use a generalized Langevin equation method twherea andb are, respectively, the polar and equatorial ra-
evaluate the orientation moments, that leads to deterministidii; spheres have=1, and slender rod€ibers correspond
differential equations for the moments even for systems withio r —c. We choose a coordinate system that moves along
Gaussian white noise. The basic ideas of this approach twith the particle and is affixed to its center of mass, thus
suspension problems have been developed by Asekat?>  neglecting any translatory motion, since it does not contrib-
in an earlier work for the case of force-free particles and isute to the bulk suspension properties in a dilute system. The
easy to adapt to the present system involving dipolar parerientation of the spheroid is then represented by a unit vec-
ticles exposed to an external field. A brief account of thistor u placed along the major axis of the spheroid and the
procedure is as follows. We set up the Langevin equationdirection ofu can be specified by the polar coordinatésp),
governing the orientations of the particles by modifying the 8(0< <) and ¢(0<¢$=<2m) being the polar and azimuthal
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angles determined by the vector An external force field ticular form of the noise term in the above expression is
may affect the local dynamics if the particles are dipolar andderived in Asokaret al? for force-free particledy utilizing

this may arise from several sourceél) the particles have a generalized Langevin equation approach presented by Cof-
magnetic chargege.qg., ferromagnetic fibers in a ferroflyid fey et al?* The reader is referred to Asoka al? for fur-

and the suspension is exposed to a magnetic fiel@)othe  ther details. In Cartesian componeniof u andh; of H, Eq.
particles are charged fibelg.g., charged polymers in an (2) can be written as
aqueous solutionand may respond to an external electric

field; or (3) they may possess a gravitational dipole and may  (j;=yCu,(1— u§)+ y
be influenced by gravitye.g., bioconvection set up by the

swimming of certaln microorganist§. In all the above —Uy(Ush,— Ushy) ]+ To(t)us—Ca(t)uy,
cases the external field can be modeled as the cross-product

m
—— | u,+ —[us(uzh;—u4h
2)2 é’L[S(al 13)

of the particle dipole moment and the uniform external . . 5 (1= m

field vectorH: u;=—yCuus—y o Uit Z[ul(uth_UZhl)
T=mXH. —ug(ushg—ughy) ]+ T'5(t)u;— 'y (t)us, ®))

The dipole momenin is assumed to be parallel to the par- .

ticle symmetry axis, so that we can write ug=— yCu Usuz+ Z[UZ(UZhS_UShZ)_ul(UBhl
m=mu, —Uihg) =Ty (Hup—Tp(t)uy,

wherem is the magnitude of the dipole moment. The time where theh; denote the components bf.
rate of change of the orientation vectocan be expressed as
u=wXu, wherew is the angular velocity of the particle, an

expression for which may be_ obtained by the angular MOy THE STRESS TENSOR
mentum balance equation tHtis

_ Strand and Kirfi obtained the following expression for
=0+ CluX(E-u)]+ ¢, mXH. the mean dimensional stress in the suspgnsi(fn that includes

Above,C=(r?—1)/(r?+1) is a shape factor for the spher- contributions from both rotary Brownian diffusion and an

oid that takes the value1 for disks, O for spheres, andl  external force field,

for long fibers, andE and Q are, respectively, the rate of

deformation tensor and the vorticity vector for the flow, o-=—p5+2775E+2175<1){2AHE:(uuuu)

given by

2
E=3(Vv+Vvh), +28H< E-(uu)+(uu)-E— §5E:(uu>) +CyxE
Q= 3(VXv). 1 m/(1-C
2 ) +FHDr(<UU>_55)+3D0k—_r(%<UHL>

The effect of Brownian rotation can now be included by
superposition, assuming that it causes the angular velocity to (1+C)
change by a white noise vector tefth; —— (HL U>) ] 4

0=Q+C[uX(E-u)]+ ] 'mXH+T(1). The angular brackets indicate orientation averages over an

The Cartesian componenis(t) are Gaussian random vari- ensemble of particles. Hegeis the pressurey; is the vis-
cosity of the solventDy, is the rotary diffusivity of a sphere

ables with zero mean and autocorrelation functions propor—f | | h f th icl id —H-(8
tional to thes function: of volume equal to that of the particle, artd, =H-(

—uu) is the component of the external forekin the direc-
T;(1)=0, Ty(HT(t")=2D8s;s(t—t'), (1)  tion perpendicular to the particle symmetry axis. The other
) ) ) coefficientsA, By, Cy, Fy, called the stress coefficients,

where §;; is the Kronecker deltag(t) is the Dirac delta  re functions of the shape of the particle, the general expres-
function, andD is the spectral density, which in this case is gjons for which are given in Strand and KfhFor general
equal to the rotary diffusivity defined by, =kgT/{,,  gpheroids these coefficients involve certain elliptic integrals,
Wheregl_ represents the fotauonal resistance in the directiony;t for some limiting cases such as spheres and long fibers,
perpendicular to the particle symmetry g, is the Boltz-  hese expressions can be considerably simplified. The limit-
mann constant, and is the absolute temperature. The OVer-ing values of the coefficients for long fibens =) and near
bars denote statistical averages over a large number of raBpheres (—1) are listed in Table 1.

dom variables. This leads to The rheological properties of a suspension are usually
- - expressed in terms of material functions, such as the apparent
U=OQXu+C[uX(E-u)]Xu+¢; ImXHXu+I'Xu. (2 ZPTESS ) .
[uX(E-w)] & @ viscosities and the first and second normal stress differences.
Equation(2) is the full Langevin equation for the Brownian For dilute suspensions these quantities involve the limit
spheroid in the presence of an external force field. The pad—0 and are therefore called intrinsic properties. The ex-
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TABLE I|. The limiting values of the stress coefficients.

Coefficient r—oo r=1+e(e—0)
2
Ay —I’ 3—9562
4In(2r)—3/2] 294
3In(2r)—11/2 1_5 B 895
B 2 28€ 1175°
5 5 235
C 2 D 0 499,
" 2 7" 204¢
2
Fu —3r 9¢
In(2r)—1/2

K. Asokan and T. R. Ramamohan

For compactness we have used the Cartesian components to
denote the various averages. In obtaining the above forms for
the intrinsic properties from Eq4) we have followed the
scaling of Strand and Kifhto make comparisons easier,
namely, time is scaled with respect t®p and force with
respect tokgT. The dimensionless quantity Re/D,,
called the Pelet number, measures the relative strengths of
the fluxes due to shear and diffusion. The external force is
assumed constarti.e., without fluctuations the scaled di-
mensionless form of which is denoted lyin the above
equations wittk=mH/kgT. We have also used the fact that
Do/D,=Fy/(9C) to clear the expressions of the constant
Dy. In the scaled form the Langevin equations for the ori-
entation behavior of the spheroids, Eg), after being con-

pressions for these rheological properties for the case Qferted to spherical coordinates, take the following form:

simple shear, defined below, can be obtained from(Ey.

Oxy™— 775-7
D sy

[7:]= lim (

-0

2F,,
() + 2B )+ Oyt 22 o)

H 1_C
+ 3CPe C((Ekiui)ulu2>+ T <U1>k2
1+C
—| 5 [(uky ],
o Oyx— 7]5:)’
[nZ]_LIIJLno( q)ﬁs:)’ )
2Fy
=4AL(U2uZ)+ 2By (u+ud) + Cyy+ P—e)(ulul)
H 1-
*l3cpe C((Xkjuj)usuy)+ > (uz)ky
1+C
—| 5 [{unka],
— i (a'xx_a'zz
[Tl] - (blino o 7]5:)/
3 ) 2Fy
:4AH(<U1U2>_<U1UZU3>)+4BH<U1U2>+ E

X (ui—u3)+

2F
3T.j;)[<<zkiui>ui>—<<2kiui>u§>
+ka(usz) —ky(ug)],

Oy O
[Tz]znm(—yy .ZZ)
d—-0 ® ngy

=4A4((u1u3) —(UqUnu3)) + 4By (ugUp) +

2F4
Pe

2F
X (up—u3)+ 3—P”e)[<<zkiui>u§>—<<2kiui>u§>

+ka(uz) —ky(uy)].

9=h,—sin gl (t) +coseT 5(1),

. (5)

¢=hy—cotfcospl’1(t)—sing cotOl (1) +1'5(t),
whereh,; andh, are the deterministic parts of the equation,
given by

Pe
h,= ( E) C sinf cosé sin ¢ cos¢

1
+ é(kl cos6 cos¢+k, cosh singd—ks sing),

et (352

1 . 1
+€(—kls|n¢+kzcos¢)<m).

(6

Note that the Gaussian random variablgt) now satisfy,
after scaling, Eq(1) with D=1/6;

We now evaluate the intrinsic viscosifyn]=[#7,] for a
number of ranges df and Pe and compare the results with
those of Strand and Kifrand Brenner and Weissmah.

To compute the various orientation moments appearing
in the above expressions for rheological parameters, we re-
vert to the techniques developed in Asokainal>® Essen-
tially this procedure simplifies the computation of ensemble
averages in nonlinear systems with noise governed by sto-
chastic differential equations by simulating a set of ordinary
differential equations obtained by suitable time averaging.
Note that Eq.(5) is a pair of nonlinear Langevin equations
with multiplicative Gaussian noise terms describing the dy-
namics of the vecto®=(6,¢). Denoting the noise coeffi-
cients byg;; , it can be written concisely as

6,(t)=hi[ 6(t) t]+g; [ 6(t) IT; (1), 7)

where ;= 60, 6,=¢. Using these equations and following
the procedure outlined in Asokaet al.?® one obtains the
following equation for the dynamics of any moment

(B(6,¢)):
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d TABLE Il. The various moments in the expressions for the rheological
a < B(8, ¢))> = <f1h1> + <f2h2> parameters and the corresponding noise terms.
Moments Noise terms
1 d
+5 gkjﬁ(flglj'i_fZgzj) : 22) 2 sirf 6—20 sirf 0sir? ¢ co
K 2(3 cog 1)

last term. The ensemble average in the above is taken ove
set of tracer orientation&,¢) in orientation spacé® For a
given moment, however, Eq8) may not, in general, be ((2u,) [ZSinesinqS—lZ sir? #sin ¢ cog ¢
closed and easy to solve, hence we use an alternate methL( d,3) 2sinfcos¢—12sir? Gcosesin’ ¢
to generate the desired moments in suitable pairs. Note thT<tu "
14243

{2—6 sirf §cos ¢

VA

Y|4

where we have used Einstein’s summation convention in th
T@D 2—6sirf §cos ¢

the moment equations, E@8), corresponding to any two

moments, (B.(6,¢)) and (B,(6,¢)), are collectively

equivalent to an ensemble of the following smultaneous{(u1 [*25in0608¢>
(uz)

—6 cosésir? gsin 2¢
—3(cos#+cos ¥)

equations over a set of tracer orientations: —2singsin¢
. 1/, d (Uyuy) [—3 sirf gsin 2¢
9:h1+a fzgkja—ek(flglﬁfzgzj) (B —2(3cog 6-1)
J (U {3 si:: 'sin 26—10 sirr;1 0sin:2¢sin 2¢
’ ’ 3 sirt §sin 2¢—10 sirf #cos ¢ sin 2¢p
—f20kj7o (F101+F205) |, (uiue)
a0 10292
“ (WPuy) |2 cosf—12 si.r? 00952 ¢ cosh
(.Z)— H 1 ( " J (f thgn) (UgL2) 2 cos6—12 sirf fsir? ¢ cos 6
> 6A lgk]ﬁak 19T 2%z, (ud) 6 sinfcos¢—12 sir? #cos ¢
) 6 singsin ¢p—12 sir? sin® ¢

0
_flgkj(g_ﬂ(f:llglj'*'féng) :

In the abovef; are the partial derivatives @&, andf; are
those ofB, and the paiB;, B, may be so chosen that
=f,f,—f;f, is not identically zero. The moments are now ) .
obtained by employing a brute-force computation on an en-  1aple Il lists some of the moments appearing in the ex-
semble of equationkEq. (9)] over a set of initial conditions pressions for the rheological parameters and their pairing

in the orientation space. Fix a positive integeand define  YSe€d in orl]” S|rrf1]ulaft|ons along with tge noise teﬁmme last
n? points on thed space[0,7]X[0,2], given by term on the right of Eq(8)] corresponding to each moment.
Others can be easily obtained as linear combinations of those

=(0i+0,.012] —01.. in the table. The choice of the moment pairs was made based
d),o (0;+6;.1)/2 ) N, on the symmetry in the noise terriEable 1) and the condi-
where 6,= cos [(2i/n)—1] and ¢, = 27/n, i=0,1--n. This tion thatA be not identically zero for the chosen pairs. As in

Asokanet al,?® the number of initial conditions was kept at
corresponds to a set of initial conditions distributed nearly 2_100 at which the results more or less stabilized

unformy over the ointaton space. We ten considér ™ Figure 1 shows plos of the nnnsic scosiy,) ver
nu?nencallyqlntegrate each pair simultaneously using the msus the external field strength for a fixed shear rat@,
tegratorodeintof Presset al2® with adaptive step-size con- =2, and two different external field orientations. The azi-
trol within a tolerance of 0.001%. From the value, ( ) muthal directiong is held at 90° while the polar dlrectlon§

' : lt are 45° and 90°. The results for three different aspect ratios

atthe end of each |terat|\ée stéep, the nu&nm}l@” bjn) an etlre shown: prolate spheroids with=1.6; oblate spheroids
thzé?ﬁoﬁ'é)n?rzncé)?\%ge and averaged to get an estlmate Qbith r=0.4 and spheres. The calculations are greatly simpli-
fied for spheres for whicthy=By=FL=0, C4=5/2 and
JJ Bi(6,0)8(6— 6) 8(p— ;) d(cosh)de Fy/P.=9/2 (see Table)l These results are in good agree-
(Bi(0,0))= — myry ment with those of Strand and Kfmand Brenner and
JJ6(6—6i) (p— ¢jp)d(cosh)de ; 0 . :
Weissmat® (see Fig. 2 in Strand and Kith For external
1.0 2 force fields highef>5), [ 7,] stabilizes rapidly to the values
= F; 2 (Ot Hjt)- shown in the figure, but for smaller field strengths it takes
longer for the values to stabilize.
This is repeated for successive time steps using, at each step, The effect of the Brownian and shear parameters on the
the values ¢, , ¢;) obtained from numerical integration, and intrinsic viscosity[ #,] are plotted in Fig. 2 for spheroids of
continued until the values of the moments stabilize. Thisaspect ratia =0.4, 1.0, and 1.6 at two different field orien-
procedure generates a numerical approximation to the dytations, keeping the strength of the external field constant at
namics of the moment8; andB,. k=1. A comparison with Fig. 3 in Strand and Kinshows
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7 - " - - - cases exhibit complex behavior. The experimental feasibility
of setting up a suspension system under constant external
forcing has been reported by many autf®t8’and periodic
forcing should cause no additional problem. Most of the
work on suspensions under periodic external forcing has
been done on electrorheological and magnetorheological flu-
p ids. Ramamohaet al. have studied extensively suspensions
51 r=16 1 of periodically driven dipolar spheroids in the limit of neg-
ligible or zero Brownian motion and demonstrated the exis-
tence of parametric regimes where both the rotational dy-
namics and the intrinsic suspension properties evolve
chaotically®~*°A new type of class-I intermittency route to
chaos has also been shown to exist in the system they
studied?® thus providing an example of a physically realiz-
able system showing a nonhysteretic form of class-I intermit-
tency. Further, a new and easy to implement chaos control
algorithm has been developed, which leads to a very efficient
scheme for separating particfésThe microparticle suspen-
2 ' X ‘ ' sion they studied is also one of the few examples of a physi-
cally realizable system showing spatiotemporal chaos and
nontrivial collective behavio?® This system thus represents
FIG. 1. Plot of intrinsic viscosity 7] for dipolar suspensions for various One of the simplest physically realizable systems for study-
strengths of the external field, for spheroids of aspect rati6.4, 1.0, and  ing the average behavior of a large number of individually
1.6. Results fork || (0,1, (solid lines andk |l (0,1,0 (dotted lines are  chaotically varying elements. The system considered here is
shown. Compare with Fig. 2 of Strand and KiRef. 4. . . .
therefore important, both from a theoretical as well a practi-
cal point of view.

that the results are in good agreement with those obtained by All the above investigations were limited to zero or neg-

[771]

the diffusion equation method. ligible Brownian motion. The method outlined in the previ-
ous section can be used to generalize these studies by includ-
IV. PERIODIC FORCING ing the additional contributions to the stress due to Brownian

' o ' rotation of the individual particles. Under a sinusoidally
If the external force is periodic, the dynamics and theyarying force field the Langevin equatié8) modifies to
rheology of the suspension considered here can in some . 1
u=QXu+ C[uX(E-u)]Xu+ ¢, "'mXH cog wt)Xu

33 ' . , +I'Xu, (10
wherew is the frequency of the external driver. The analysis
32 F in this section will be restricted to the case of slender rods
(fibers that correspond to the limit—«, so that the stress
31t coefficients take a particularly simple form. We choose a
' scaling that is appropriate to explore the system behavsor vi
a vis change in the Brownian flux, so time is scaled with
37 respect to the shear rate)( and force withyZ, , and write
- k=(mH/y{,)cost). In this setting, the Langevin equation
£ 29t (10) takes the following form in spherical coordinates:
s8 9=h,—sin gl (t) +coseT 5(1),
¢=h2—cot0cos¢F1(t)—sin¢cot0F2(t)+F3(t),
277 whereh; andh, are, as before, the deterministic parts given
by
26 Ff . .
h;=C sinf cosé sin ¢ cos¢ + (k; cosh cos¢
25 . : e +k, cosfsing—kzsing),
0.01 0.1 1 10 100 z $~kasing)
1-C
Pe h,=—C sir? ¢—<T)+(—klsin¢+kzcos¢)
FIG. 2. Plot of intrinsic viscosity z,] for dipolar suspensions for various
values of Pe, for spheroids of aspect ratio0.4, 1.0, and 1.6. Results for 1
k Il (0,1,9 (solid lineg andk Il (0,1,0 (dotted line$ are shown. Compare — |
with Fig. 3 of Strand and Kin{Ref. 4. siné
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1.54
1.52
_ 1.5 i
S i
— FIG. 3. A part of the time series of
1.48 [7,] for Pe=0.01, k;=ks=0, K,
) =0.1, andw=1.
1.46
1.44
22000 26000 30000
t
In the present scalinfj(t) satisfy(1) with D=D, /vy, which _ Oyx— R
we denote by B, so that BE=0 when Brownian motion is [72]= lim (@777)8
switched off. The evolution equatior8) for the tracer ori- ¢0 s
entations corresponding to the momefis) and(B,) now ~
become =3(uju3)+ 18 R(uyuy)
: Pe/ 4 6 Fe 1-C
6=h;+ A fzgkj&*@(flglﬁfzgz]‘) + < C((Zkjuj)uguy)+ 5 (ug)ky
J , 1+C
—fzgkjﬁl((flglﬁfzgzj) ; —| 5 [{unke|,
. I3e , J L Oxx— Ozz
¢=h— 1 flgijak(flglj"_fzgzj) [Tl]_<I|>ITO ony By
r—o
J ! ’ 3 2
—flgkjafgk(flglﬁfzgzi) : =3((uzuy) —(uyu,u3z))
The limiting values of the stress coefficients for the case of +18 R(u — u3) + 6 Pel (X kiuj)u3)
fibers, given in Table I, can be used to further simplify the — (S kU + K —k
expressions for the rheological parameters by taking advan- ((Zhaui)uz) +ka(uz) ~ke(up)],
tage of the following limits: -
* ks [ra)= im | 72 72|,
lim AyBy=3, lim CyBy=0, oo\ Psy
r—o r—o r—o
lim ByBy=0, lim FyBy=9. =3((uzu3) —(uzupu3))

r—o r—oo

+18 Ru2—ud) + 6 PH((Skuj)u’
Hence, by scaling each of the rheological parameters with Fe(Uz~ Ui3) + 6 PRt (X ki) uz)
By and taking a second limit as—«, we get —((Skju;)u3) + ks(ug) — kp(u,)].

. Oxy™ 775:)’) }
=|im||———|B
[ 7] [ T Doy H

V. ANALYSIS OF THE TIME SERIES

b—-0
r—o We generated a time series for each of the bulk suspen-
_ Pe sion parameters above over a period of 100000 dimension-
=3(u?u)+ 18 R(uu,) + C) less time units using the computational techniques developed
in the previous section and deleted the first 20000 data
1-C points to remove any transients. Figure 3 shows a part of the
X[ C{(Zkjuj)usuy) + 2)<U1>k2 time series corresponding to the set of paramekersks

=0, k,=0.10,w=1, and R=0.01 (weak diffusion), and it is
clear from the figure that the apparent viscosity exhibits per-
sistent temporal fluctuations. A detailed study of these fluc-

1+C
2

<U2>k1}
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Embedding dimension
FIG. 5. Fraction of false nearest neighbors as a function of the embedding

0 0.02 0.04 0.06 0.08 dimensionm for the [ 7,] series.

Frequency
FIG. 4. Plot of the power versus frequency[of,]. The figure is typical of ~ dimension, and in many cases the smallest integer greater
both chaotic and linear stochastic signals. than the correlation dimension is enough to fully embed the
attractor’®>’

Although the embedding theorems do not place any re-
tuations using the tools of nonlinear time series analysis magtriction on the choice of the time delay, in practice, the
reveal significant features of the dynamical system. A criticalchoice of both the time delay and embedding dimension is
review of the various topological and geometrical methoddmportant and may significantly affect the inferences derived
for analyzing nonlinear data can be found in Kaiftave  from reconstruction, particularly when the data come from
used the softwares TISEARand Chaos Data Analyzer Pro- experiment. Small delays lead to highly correlated vectors
fessional Version 2.1 of the Academic Software Library of ®(x(t)), while large delays yield vectors with more or less
the American Physical Society for performing the tests oruncorrelated components resulting in data randomly distrib-
the time series. uted in the embedding space. A first guess of the proper

Figure 4 plots the frequency decomposition of the sheachoice of the delay may be obtained from the autocorrelation
stress, which shows a broadband spectrum decaying expfnction of the sample data; the time at which the autocorre-
nentially with frequency. This is characteristic of both deter-lation attains its first zero, or its first local minimum, can be
ministic chaos and linear autocorrelated n¥is@and sug- taken as the optimal deldy.For our time series this value
gests a further analysis of the system. The first step in anwas aroundr=15 and we got topologically identical attrac-
such investigation is the characterization of the attractor, &ors for other choices of delay around this value. As for the
bounded subset of the phase space to which the system b@mbedding dimensiom, it should be large enough for the
havior eventually converges. This is usually done by reconattractor to fully unfold in the embedding space, but choos-
structing the attractor of the system from the time series usig too large anm may cause the various algorithms to
ing delay coordinates, a technique first suggested by Packatthderperforn?’ A commonly used method to estimate the
et al®* and successfully used by many others. The embedoptimal value ofm s the false nearest neighbor metri84?
ding theorems of Takefisand its extensiori®’ elucidate ~ which is based on the idea that a small valuenfowould not
the mathematical theory behind delay reconstructionunfold the true geometry of the attractor and there may be
Roughly, the embedding theorems assert that for determiniself-intersections leading to false neighbors. Figure 5 plots
tic systems, the dynamics of tmedimensional state vector the fraction of false neighbors as a function of the embed-
x(t) can be recaptured from the dynamics of the delay vecding dimensionm and yieldsm=3 as an optimal choice,
tors of a single scalar function of, y(t)=h(x(t)), under since form=3 the fraction of false neighbors become very
rather general conditions. The mapping, small. This means that the behavior of the system can be

eventually described by utmost three, independent coordi-

P = (1), y(t+7),..y(t+(m=1)7)), nates. Fi)g/ure 6 showsythe attractor reconst?ucted from the
which maps< to anm-dimensional delay vector with delay  time series of 7,] with m=3 andr=15. We experimented
is an embedding whem=2n+ 1. This means that most of with higher dimensions and various delays, but in all cases
the significant characteristics of the original system, both dythe attractor was found to be topologically identical to the
namical and geometrical, are carried over to the reconene in the figure. We note that there is a definite structure in
structed phase space in a one-to-one matéin particu-  the phase phase plot of the stress component.
lar, properties such as the fractal dimension, Lyapunov A quantitative measure of the structure and self-
exponents, and entropies are preserved under the reconstrgimilarity of the attractor is provided by various dimension
tion map® and can be computed from the mirror dynamical estimates such as the box-counting dimension, the Hausdorff
flow in the reconstructed space. There exist further generaldimension, etc. The correlation dimension, introduced by
zations that serve to reduce the bound on the embeddingrassberget Grassberger and Procacéfand others, is the
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S(e,m, An)

1.44

FIG. 6. Three-dimensional embedding of the attractdrpf] reconstructed 8 . ; . .
from the time series with delay 15 ama=3. 0 5 10 15 20 25

easiest to compute from a time series. The correlation dimerf='G. 8. The functionsS(e,m,An) vs An for various embedding dimen-
sion is estimated from the correlation Sl@(\e,N), which is sions. The curves are approximately linear with an overall slope of 0.04.
defined as the fraction of all possible pairs of points in the
attractor, which are closer than a given distaaée a given  dimensionality of the attractor, and a plateau for the scaling
norm:* exponent in the range 0s2%<0.6, suggesting a dimension
2 N equal to 2, approximately. Together with the presence of a
C(e,m)= m;l j:i2+1 O (e~ xi=x[), (11) definite structure in the attractor, this indicates that the ap-
parent dimension of the system, governed by a set of 100

where ©(x)=1 if x>0, O(x)=0 if x<0 andx(t) is the  pajrs of simultaneous equations, is far less than the number
mrdimensional vector of time-delay coordinates. The correyf degrees of freedom.

lation dimension is then given by An interesting feature of some dynamical systems is
~ 9InC(e,m) their sensitive dependence on initial conditions, meaning that

D= IImT, trajectories that start from neighboring initial conditions may
€0 diverge exponentially over time. An aperiodic bounded sys-

when m is sufficiently large. The scaling exponent tem having this property is termed a chaotic system. The
In C(e,m)/In € typically increases withm and saturates to a Lyapunov exponents quantify the average rate of divergence
final value for sufficiently largen, which is then taken as an Or convergence of nearby orbits, and the existence of a posi-
estimate foD. In practice, the values IG(e,m)/In e are plot-  tive Lyapunov exponent is one of the most striking signa-
ted againsk for variousm and the value corresponding to a tures of chao$?** Lyapunov exponents describe the long-
plateau in the curves is identified as an approximatioB.to term behavior of nearby trajectories and are invariant under
In calculations, however, one has to be careful that the surimooth transformations of the attractor; hence they are pre-
in Eq. (11) is not biased by temporal correlations, that is, theserved under delay reconstruction. We used the Kantz
spatial closeness of the points appearing in @4) is not algorithn?®“*to estimate the maximum Lyapunov exponent.
due to their being temporally clo4&This is done by exclud- This proceeds by computing the sum

ing from Eq.(11) the pairs of points that are closer in time by S(e,m,An)

less than arheiler window which is approximately equal to

the product of the time lag between the points and the em- 1
bedding dimensiof® In our calculations we used 50 as a N 2—1 In (U )] x5
Theiler window. Figure 7 plots the correlation su@6e, m) o™ Mo’ ! Xn €U 0ng)
obtained with these choice of parameters, which shows #or a pointx, of the time series in the embedded space and
convergence of the curves for largar an indication of low  gyer a neighborhoodﬂ(xno) of Xn, with diametere. If the

plot of S(e,m,An) againstAn is linear over smalAn and

for a reasonable range ef and all have an identical slope

for sufficiently large values of the embedding dimension

then that slope can be taken as an estimate of the maximum

Lyapunov exponer® For our time series, Fig. 8 shows that

S(e,m,An) increases linearly witlAn and that the slope is

roughly independent of the embedding dimensiofor large

m. An approximate estimate for the maximum Lyapunov ex-

ponent as obtained from the figure is 0.04. These evidences

: : show that the dynamics of the stress componei(visakly)

0 002 004 006 008 0.1 chaotic in the range of parameters considered and that the
€ system has a low-dimensional chaotic attractor in this case.

FIG. 7. Plot of INC(m,e)/In € vs e. The convergence of the curves for large The response of the system to variations in the strength

m indicates low dimensionality. of the force field, with the field orientation kept unchanged,

N

|Xn +An~ Xp +An| ’
0 0

InC(m,e)/Ine
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z(t = 37) s

FIG. 9. Three-dimensional embed-
(a) (b) dings of the attractor reconstructed
from the time series of »,] for Pe
=0.01,k;=k3=0, and various values
of k,; (8 k,=0.3, (b) k,=0.42, (¢
k,=0.5, and(d) k,=1.0.

are plotted in Figs. @—-9(d). Shown in the figures are the the weak diffusion regime also, as we have demonstrated
three-dimensional embeddings of the attractor of the systerabove, and we expect the system to revert to regular behavior
for certain increasing values &%, viz., k,=0.3, 0.42, 0.5, when the diffusion gets stronger. This is illustrated by Figs.
and 1.0, respectively. For other valueskgfin the range we 10(a)—10(c), plotting the three-dimensional embeddings of
got attractors that are topologically identical to the ones irthe attractors corresponding t@+0.0, 0.1, and 1.0.
the figures. This suggests that the system takes a quasiperi- We note that all the above results pertain to the region of
odic route to chaos as the parameétgis decreased from 1.0 small Brownian motion, where the solution of the Fokker—
to 0.1. Planck equation becomes otherwise intractable. In the limit
The flow parametety tends to drive the particle distri- of weak diffusion, the diffusion equation changes from a
bution to an anisotropic state, which is either complementedecond-order partial differential equation to a first-order par-
or opposed by the interaction of the imposed force field, andial differential equation and the fundamental character of the
the interplay between these forces can lead to chaotic fluequation changes from a diffusion equation type to a Liou-
tuations, both in the dynamics and in the rheology, in theville type. In perturbation methods, this often leads to a
absence of diffusioh’'® The Brownian parametdd, has a  breakdown of the regular perturbation and requires a singular
smoothing effect on the distribution and tends to drive theperturbation to be used. This usually means sharp gradients
system to an isotropic equilibrium. It is, therefore, interestingin the solution that are normally difficult to handle. The
to observe that the bulk system response can be chaotic lreangevin equation method is more preferable in this case

z(t—3r)
0.18
0.1
0.26
z(t —27)

FIG. 10. Three-dimensional embed-
dings of the attractor reconstructed
from the time series of »,] for k,
=0.1, k;=ks=0, and various values
of Pe; (a) Pe=0.0, (b) Pe=0.1, and(c)
Pe=1.0.

0.805
z(t — 27)

0.8 0.77

z(t —T1)

()
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0.4 . - : weak diffusion when the external force is periodic, but a
03 | dominant Brownian motion or stronger force field tend to
02 | drive the system to regular behavior. The attractor in this
) case is low dimensional, showing that the system can be
. 01y eventually described by a few independent coordinates.
& 0r One advantage of the method presented in this paper is
01t that it picks up possible complexities in the dynamics of the
BB By ] bulk properties, such as the existence of subharmonic fre-
-0.2 P :;:,';393‘0&“@ . itive d d f1h behavi
R it gggnues olr.sensmv.e epen enceq t g;ystem e a_vlor on
03] - initial conditions, which may not be identifiable in the diffu-
-0.4 ' : : : sion equation approach. The important implication of this
142 144 146 148 1.5 1.52 observation is that systems which are in some sense gov-
[72] erned by the Fokker—Planck equation can show chaos in
averages, and hence this system could become an important

FIG. 11. Poincaresection of the attractor X for Pe=0.01, k . . . .
~0.1,k,=ky=0. @r21%[7] 2 physically realizable system to determine the conditions un-

der which chaos in microscopic dynamics can result in chaos
in macroscopic averages. It can also be applied to a wider

since, together with the paired-moment scheme for generatange of system parameters, unlike in the diffusion equation

ing moments, it works well even when diffusion is weak andmethod, which requires, for better accuracy, a change in the

is capable of capturing possible complex behaviors of thétrategy as the parameters are charfgétds also possible to

system which methods based on singular perturbations ma§xtend the technique to more general systems, e.g., the sus-

not be able to pick up. pension of charged fibeféwhich requires only an appropri-
Another important point to note is that the chaotic be-ate modification to Eq(3).

havior of the rheological parameters could not have been
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