
 1

Eight National Conference on

Air Breathing Engines and Aerospace Propulsion

[NCABE –2006]

DIAT Pune

December 12 –14, 2006

PARALLELIZATION OF A TURBOMACHINERY

FLOW CODE ON NAL’S FLOSOLVER PARALLEL

COMPUTER

R.Prathapanayaka*, T.N.Venkatesh
#
, T.R.Shembharkar*

*Scientist, Propulsion Division, NAL, Bangalore – 560 017

#Scientist, Flosolver Division, NAL, Bangalore – 560 017

nalprathap@yahoo.com, tnv@flosolver.nal.res.in, trshembharkar@prop.cmmacs.ernet.in

ABSTRACT

A 3-D CFD flow code for multi-stage turbomachinery flow computation, namely the Dawes code

‘un_b3d_ke’ has been parallelized on the NAL Flosolver parallel computer Mk5 using MPI libraries. The

parallelization has been effected employing very basic MPI subroutines. The parallel code performance

has been tested for a high pressure ratio fan stage and a 3-stage compressor flow simulations and the

results have been compared with the sequential code results. It is found that the time taken by the parallel

code for the computation is substantially reduced.

KEY WORDS: TURBOMACHINERY CFD, PARALLEL COMPUTERS, PARALLELIZATION.

1. INTRODUCTION

Complex 3-dimensional flow simulation in multi-stage turbomachines continues to be a time

consuming exercise as a large number of grid points are generally required for accurate flow resolution.

There is always a need to reduce the turn-over time especially when such flow simulations are required in

large numbers in order to investigate the complete performance characteristics or optimize a new blade

design. One of the possible methods to reduce the computational time of an existing CFD code, without

modifying the solution algorithm, is to parallelize the code. The Propulsion Division, NAL has been

using the Dawes code ‘un_b3d_ke’ for simulating multi-stage turbomachinery flows for quite some time

[1-3]. It is a 3-dimensional Navier-Stokes flow solver based on structured H-mesh. It employs the k-ε

turbulence model to simulate the turbulent flow. The salient features of the in-built numerical algorithm

are: cell-centered finite volume formulation, central differencing for fluxes, artificial viscosity for

stability and fourth order Runge-Kutta scheme for time marching. This sequential code has been

parallelized recently on a NAL Flosolver parallel computer Mk5. The Flosolver Mk5 machine is built by

the Flosolver Division, NAL and has 32 processors. This machine is a distributed memory system [4];

each processor is having 1GB memory. MPI (Message Passing Interface) libraries [5] are loaded on this

machine for message passing.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Aerospace Laboratories Institutional Repository

https://core.ac.uk/display/11874546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

The present paper describes some relevant details about the methodology of parallelization and

discusses the performance of the parallel code vis-à-vis the sequential code with regard to two test cases;

one a high pressure ratio fan stage and second a 3-stage axial flow compressor.

2. TURBOMACHINERY CFD CODE ‘UN_B3D_KE’

The CFD code ‘un_b3d_ke’ is a 3-dimensional Navier-Stokes flow solver specifically written for

turbomachinery flows. It is based on cell centered finite volume formulation with structured H-mesh in

cylindrical-polar (r-θ-x) coordinate system. It solves the conservation equations in a rotating frame of

reference with absolute velocity components as dependent variables. It employs the k-ε turbulence model

to simulate the turbulent flow. It uses central differencing for fluxes with artificial viscosity for numerical

stability and fourth order Runge-Kutta scheme for time marching. The code has been written in

FORTRAN 77 language.

2.1 IMPORTANT SUBROUTINES OF THE PROGRAM

The original sequential code has 15 subroutines, out of which the following subroutines are

important for the purpose of parallelization.

1. MESHGEN: grid generation.

2. SOLVER: 4th order Runge-Kutta time integration, central differencing for fluxes.

3. AREAS: volume and face areas of the cell calculation.

4. AV: artificial viscosity terms calculation.

5. NS: viscous stress terms calculation.

6. DELTAT: time step calculation.

7. DELTAU: calculation of changes in variables due to time step.

8. MODFLX: Modification of fluxes at solid boundaries.

2.2 TIME TAKEN BY THE SUBROUTINES

In order to profile the sequential code on the basis of CPU/system time requirement, a representative

flow computation in a single stage axial flow compressor was carried out for a fixed number of iterations.

The relative CPU/system time (in percentage) taken by major subroutines are tabulated below (Table-1).

The MESHGEN and AREAS subroutines are called once and require little time, hence they may be left

unmodified. The subroutines SOLVER, AV, NS, DELTAT, MODFLX and DELTAU are good

candidates for parallelization.

 Table – 1 Time taken by some of the subroutines

No Name of subroutine Time taken in %age

1 MESHGEN 00.08

2 SOLVER 36.00

3 AREAS 00.03

4 AV 13.31

5 NS 08.35

6 DELTAT 02.56

7 MODFLX 10.34

8 DELTAU 23.35

9 Other sub routines 05.98

 3

3. FLOSOLVER Mk5

Flosolver Mk5 machine has been built by the Flosolver Division, NAL. The main features of this

machine are as follows,

1. 32 processors

2. Intel Pentium III@ 450 MHz speed

3. 1GB RAM / Processor

4. Connectivity: NAL flow switch & Ethernet.

5. Linux operating system

6. Loaded with MPI libraries

7. Distributed memory system [4].

As this machine contains 32 processors, the parallel version of the ‘un_b3d_ke’ code is expected to

be of great use in terms of time saving. The machine is of distributed memory (each processor has

memory which is accessible only by itself) type and parallelization of the sequential FORTRAN code is

done using MPI libraries.

4. GENERAL PRINCIPLES OF PARALLELIZATION

The general steps required for parallelization of a sequential code can be broadly listed as follows

[4]:

1. Finding parallelism in the sequential code.

2. Profiling the code in terms of CPU/system time requirement of each part of the sequential code.

3. Dependency study to identify parts of the code, which are independent/dependent of each other.

4. Division of the task such that each independent task could be assigned to different processing unit.

5. Identification of variables to be communicated among different tasks.

6. Sequential code modification using the MPI library.

The parallelization is based on the domain decomposition method. Here the computational task is

subdivided into subtasks for different processors by dividing the domain based on number of processors.

The implementation uses single process multiple data (SPMD) model of programming where the same

source code is compiled and executed in each processor. The necessary communication and exchange of

data between the processors is ensured by the MPI library routines.

5. PARALLELIZATION OF ‘un_b3d_ke’

The process of parallelization of an existing sequential code on a given machine is strongly

determined by the algorithm and structure of the code. A CFD code like the one under consideration,

namely ‘un_b3d_ke’ which is based on an explicit formulation is intrinsically suited to efficient

parallelization.

The code ‘un_b3d_ke’ is a 3-dimensional multi-stage turbomachinery CFD code. A typical

computational domain for turbomachinery problem is shown in Figure 1. Its 3 dimensions are identified

by blade-to-blade or circumferential (I-index), inlet-to-outlet or axial (J-index) and hub-to-casing or radial

(K-index) directions. In a general axial turbomachinery CFD calculation, the number of grid points will

be more in axial (J) direction because of multiple blade rows. Therefore, it is more meaningful to divide

the computational domain in axial direction. In the code ‘un_b3d_ke’, the axial index J (for cells) starts

from 1 and ends at JMM1. By dividing the axial index JMM1 by the number of processors, the length of

the subtask for each processor has been calculated. The other two directions (I & K) have been kept same

as the sequential code. As the code employs 5-point computational stencil (in one direction) for certain

quantities (artificial viscosity terms), it needs at least J-2, J-1, J, J+1, and J+2 data values. The subtask

assigned to each processor is, therefore, not completely independent data-wise but requires data from an

adjacent processor. Actually, a particular processor must receive 2 rows (2-dimensional planes) of data

J+1 and J+2 from the next processor and must send 2 rows of data J-1 and J-2 to it. Figure 2 shows this

inter-dependence of data schematically. It is this communication of data, which is accomplished by

introducing MPI library in the sequential code.

 4

Message Passing Interface (MPI) library has more than 115 routines for creating and maintaining

MPI environment and facilitating message passing. We have used a limited number of basic MPI routines

and also combined them according to the requirement in separate user-defined subroutines to be called in

the code.

To start the process of parallelization, a MPI environment is created right in the MAIN of the code.

As noted above, the subroutines MESHGEN and AREA do not need parallelization as they are called

only once and take relatively little time for execution. Therefore, each processor executes these

subroutines and has geometrical information about the grid in its own memory. The subroutines

SOLVER, AV, NS, DELTAT, MODFLX and DELTAU are good candidates for parallelization. To

parallelize these subroutines, we need to identify all the do-loops on J index and change the beginning

and ending J index values to corresponding values of the domain assigned to each processor. All the

processors thus perform the computations in parallel. But during this process, a processor (say, 1) needs

some data (J+1, J+2) from adjacent processor (say, 2) and processor 2 needs some data (J-1, J-2) from

processor 1 for carrying out the computations. In an explicit code like ‘un_b3d_ke’, this needed data is

from previous sweep (each intermediate step of R-K method loop) and therefore can be transferred from

neighboring processors before this sweep starts. All the processors can then carry out computation in

parallel independent of each other. This is the strategy that has been followed here.

The data transfer has been done by introducing separately written subroutine IPCS which utilizes

the very basic point-to-point communication routines MPI_SEND and MPI_RECV, and collective

communication routine MPI_BCAST. It transfers the data (2 J planes) to an adjacent processor. The

whole parallelization of the code has been accomplished with the help of these basic MPI library routines.

6. RESULTS & DISCUSSION

Two compressors, a single stage high pressure ratio fan [6] and a 3-stage compressor were tested to

check the performance and validity of the parallel version of the ‘un_b3d_ke’ code in 1, 2, 4 and 8

processors mode and results were validated with the sequential version of the code. Due to constrain on

the length of the paper, we will restrict our discussion to the first case, namely the fan stage. The high

pressure ratio fan stage (NAL-CAE) was designed and developed under a joint programme between

Chinese Aeronautical Establishment (CAE), China and National Aerospace Laboratories (NAL),

Bangalore, India [6]. This fan is a single stage axial flow compressor with a pressure ratio of 2.0.

Flow computations were carried out with both sequential and parallel versions of the code

‘un_b3d_ke’. The grid for the complete fan stage was 33 (radial, index K) x 376(axial, index J) x 33

(tangential, index I) as shown in Figure 1. The boundary conditions for the computations included total

pressure, total temperature, and flow angles at inlet, static pressure at exit tip with radial equilibrium

condition, no slip condition at walls and periodic condition in tangential direction. The frozen rotor

model was used to simulate the interface between the rotor and the stator. The solutions for different

back pressures were obtained starting from the nearest lower exit static pressure solution. Complete

performance curves at the design speed of 22400 rpm for the fan were obtained.

Figures 4 shows the performance map obtained from the sequential code and the parallel code (with

8 processors) respectively for the high pressure ratio fan. There is total agreement in the two results.

Similarly the two Mach number distributions at the same location shown in Figure 3 are similar to each

other. These results confirm the correctness of the parallelization process and validate the parallel version

of the code. The performance of the parallel code can be ascertained from the following two figures.

Figures 5 shows the speed-up due to number of processors with reference to the single processor. It

indicates the computational time required for convergence has reduced considerably. The speed-up with

2 processors is 1.875, with 4 processors 3.173 and with 8 processors 4.94. Ideally, the speed-up should be

linear but in practice it is not obtained due to increased data transfer overhead in the parallel code. The

corresponding parallelization efficiency values for the parallel code are 93.75%, 79.33% and 61.75%.

Similar comparative exercise was carried out with the 3-stage axial flow compressor. Computations

were carried out with 33x331x33 grid size. The speed-up for the parallel code with 2 processors is 1.846,

 5

with 4 processors 3.1566 and with 8 processors 4.584. The corresponding efficiency values are 92.32,

78.91 and 57.3 respectively in this case.

7. CONCLUSIONS

Turbomachinery CFD code ‘un_b3d_ke’ is being used at Propulsion Division, NAL for quite some

time. This code has been parallelized successfully to get the advantage of reduction in computation time.

Parallelization of the code ‘un_b3d_ke’ has indeed been a rewarding exercise. The parallelization has

been done using domain decomposition technique and standard MPI libraries have been used for message

passing. The domain decomposition is done based on number of processors. This makes the

parallelization general and this parallelized code can be used in any standard parallel computer.

The parallel version has been tested for two compressors; a single stage compressor and a multi-

stage compressor. The performance of the parallelization is satisfactory, as time taken for obtaining

solution has come down substantially. Using this parallelized code on Flosolver Mk5 machine, complex

multi-stage turbomachinery flow computations can be successfully carried out within a decent practical

time frame (say, within a day) by using 4 to 8 processors. The parallelization has not affected the

accuracy of the solution obtained by the code. Parallel version results agree very well with the sequential

code results for both single stage and multi-stage compressors.

It is however observed that the efficiency of the parallel code comes down with higher number of

processors even though the computation time continuously decreases. The best choice of number of

processors for a particular problem may be a compromise between desired speedup and efficiency.

I

K I

J

K

J

Fig. 1. Typical grid and grid indices for flow computation

 6

Fig. 2. Communication between processors.

(Pe-Processor, JB- Beginning J, JE-Ending J)

Pe2 Pe1

Pe2

Sequential code Parallel code (8 Processors)

Fig. 3. Mach number contour on a K-plane (casing)

 7

Fig. 4. Performance maps of the single stage fan

(a) Pressure ratio Vs. Mass flow (kg/s) (b) Efficiency (%) Vs. Mass flow (kg/s)

pressure ratio

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

14 15 16 17 18 19 20 21

mass flow (kg/s)

p
re

s
s
u

re
 r

a
ti

o

sequential

parallel

speed up of parallel code un_b3d_ke

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Number of Processors

S
p

e
e
d

u
p

ideal
actual

speedup efficiency

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

Number of Processors

P
a
ra

ll
e
li
z
a
ti

o
n

 E
ff

ic
ie

n
c
e
y
 (

%
)

Efficiency

70

75

80

85

90

95

100

14 15 16 17 18 19 20 21

mass flow (kg/s)

E
ff

ic
ie

n
c

y
 (

%
)

sequential

parallel

(a) Speed-up Vs. Number of processors (b) Parallelization Efficiency Vs. Number of processors

Fig. 5. Performance of the parallel code (Single stage fan computation)

 8

REFERENCES:

1. R.Prathapanayaka, T.R.Shembharkar, “CFD analysis of Kaveri 3-stage fan and performance evaluation”,

NAL Project Document PD-PR-0210, December 2002.

2. S.Sangamnath, T.R.Shembharkar, “CFD flow analysis of axial flow compressor stage with different tip

clearances”, NAL Project Document PD-PR-0309, October 2003.

3. S.Sangamnath, T.R.Shembharkar, “CFD flow analysis of NAL-CAE fan stage with re-stacked rotor

blade”, NAL Project Document PD-PR-0310, October 2003.

4. T.N.Venkatesh, “Parallel programming using MPI/Shared memory”, High Performance Computing, NAL-

UNI Lecture Series #16, December 2000.

5. MPI-forum, http://www.mpi-forum.org

6. Chen, M.Z., Xu Liping, M.V.A.Murthy, M.Jayaraman, B.R.Pai, R.Prathapanayaka, 2001, ‘Development of

an advanced high pressure ratio transonic fan stage, Part – I: Design and analysis’, Proceedings of Fifteenth

International Symposium on Air Breathing Engines, Bangalore, India.

