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Fusion of IRST and Radar Measurements for 3D Target Tracking

V P S Naidu, Member

Two different types of measurement fusion methods for fusing IRST (infrared search and track) and radar

measurements to track a target in 3D Cartesian coordinates are evaluated and discussed in this paper.

Performance evaluation metrics were provided to evaluate the tracking algorithm. It was observed that both

the fusion algorithms are performed alike. Proof was provided to show that both the methods are functionally

similar.
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NOTATION

F : state transition matrix

G : process noise gain matrix

H(k) : linearized measurement matrix at time index k

K(k) : Kalman gain at time index k

: estimated state error covariance matrix

: predicted state error covariance matrix

Q : process noise covariance matrix

rm : range, m

Rir : IRST measurement noise covariance matrix

Rrd : radar measurement noise covariance matrix

S : innovation covariance matrix

v(k) : measurement noise at time index k

w(k) : process noise at time index k

: estimated state vector

: predicted state vector

zm
ir(k) : IRST measurement at time index k

zm
rd(k) : radar measurement at time index k

: predicted measurement

AE : absolute error

MAE : mean absolute error

MVF : measurement vector fusion

NEES : normalized estimation error square

NIS : normalized innovation square

PFE : percentage fit error

RMSE : root mean square error

RSSE : root sum square error

ϕm : elevation in radiance

θm : azimuth in radiance

INTRODUCTION

Modern fighter aircraft are well equipped with variety of

sensors in order to assist the pilot. If these sensors are

perfect, then the target tracking could be achieved by simple

geometry. In reality, sensors are not perfect and their

measurements are corrupted with noise. Moreover, single

sensor may not provide all information about the target.

Hence, tracking filters and multi-sensors are used to increase

the target tracking capabilities. Generally, radar and infrared

search and track (IRST) sensor are used in cockpit for

providing target information.  Radar can measure azimuth,

elevation and range to a target. It can measure range with

good resolution, but the angular measurements with good

resolution are not possible. Radar provides sufficient

information to track the target, since, it measures both

angular and range to a target. The uncertainty associated

with radar might be represented as a volume whose

dimensions are relatively large perpendicular to the measured

line of sight and small along the line of sight. An IRST sensor

can measure azimuth and elevation of a target with good

resolution. It can provide only the direction to a target but

not its location because it does not provide the range. The

uncertainty associated with IRST might be represented as

a square whose dimensions are comparatively small

perpendicular to the measured line of sight. From fusion of

radar and IRST measurements, it has been observed that

the resultant uncertainty of the estimated position of the

target is smaller than the uncertainty of the either

measurements alone1-3.

This paper deals with tracking of target in 3D Cartesian

coordinates using the measurements from radar and IRST

in polar coordinates. 3D target tracking with IRST and radar
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measurements can be achieved either by state vector fusion

or measurement fusion. In this paper, two measurement

fusion methods are presented and evaluated with simulated

data. In first method (MVF1), the measurements from IRST

and radar are merged into an augmented measurement vector

and in the second method (MVF2), the measurements from

IRST and radar are combined by using minimum mean square

estimates4. Extended Kalman filter is used to estimate the

state of a target using target motion and measurement

models5. The performance of tracking algorithms are

evaluated in terms of percentage of fit error (PFE), mean

absolute error (MAE), root mean square error (RMSE), root

sum square error (RSSE), normalized estimation error square

(NEES) and normalized innovation square (NIS).

MEASUREMENT FUSION

The two different measurement fusion algorithms are

described here. The information flow diagram is shown in

Figure 1.

MVF1

In this technique, the measurement vectors zm
ir(k) and

zm
rd(k) from the IRST and radar, respectively, are merged

into an augmented measurement vector as

(1)

where

and

Similarly, the observation matrices of IRST and radar are

merged into an augmented observation matrix as:

(2)

The measurement noise covariance matrix of IRST and radar

are merged as:

(3)

where

and

MVF2

In this technique, weighted combination of measurements

based on minimum mean square estimation is considered.

The fused measurement vector is computed as:

(4)

where c1 and c2 are the weights.

The weights in equation (4) are computed from the

measurement noise covariance matrix as:

 and (5)

The final form of measurement fused vector is:

or

(6)

      (7)

Figure 1 Information flow diagram measurement fusion and
tracking
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The associated measurement noise covariance matrix (R)

of the fused measurement vector [equation (6)] is computed

as follows.

(8)

or

(9)

(10)

EXTENDED KALMAN FILTER

A general motion model used in discrete extended Kalman

filter1,5 for target tracking is

(11)

(12)

where X(k) is the state vector; F, the state transition matrix;

and G, the process noise gain matrix. The process noise

w(k) and the measurement noise v(k) are zero-mean,

mutually independent, white, Gaussian with covariance Q

and R, respectively. z(k) is the measurement vector at time

k and h(X(k)) is a non-linear function of the states computed

at time k.

Linear Kalman filter could be used for target tracking if the

states and the measurements are in Cartesian coordinate

system. Radar and IRST provide the measurements in a

spherical coordinate system. In most cases the state vector

could be estimated in Cartesian coordinate system.

Equation (12) is non-linear and it needs to be linearized to

fit into the Kalman filter framework entailing the use of

extended Kalman filter (EKF).

Time Propagation

The state and state covariance matrix at time (k – 1) are

predicted to time k as follows:

(13)

where is the estimated state vector; , the estimated

state covariance matrix; , the predicted state; and ,

the predicted state covariance matrix.

Measurement Update

Innovation

(14)

Innovation covariance

(15)

where is the predicted measurement; and H(k),

the linearized measurement matrix. The measurement update

part consists of the following equations.

Filter gain

(16)

Updated state

(17)

Updated state covariance

(18)

Predicted Measurement and Linearized
Measurement Matrix

Partial derivative method is used to compute the linearized

measurement matrix. Consider the state vector consisting

of position, velocity and acceleration components in x-, y-

and z-directions as

(19)

The predicted state is in the form

(20)

The predicted measurement of fusion1 is

(21)

The predicted measurement of fusion2 is

(22)

Components in the predicted measurement are computed
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from the predicted state vector given in equation (20).

(23)

Finite Difference Method

Calculation of linearized measurement matrix can be

accomplished by the finite difference method. This method

is generalized and flexible2,6.

  (24)

where i is 1,2,..., length of the measurement vector and

j, 1,2,..., length of the state vector and ∆xj , the perturbation

step size.

For small perturbation ∆x in each of the unknown variables,

the perturbed value h i (x j + ∆x j) is computed. The

corresponding elements of Hij are given by the finite difference

in the function [equation (24)] to changes in that state. In

general, a perturbation step size of 10–7 is considered to be

adequate.

RESULTS AND DISCUSSION

The tracking algorithm using MVF1 and MVF2 is evaluated

using some numerical simulated data.

Numerical Simulation

Ground truth target trajectory with position, velocity and

acceleration components in each of the three Cartesian

coordinates x, y and z-axis using the three-dof kinematic

model are simulated to test the performance of the

algorithms. The following parameters are considered in the

simulation.

Sampling interval T, s : 0.25

Process noise variance σ2
w : 1e-6

Measurement noise variance :

Sensor Azimuth, rad Elevation, rad Range, m

IRST 1e-6 1e-6 –

Radar 1e-4 1e-4 10

Duration of simulation, s : 125

The simulated true and noisy measurements of radar (right

half) and imaging (left half) sensors are shown in Figure 2.

Initial state vector is

The initial state vector to initialize the tracking filter is

(25)

where  is the initial estimated state vector at scan number

one; and Xt, the true state vector at scan number one.

The initial state error covariance matrix to initialize the

tracking filter is

(26)

The filter performance is checked by computing7 the

following:

The percentage fit error (PFE) in x-, y- and z-positions

,

similarly for y- and z-positions (27)

Root mean square error in position

(28)

Figure 2 True and noisy measurements of IRST and radar
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normalized innovation square (NIS) are shown in Figure 5(a)

and Figure 5(b), respectively. One can notice that NEES is

outside the bounds and NIS is within the bounds. This

indicates that compared to the filter calculated covariance,

the state estimation errors are inadmissibly large. Thus, the

filter is inconsistency in this case. It is concluded that large

number of Monte Carlo simulations is required for consistency

check to reach the meaningful result that is statistically

stable.

The state errors in x-, y- and z-accelerations with theoretical

bounds is shown in Figure 6. It is observed that all these

errors are within the bounds show the filter robustness.

Similarly, the state errors in x-, y- and z-positions and

velocities are within the theoretical bounds. The innovation

sequence with theoretical bounds is shown in Figure 7. It is

observed that the innovation sequence is within the bonds

that shows filter robustness.

The percentage fit error in x-, y- and z-positions, velocities

and accelerations are given in Table 1. These values are

Root sum square error in position

(29)

Absolute error in (AE) x-, y- and z-positions

,

similarly for y- and z-positions (30)

Mean absolute error in x-, y- and z-positions

,

similarly for y- and z-positions (31)

State error (X – ) with theoretical bounds of      (32)

Innovation sequence  with theoretical

bounds of S2± (33)

Normalized estimation error square 

with theoretical bounds (34)

The lower bound is (34(a))

The upper bound is (34(b))

where degree of freedom p is NXNMCS; NX is the number of

elements in the state vector; NMCS , number of Monte Carlo

Simulations; and χ, the chi-square operator.

Normalized innovation square ϑS–1ϑTwith theoretical

bounds. (35)

The computation of bounds is similar to equations (34(a))

and (34(b)), except p = NZNMCS, where NZ, the number of

elements in the measurement vector.

The root sum square errors in position (RSSPE), velocity

(RSSVE) and accelerations (RSSAE) are shown in Figure 3.

It is observed that the errors are small and settled down

after a filter learns the dynamics. It is also observed that

both the fusion algorithms show the similar performance.

Absolute errors in x-, y- and z-positions are shown in Figure 4.

It is observed that the errors are small and both the fusion

methods show similar results. Similar observation is seen

in x-, y- and z-velocities and accelerations.

The normalized estimation error square (NEES) and

Figure 3 Root sum square errors in position, velocity and
acceleration
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Figure 4 Absolute error in x-, y- and z-positions
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within the limits. The mean absolute error in x-, y- and z-

positions, velocities and accelerations are shown in Table 2.

Root mean square error position (RMSPE), velocity

(RMSVE) and acceleration (RMSAE), mean normalized
estimation error (MNEES) and mean normalized innovation

square (MNIS) are shown in Table 3. The MNEES is not

equal to the length of the state vector. This indicates that

filter is not consistency in this case. The MNIS is equal to

the length of the measurement vector. It is concluded that

large number of Monte Carlo simulations is required for

consistency check to reach the meaningful conclusion. From

Figures 3 to 7 and Tables 1 to 3, it is observed that both

fusion methods are performed alike.

PROOF TO SHOW MVF1 AND MVF2 FUNCTIONAL
SIMILARITY

It is sufficient to check whether the terms K(k)H(k) and

K(k)zm(k) in MLF1 are functionally equivalent to those terms

in MLF2, in order to demonstrate the functional equivalence

of the two measurement fusion methods8. Figure 8 shows

some of the elements in the product of K(k)H(k). Figure 9

Figure 5(a) Normalized estimation error square
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Figure 5(b) Normalized innovation square

N
IS

N
IS

7

6

5

4

3

4.5

4

3.5

3

2.5

2

MVF1
--- Lower bound
--- Upper bound

   IIIS

MVF2

20 40 60 80 100 120

Time, s

20 40 60 80 100 120

Figure 6 State error in x-, y- and z-accelerations with theoretical
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Table 2 MAE in x-, y- and z-positions, velocities and accelerations

MAEx MAEy MAEz x&MAE y&MAE z&MAE x&&MAE y&&MAE z&&MAE

MVF1 1.004 1.005 0.379 0.078 0.089 0.029 0.005 0.004 0.001

MVF2 1.004 1.005 0.379 0.078 0.089 0.029 0.005 0.004 0.001

Table 3 Root mean square position, velocity and acceleration

RMSPE RMSVE RMSAE MNEES MNIS

MVF1 1.101 0.117 0.009 7.7 4.978

MVF2 1.101 0.117 0.009 7.7 2.986

Table 1 PFE in x-, y- and z-positions, velocities and accelerations

PFEx PFEy PFEz x&PFE y&PFE z&PFE x&&PFE y&&PFE z&&PFE

MVF1 0.65 0.096 0.436 0.319 0.603 2.319 2.435 2.913 18.316

MVF2 0.65 0.096 0.436 0.319 0.603 2.319 2.435 2.913 18.316

Figure 7 Innovation sequence with theoretical bounds
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shows the elements in the product of K(k)zm(k). It is observed

that both fusion methods are alike. From the Figure 8 and

Figure 9, it is concluded that both MVF1 and MVF2 are

functionally equivalent.

CONCLUSION

Two different types of measurement fusion methods for fusing

IRST and radar measurements to track a target in 3D

Cartesian coordinates have been evaluated. Performance

evaluation metrics were provided to evaluate the tracking

algorithm. It was observed that both fusion algorithms are

performed alike. Proof was provided to show that both

methods are functionally similar.
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Figure 9 Elements of Kzm
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Figure 8 Elements of KH
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