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Abstract 

 

Masreliez filter which is a Kalman type of recursive filter 

is implemented and validated. The main computation in 

Masreliez filter is to evaluate the score function which 

directly influences the estimates of the target states. Scalar  

approximation for score function evaluation is extended to 

vector observations, implemented and validated. The 

simulation studies have shown that the performance of the 

Masreliez filter is relatively better than that of the 

conventional Kalman filter in the presence of significant 

glint noise in the observation. 

 

Keywords: Target tracking, Glint noise, Kalman filter, 

Masreliez filter, Score function 

 

1 Introduction 

 

It is well known that Kalman filter gives optimal 

solution when the various uncertainties such as process 

noise and measurement noise are Gaussian. But the same 

filter gives sub-optimal solution when the uncertainties 

are non-Gaussian. In radar tracking system, 

measurement noise often shows non-Gaussian 

distribution due to random wandering of the apparent 

measured position of a target due to interference of 

reflections from different elements of the target. This is 

referred to as the glint noise. Filtering in non-Gaussian 

environment has been studied by many researchers. 

Masreliez[1] introduced a nonlinear score function as the 

corrective term in the state estimation and the results are 

often nearly optimal.   

 

However, the implementation of score function is 

difficult except for simple cases. Wu[2,3] developed an 

efficient approximation method for score function 

evaluation. This method employs an adaptive normal 

expansion to expand the score function and truncates the 

higher order terms in the expanded series. It is shown in 

[2] that the approximation is satisfactory and the method 

is simple and practically feasible. However, the approach 

developed in [2] is easy to implement for the scalar 

observation and often one has to handle vector 

observation in radars.  

In this paper, the approximate score function evaluation 

method mentioned in [2] is extended to radar vector 

observation. Two cases are considered for validation. In 

the first case, the state model is proposed in cartesian 

coordinate frame and the observations are developed into 

three independent components by converting range, 

azimuth and elevation (    ,  , ) into position in 

respective cartesian axis using standard relations. In the 

second case, the state model is proposed directly in the 

polar frame with the three linear independent 

observations    ,  , . By doing so, the scalar function 

approximation scheme proposed in [2] can be applied. 

 

2 Glint Noise Generation 

 

In radar target applications, the observation noise often 

is non-Gaussian. Changes in the target aspect with 

respect to the radar can cause the apparent center of 

radar reflections (direction “seen” by the antenna) to 

wander significantly. The random wandering of the 

apparent radar reflecting center gives rise to noisy or 

jittered angle tracking. This form of measurement noise 

is called angle fluctuations or target glint. Glint affects 

the measurement components (mostly the angles) by 

producing heavy-tailed, non-Gaussian disturbances, 

which might severely affect the tracking accuracy.  

 

It is well documented in the literature that the so-called 

“glint noise” possesses the characteristics of a long-

tailed distribution. Performance of conventional 

minimum mean square estimators (Kalman filter) can be 

seriously degraded if non-Gaussian noise is present. 

Therefore, it is of paramount importance to have 

accurate modeling of the non-Gaussian noise 

phenomenon prior to the development of any efficient 

tracking algorithm. Many different models have been 

used for the non-Gaussian glint noise present in target 

tracking applications. In the tail region, the plot deviates 

from linearity and indicates a non-Gaussian, long-tailed 

character. The data in the tail region are essentially 

associated with the glint spikes and are considered to be 

outliers. These outliers have a considerable influence on 

conventional target tracking filters, such as the Kalman 

filter. The effect of the glint spikes is even greater on the 

sample variance used in the derivation of the filter‟s 

gain. 

 

The glint spikes can be modeled as a Gaussian noise 

with large variance, resulting in an overall glint noise 

model which can be considered as a Gaussian mixture 
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with the two components used to model the background 

Gaussian noise and the glint spikes (Laplacian noise), 

respectively as shown in the figure 2.1. The weighting 

coefficient (glint probability) in the mixture (percentage 

of contamination) can be used to model the non-

Gaussian nature of the glint spikes. 

 
Figure 2.1: Probability distribution function of  

     Gaussian and Laplacian noise 

 

Therefore, the glint noise model can be generated as the 

mixture of two Gaussian distributions, each with a zero 

mean and with a fixed variance. A typical glint noise is 

generated with G =1 and L =4 and glint probability 

=0.8. Following algorithm [4] is used to generate 

Gaussian, Laplacian and Glint noise (as a mixture of 

both Gaussian and Laplacian noise) in MATLAB. 

 

Gaussian noise: 

 

)1,1000(randnw  

wGg www *  

 

where 

 

w  and w  are the mean and standard  

deviation of  w 

 

Laplacian noise:  

 

(at each sample k, where k= 1,2, …,1000) 

   

yk

thenzif

randnz

y

randnx

L

x

*)(w

-y  y  0.0  

1*2

log*5.0

l

1
1

 

 

Glint noise: 

 

(k) w*   )(*1)( lkwkw ggl  

          k = 1,2, …,1000 

 

Probability density function (pdf) for Gaussian and Glint 

noise are computed using MATLAB function „hist‟. 

Figure 2.2 shows the glint noise generated using above 

algorithm. The spiky pattern of glint noise manifest itself 

in the long tailed distribution. 
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Figure 2.2:  Gaussian and Glint noise and their pdf 

 

3 Implementation of Masreliez filter 

 

While the scheme proposed by Masreliez is promising, 

the implementation of score function is practically 

difficult except for simple cases. The score function 

implementation problem is recently solved by Wu[2]. 

The method employs an adaptive normal expansion to 

expand the score function and truncates the higher order 

terms in the expanded series. Consequently, the score 

function can be approximated by a few central moments 

of the observation prediction density. The normal 

expansion is made adaptive by using the concept of 

conjugate recentering and the saddle point method. 

However, it is shown in [2] that, though the 

approximation is satisfactory and the method is simple 

and practically feasible it is easy to implement only for 

the scalar observation. But the radar observation is often 

not scalar.  

 

In this work the approximation score function evaluation 

method mentioned in [2] is extended to radar vector 
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observation. The non-Gaussian (glint) noise present in 

radar measurements is modeled as a mixture of Gaussian 

noise and Laplacian noise with mixing glint probability 

. Following sub sections give implementation aspects 

of Masreliez filter 

 

3.1  Filter initialization 

 

X̂ : Initial filter state 

P̂  : Initial filter state error covariance 

 

3.2  Time update  

k)1( X̂ 
~

kX           (3.1) 

T
nn(k))1( G Q G   P̂ 

~ T
kP      (3.2) 

 

where  the state transition matrix  

           Q  the process noise covariance 

  nG the process noise gain matrix 

 

3.3  Measurement update – for scalar 

measurements 

 

)g(Z H P
~
  

~ˆ
1)(km

T
)1()1( kk XX     (3.3)                                         

1)(km
T

1)(k1)(k)1( P
~
 H )G(Z H P

~
 - P

~
 ˆ

1)(kkP  

              (3.4)  

where, H  is the observation matrix and is  

unity for scalar observation  

mZg  is the score function, 

    mZG  is jacobian matrix, and 

    mZ  is the sensor measurement. 

 

Following steps are required to compute mZg  and 

mZG : 

 

Step1: 

Innovation covariance for Gaussian noise  

2T
1   H P

~
 

G
HS          (3.5) 

 

Innovation covariance for Laplacian noise  

2
2 L

T 2  H P
~

 HS        (3.6)  

 

Innovation sequence at k+1
th

 scan   

)1(
~

 
)1( km XHZ

k
       (3.7)  

   

where 

 

G   is the standard deviation of the Gaussian  

   component of the measurement (glint) noise 

 

L   is the standard deviation of the Laplacian  

   component of the measurement (glint)noise 

Step2: 

[pdf_gauss, g_gauss, G_gauss] = scfgl (S1, G , , P
~

) 

[pdf_Laplc, g_Laplc, G_Laplc] = scfgl (S2, L , , P
~

)   

 

where „scfgl‟ is the MATLAB function to compute pdf 

(probability density function), g (score function) and G 

(jacobian matrix) for Gaussian and Laplacian noises. 

 

LaplcgwgaussgwZg m _*_*)( 21    (3.8) 
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              (3.9) 

where  

Laplcpdfgausspdf

gausspdf
w

_*)1(_*

_*
1   (3.10)   
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w

_*)1(_*
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The [pdf_gauss,  g_gauss,  G_gauss] and [pdf_Laplc,  

g_Laplc,  G_Laplc] are computed within the function 

„scfgl ‟ as follows. 
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where saddle point „T‟ is computed using „ fzero ‟ 

function in MATLAB and 

TPyvgt *
~

 

T
yvgtVs 22  

) T*P
~

*2-*(2 3 32

T
yvgtVs  

  233124 ***6 4
2

yvgtyvgtyvgtVs
TT

 

 

Also  pdf_Laplc,  g_Laplc,  G_Laplc are computed in a 

similar way,. 

 

Table 3.1 gives the equations of Kalman filter and 

Masreliez filter. The function (.)g  is called the score 

function. It is this score function (.)g  that dictates how 

to modify Kalman filter in the non-gaussian 

environment. The score function (.)g  will de-emphasize 

the influence of large residuals when the observation 

prediction density is long tailed, and on the other hand, 

emphasize the large residuals when the observation 
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prediction density is short tailed. The Masreliez filter is 

reduced to standard Kalman filter if the initial state and 

noise sequences kw  and kv  (for all k) are gaussian. 

 

Table 3.1:  Comparison of Kalman filter and 

     Masreliez Filter 

Kalman filter Masreliez filter 

Time update: 

(k))1(
ˆ 

~
XX k                                                                                                  

TQGnGT
kPkP

n)(
ˆ )1(

~

 

Time update: 

(k))1(
ˆ 

~
XX k                                                                                                                          

T
nQGnGT

kPkP )(
ˆ )1(

~

 

Measurement update: 

)
~

(               

)
~

(               

~               

~ˆ

)1()1(

12
)1(

)1(

)1()1(

kk

T
k

T
k

kk

XHZ

HPH

Hp

XX

  

)1(

12
)1(

)1(

)1()1(

~
              

)
~

(              

~
             

~~

K

T
k

T
k

kk

PH

HPH

HP

PP

               

Measurement update: 

)(~                

~ˆ

)1()1(

)1()1(

k
T

k

kk

ZgHp

XX
 

                                                                                                                                   

 

)1(

)1()1(

)1()1(

~
             

)(
~

             

~~

K

k
T

k

kk

PH

ZGHP

PP

 

Analogy between Kalman filter and Masreliez Filter 
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4 Radar Data Simulation 

 

To compare the performance of Masreliez filter with that 

of conventional Kalman filter, radar tracking 

measurements are simulated in the presence of glint 

noise. This and  following sections give the details of the 

radar data simulation, estimation of target position from 

this data using Kalman filter and Masreliez filter and 

comparison of their performance in the presence of non-

Gaussian glint noise.  

 

Tracking radar generally measures the target position in 

polar coordinate system. Following state space model is 

used to simulate the target‟s position in polar frame.  
 

State equation:     

)(n)()1(  ˆ 
~

kkk wGXX         (4.1) 

where 

state vector is defined as
T

X   

state transition matrix is defined as  

 

100000

10000

001000

00100

000010

00001

T

T

T

      (4.2) 

process noise gain matrix is defined as 

cos*cos**2*22

222 TTTTT
n TdiagG  

 (4.3) 

Measurement equation: 

)1()1()1(
~

kkk vXHZ        (4.4) 

 

where 

measurement vector is defined as T
Z  (4.5) 

 

observation matrix is defined as  

010000

000100

000001

H        (4.6) 

 

subscript k indicates the discrete sample no. 

 

The process noise   w is generated as white noise with 

zero mean and guassian distribution. The measurement 

noise v  is generated as non-Guassian glint noise (see 

section 2) with  

 

   004.0004.00.1G  

   02.002.00.5L and with glint probability 

9.0 . 

 

The Figures 4.1 show the simulated target    ,  ,  

trajectories (as measured by the radar) in the presence of 

non-Guassian glint noise. This simulated radar 

measurement data is subsequently used for tracking the 

target by Kalman filter and Masreliez filter using the 

tracking models mentioned below. 
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Figure 4.1:   Simulated radar measurements 

 

5 Tracking Models 

 

5.1  Tracking in Cartesian frame: 

 

For tracking convenience often the radar measurements 

   ,  ,  are converted into cartesian frame (X,Y,Z axis) 
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as pospospos zyx   ,  ,  using the standard relation given 

in equation 5.1 and the target is tracked in cartesian 

frame with pospospos zyx   ,  ,  as observation [5,6].  

 

sin * z

sin * cos * 

cos *cos *  

pos

posy

x pos

        (5.1) 

 

Following state space model is used to track the target in 

cartesian frame. 

 

State equation:   

 )()()1(
ˆ 

~
knkk wGXX       

        

Measurement equation: 

 )1()1()1(
~

kkk vXHZ    

where  

state vector is defined as 

T
velposvelposvelpos zzyyxxX  

 

and state transition matrix is defined as  in equation (4.2) 

  

Process noise gain matrix is defined as  

TTTdiagG TTT
n 222

222
  (5.2) 

Observation matrix is defined as in equation (4.6) 

 

Measurement vector is T
pospospos zyxZ   

 

Masreliez filter is implemented as per the equations 

given in section 3. 

 

The process noise covariance is chosen as 

Q = diag [3.6  2.0   3.6  2.0   3.6  2.0];    (5.3) 

 

The standard deviation of guassian component 

111G , standard deviation of laplacian 

component 555L  and mixing probability 

9.0  is chosen in the computation of the score 

function (.)g  and Jacobian matrix G(.) 

 

For Kalman filter, the measurement noise matrix is 

chosen as: 

)3(*)1()3(*

)2(*)1()2(*

)1(*)1()1(*

 
22

22

22

LG

LG

LG

diagR       (5.4) 

 

5.2  Tracking in Polar frame: 

 

For tracking the target in polar frame, the simulated 

radar measurements    ,  , , are directly used as 

observation in the following model.  

State equation:    

)()()1(
ˆ 

~
knkk wGXX        

 

Measurement equation: 

)1()1()1(
~

kkk vXHZ     

 

where  

state vector is defined as 
T

X  , 

state transition matrix is defined as in equation (4.2),  

process noise gain matrix is defined in (4.3) ,  

observation matrix is defined as in equation (4.6) , 

the measurement vector is   T
Z  , 

the process noise covariance is chosen as 

Q = diag[1.0  0.1  0.01 0.0001 0.01 0.0001]; 

 

The standard deviation of guassian component, 

004.0004.01G , standard deviation of 

laplacian component 02.002.05L  and 

mixing probability 9.0 are chosen in the computation 

of the score function (.)g  and Jacobian matrix G(.) 

 

Similarly for Kalman filter, the measurement noise is 

chosen as given in equation (5.4): 

 

6 Results and Discussion 

 

The results are compiled from 100 monte carlo runs 

from both the Kalman filter and Masreliez filter using 

both the Cartesian and polar tracking models. 

 

6.1 Tracking in Cartesian frame: 

 

Figures 6.1 to 6.3 show the trajectory match from both 

the filters in each axes respectively. From these 

trajectory match it can be seen that the trajectories 

estimated from Masreliez filter is relatively closure to 

the corresponding true trajectories.  
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Figure 6.1:    Filtered X-position and velocity trajectories 
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Figure 6.2:    Filtered Y-position and velocity trajectories   

 

Figure 6.4 shows the filter residuals with bounds. The 

bounds are computed as R  H P
~
 TH . If the 95% of 

the filter error is within these bounds, it is expected that 

the filter is performing optimally[7]. Therefore, from the 

figure 6.4 it is clear that the performance of the 

Masreliez filter is relatively better than the Kalman filter. 
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   Figure 6.3: Filtered Z-position and velocity trajectories   
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Figure 6.4:  Residual with bounds 

 

Figure 6.5 shows the score function   and G(.) evaluated 

for all the three observables. In Masreliez filter, it is this 

score function   that dictates how to modify the Kalman 

filter in the non-Gaussian noise. From the figure 6.5, it is 

clear that the score function   operating on innovation 

sequence   will emphasize the correction factor to be 

added to the model prediction during guassian region. 

Whereas during the non-guassian region, the score 

function remains constant and hence applies a constant 

correction factor on the model predicted output.   
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 Figure 6.5:  Score function from Masreliez filter 

 

When the intensity of glint noise in the observation is 

reduced, the Kalman filter seems to be performing 

satisfactorily. Figure 6.6 shows the performance of 

Kalman and Masreliez filter when the glint noise is mild 

(glint probability  reduced from 0.9 to 0.3) in the 

observation. 
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Figure 6.6:  Residual with bounds ( =0.3 ) 

 

6.2 Tracking in Polar frame: 

 

Figures 6.7 to 6.9 show the trajectory match from both 

the filters. Figure 6.10 shows the residual with bounds. 

As in the previous case, the performance of the 

Masreliez filter is relatively better than that of Kalman 

filter in the presence of significant glint noise ( =0.9) in 

the observation. 
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Figure 6.7:  Filtered range and range rate trajectories 
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Figure 6.8: Filtered azimuth and azimuth rate trajectories 
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Figure 6.9: Filtered elevation and elevation rate  

     trajectories 
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Figure 6.10:  Residual with bounds 

7 Concluding Remarks 

 

In this paper, Masreliez filter which is a Kalman type of 

recursive filtering scheme that can work nearly optimally 

in the presence of glint, is implemented. The main 

computation in Masreliez filter is to evaluate the score 

function which directly influences the estimates of the 

target states. An efficient approximation method for 

score function evaluation developed by Wu[2,3] is 

extended to radar vector observation. 

 

The simulation studies have shown that the performance 

of the Masreliez filter is relatively better than that of the 

conventional Kalman filter in the presence of significant 

glint noise in the observation. However, when the glint 

effect is mild (i.e. when the glint probability < 0.5) in 

the measurement noise, the performance of the Kalman 

filter seems to be also satisfactory.  
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