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Abstract 

A software package called FIDA is developed and implemented in PC MATLAB for 

estimating aircraft stability and control derivatives from flight test data using different system 

identification techniques. FIDA also contains data pre-processing tools to remove wild points 

and high frequency noise components from measured flight data. FIDA is a menu driven and 

user interactive software which is useful to scientists/flight test engineers/pilots who are 

engaged in experimental flights and analysis of flight test data. Also it has an educational 

value for students and practising engineers who are new to the field of aircraft parameter 

estimation. 
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1. Introduction 

Parameters (stability and control derivatives) estimation from flight test data of 

atmospheric vehicles is an essential step in building their mathematical model, because it 

helps in  

 verifying theoretical and wind tunnel model predictions 

 upgrading of simulation model 

 design of stability augmentation and flight control systems 

 fault detection  and diagnosis. 

The flight test data for parameter estimation are generally acquired by carefully planned and 

conducted flight test maneuvers on the vehicles in order to derive maximum information on 

the characteristics of the vehicle. The flight data thus acquired generally contains data spikes 

and high frequency noise and requires pre-processing to eliminate them before using the data 

for parameter estimation. 

In order to aid an analyst in the above task, a flight data analysis software package called 

FIDA is developed in PC MATLAB. The package consists of flight data pre-processing and 

different parameter estimation techniques: 

1. Generalised Least Square - Differential Correction (GLSDC). 

2. Output Error Minimization (OEM) 

3. Extended Kalman Filtering (EKF). 

4. V- (Lambda) Factorization based Extended Kalman Filtering (VLEKF). 

FIDA is menu driven and user interactive. The user can select any one or more techniques to 

perform parameter estimation.  

In this paper, the details of flight data pre-processing and different parameter estimation 

techniques that are in FIDA are presented. FIDA is initially validated with simulated data and 
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then applied to flight test data of NAL’s Light Canard Research Aircraft (LCRA). The results 

are presented and compared with the corresponding results from other identification 

techniques. 

 

2. Pre-processing of Flight Test Data 

Flight test data generally contains noise and spikes due to: the noise generated by the 

measuring instruments, the vibration picked up by the sensors, the man made interference in 

the measurement and recording and due to the interference from other systems. This raw data 

as such is not suitable to  be used for subsequent analysis like parameter estimation. Hence 

there is a need for pre-processing of flight data to remove data spikes and noise before data is 

subjected to parameter estimation process. As part of FIDA two MATLAB program modules 

have been developed for data pre-processing and these programs can be executed by choosing 

appropriate menu in FIDA. 

Spike Removal: A simple procedure of cut and replace is adopted for spike removal. In this 

procedure (called Editing), the spike (or bunch of spikes if they are closely located) is first 

identified by viewing the time history plot. From mouse pointer the small segment of data 

containing spike(s) is removed and replaced by interpolated data using few points on either 

side of removed portion. Also user can select a small time segment of data around wild point 

and expand into bigger plot (i.e. zooming), in case it is difficult to identify the wild point(s).  

Fig 1 illustrates the spike removal process. First plot shows a recorded flight variable which 

contains noise and spikes. The small segment of data is expanded (by pressing Z key and 

selecting points S1 and S2 from mouse pointer) into bigger plot as shown in second plot.  

Then user is required to select two points on either side of wild point (points A,B,C,D in 

second plot) using mouse pointer. Between points B and C, the data will be eliminated and 
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new data is inserted through interpolation by taking data between A to B and C to D. Last 

plot shows the edited data. Cubic spline function available in MATLAB is utilized for the 

interpolation. The program is self explanatory and user can perform spike removal through on 

line instruction.  

Noise Filtering: The Fast Fourier Transform (FFT) method is used for noise filtering from 

the flight data since FFT function is directly available in MATLAB and it gives spectrum 

from which user can conveniently select a pass band. The program first generates spectrum 

plot of a flight data trajectory after FFT and user should select frequency limits to be retained 

(pass band) through mouse pointer on the spectrum plot. This makes the Fourier coefficients 

of unwanted frequencies set to zero and then the data is transformed back into time domain. 

While selecting the frequency limits, the user should take care to see that pass band contains 

all the natural modes of aircraft dynamics. Fig 2 illustrates the process of noise filtering. 

 

3. Data Compatibility Check 

The flight test data recorded from sensors are generally prone to bias and scale factor errors. 

Hence the data compatibility check is an essential step before the flight data is used for 

parameter estimation. And it also determines the degree of confidence in the recorded flight 

data. The data compatibility check which is popularly known as flight path reconstruction 

utilises the redundancy present in the recorded inertial and air data variables to obtain the best 

estimate of states together with scale factors and bias errors in the measured signals.  

The mathematical model used for flight path reconstruction, in general, is described by 

kinematic equations with state variables consisting of three linear velocities, u,v and w, and 

three Euler angles ,   and  . The input variables are the linear accelerations, a a ax y z,   and   

and the angular rates, p, q and r. The output variables are the flight path velocity, V, angle of 
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attack, , and the sideslip angle, . Filtering techniques like Extended Kalman filtering 

(EKF) and V- (Lambda) factorization based EKF which are described in the following 

sections can be conveniently used for data compatibility check. 

 

4. Aircraft Equations of Motion and Parameter Estimation 

The aircraft equations of motion are based on classical Newtonian mechanics and consists of 

kinematics, gravitational and aerodynamic terms. The kinematic and gravitational terms are 

easy to quantify. But to quantify the aerodynamic force and moment, acting on aircraft, it is 

required to know/estimate stability and control derivatives.  

The mathematical form of each aerodynamic force and moment acting on the aircraft is 

assumed to be  

A  =  K  Cf fq        (1) 

where A f  is the aerodynamic force or moment,  K is a constant involving aircraft reference 

quantities like mass, inertia, wing area, mean aerodynamic chord etc., q  is the dynamic 

pressure and  Cf  is a non-dimensional force or moment coefficient which is further assumed 

to be in the form: 

C  = C  + C  a + C  b + C  c + - - - - - - - f f f a f b f co
      (2) 

where C ,  C  ,  C  ,  C  ,f fa fb fco
 etc. are the stability and control derivatives and a,b,c, etc. are 

simple functions of states or control inputs. 

One of the most popular forms of representing aircraft equations of motion in the time 

domain is state space form
[1]

. The equations of motion for a rigid body aircraft are a set of 

nonlinear differential equations 
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X =  f  X(t),  U (t),   +  w(t)m        (3) 

where, state X(t) generally consists of linear velocity components u,v and w along aircraft 

fixed body axes, the angular velocity components  p, q and r about same body axes, and the 

Euler angles  ,   ,   which describe the orientation of body axis frame w.r.t earth fixed 

frame of reference. The control input U (t)m  generally includes control surface deflections 

e (elevator), a (aileron), r (rudder) and f (flaps) and possibly thrust setting/thrust 

vectoring related parameters.  is the vector of stability and control derivatives. And the 

vector w(t) represents process noise e.g. atmospheric turbulence. 

An output equation representing the discrete time measurement can be expressed as 

Y =  h X(t),  U t),  ,   +  v(t)m(      (4) 

where, the output vector Y typically consists of flight path velocity V, the angle of attack, , 

the angle of side slip, , the angular velocities, p, q and r, the Euler angles  ,    and  and 

possibly linear acceleration a a ax y z ,   and   along the body axes.  is again the vector of 

unknown parameters in the observation equations. And the vector v(t) represents the noise 

present in the measured signals. 

Then the problem of aircraft parameter identification is to estimate the unknown parameter 

vector  

  =  X    0
T T T

T
   (5) 

where  X0 is a vector of initial conditions of states which are unknown. 

The simple approach in the identification of the aircraft stability and control derivatives is to 

estimate the coefficients of the linearized state and observation equations
[1,2]

. This will result 

in the estimation of  dimensional derivatives which contain the dynamic pressure q . But 
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when airspeed significantly changes during the flight, one has to use non-dimensional form of 

derivatives in the model with dynamic pressure q  as a variable. 

 

5. System Identification Techniques 

FIDA is a software tool which estimates the aircraft stability and control derivatives directly 

from the flight test data. FIDA contains four different parameter estimation techniques and 

user can select the required technique for a particular application. The following section gives 

the details of each of the technique. 

 

5.1 Generalized Least Square Differential Correction
[3]

 (GLSDC) 

It is a batch -iterative procedure suitable for parameter estimation when there is no process 

noise. It can be regarded as complementary to popular nonlinear parameter estimation method 

namely maximum likelihood (ML) method. It can also be used as a startup procedure to 

estimate initial parameter values which are subsequently required for other parameter 

estimation methods.  

The differential correction algorithm is applied to obtain   from the measured noisy data as 

 
(i+1) (i)

T
1

T

(i)

 =    +  F  w  F  F  w  Y               (6) 

where F =  Y X        Y0 Y   

 w  is weighting matrix 

 Y  is a vector of residuals 

 Y =  Z - Ym k k        k=1,2,...,N  (N is the total no. of data points). 

 Zm   is a vector of measured signals. 
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The first submatrix of F is given as 

Y(t X(t )  =  h(X(t )) X(t  X(t ) X(ti 0 i i i 0) ) )          (7) 

with   X(t) X(t  =  f(t,X(t)) X(t    X(t) X(td
dt 0 0) ) )   (8) 

The above transition matrix differential equation can be solved with identity matrix to start 

with as shown below. 

( )t,  t )  =  X(t) X(t  =  I +  f X( ) X( ) X(t )  d0 0 0

t

t

0

             (9) 

d
dt 0 1

2
 t,  t )  =  I +  F  t +  

F  t
 +  -  -  -  -  (

!

2

2
 (10) 

The second submatrix in F is given by, 

Y  =  h X  X   +  h                     (11) 

where  X  is the solution of ( )t  

d
dt

 X   =  f  +  f X  X    (12) 

The equation (12) is solved in the following manner, 

(

!
(

t,  t )  =  X(t)  =  I +  f X( ) X( )   +  f   d

                =  I +  F  t +  
F  t

 +  -  -  -  -   t,  t )  +  F  t

0

t

t

1
2

0

0

2

 (13) 

where (t,  t )0  is zero matrix to start with. 

The last submatrix in F is obtained as 

y  =  h                             (14) 

The partial differentiation operation are  performed numerically by using finite difference 

method and the state integration is performed by numerical integration namely fourth order 

Range-Kutta method 
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5.2  Output Error Minimization Technique (OEM) 

The OEM minimises the error between the measured and model responses produced by 

identical inputs. It is assumed that there is no process noise. The OEM is applicable to both 

linear and non-linear systems
[4]

.  To estimate the parameters , the cost function to be 

minimised  is defined as 

E Z Y R Z Y
N

Rm k k

T 

k

N

m k k( ) =    - -   +   ( ) ( )

=

-1 
( ) ( )

1

2 2
1

ln        (15) 

Minimisation of the above cost function w.r.t. yields the estimates of  as: 

^

i+1

^

 =   +   i i                                                                                           (16) 

where  subscript  i   represents iterations, the constant  is called the damping factor which 

can be used to improve the convergence of the algorithm, and 

i
k

T

k

k k
T

k

m k k

Y Y Y
Z Y

( ) ( ) ( )
( ) ( )( ) R  R-1 -1

1

               (17) 

The first term in equation (17) is the Gauss Newton approximation to the second gradient of 

the cost function E( ) and  is called the information matrix.   Equation  (16) in  terms of the 

first and second gradients can be written as  

^ ^

( ) ( )i E1
2   +     Ei                                                                              (18) 

Thus, to compute the first and second gradients, we need to compute the term 
Y k( )

. This 

term is called the sensitivity matrix and is computed using transition matrix method (as in 

GLSDC).  
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5.3 Extended Kalman Filter 

The extended Kalman filter (EKF) is a recursive algorithm that estimates system states and 

state error covariance by using the measured system output Zm  and the known input Um in 

the specified nonlinear system and output models with assumed process and measurement 

noise statistics. With the linear model, the EKF is reduced to well known Kalman filter which 

gives optimal solution. The EKF gives approximate solution to nonlinear problem and the 

solution involves the linearization of the nonlinear process about each new estimate as soon 

as it becomes available, so that large initial estimation errors do not propagate. Simultaneous 

estimation of the states and unknown parameters (stability and control derivatives) of the 

system is possible by augmenting the state vector with the unknown parameters and applying 

filtering algorithm to the augmented nonlinear model. EKF has been successfully applied to 

flight path reconstruction problem
[5]

. 

In EKF, the system represented by equations 3 and 4 are first linearized about the prior best 

estimates of the states at each instant of time by finite difference method as follows 

A  =   
f

X
(k)

X(k) ,Um (k)

 ;  B  =   
f

U
(k)

m
X(k) ,Um (k)

 ;   C  =   
h

X
(k)

X(k) ,Um (k)

 (19) 

The linearized system is then discretised in time by computing the system state transition 

matrix (k+1,k)  from  A(k)as follows 

(k +1,k)
A t =  e    (20) 

where t  is the sampling time. 

The EKF consists time update (prediction step) and measurement update (correction step). In 

time update, the time propagation of states and state error covariance matrix are obtained by 

the following equations, 
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~ X  =  X  +   f X(t),  U (t)  dt(k +1) (k) m      (21) 

~ P  =   P   +   G  Q G(k +1) (k +1,k) (k) (k +1,k)
T

A(k) A(k)
T     (22) 

In correction step, the measurement update of states and state error covariance matrix are 

obtained by using output measurement as and when they are available as follows, 

 ~ ~
X  =  X  +  K  Z  -  h{ X }(k +1) (k +1) (k +1) m (k +1) (k +1)     (23) 

 ~
P  =   I -  K  C   P(k +1) (k +1) (k +1) (k +1)       (24) 

where K(k+1)  is the Kalman gain at instant k+1 which is given by 

K  =  P  C  C  P  C  +  R(k +1) (k +1) (k +1)
T

(k +1) (k +1) (k +1)
T~ ~ 1

     (25) 

The state integration (equation 21) is done by fourth order Runge-Kutta method. 

 

5.4 V-  Factorization Based Extended Kalman Filtering 

Although Kalman filter has been applied to many practical systems with varying degree of 

success, the main problem has been with the P equations (equation 24), which is numerically 

ill conditioned
[6]

.  This is mainly due to the round off in computation which makes 

covariance matrix non positive definite where as it must be atleast semi positive definite. 

This problem can be minimized to some extent by expressing P equation in longer form as 

shown below
[5]

, 

 ~
P  =   I -  K  C   P  I -  K  C   K  R  K(k +1) (k +1) (k +1) (k +1) (k +1) (k +1)

T
(k +1) (k +1)

T  (26) 

However algorithm which involves square root or factorization of the covariance matrix has 

better numerical properties
[6]

. In FIDA a V-  factorization based Kalman filter
 

is 

implemented in which the state error covariance matrix P is spectral decomposed as
[7]
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P = V  VT   (27) 

where V is the matrix whose columns are the eigen vectors of P and  is the diagonal eigen 

value matrix. The discrete time version of the V- filter are based on the singular value 

decomposition (SVD) as a main tool, which renders them extremely numerically robust and 

accurate
[7]

. The new algorithm is of great importance in certain applications where 

continuous monitoring of the eigenfactors is necessary in order to reveal singularities as and 

when they occur. The SVD function available in MATLAB is computationally efficient and 

the same is used in filter algorithm. 

In this filter algorithm, the time update of state and V-  factors are computed as follows 

~ X  =  X  +  f X(t),  U (t)  dt(k +1) (k) m ,. 

~ ~
)V       Z  =   SVD(A(k +1) (K+1) (k +1)

T
ug

1
2 0    (28) 

where  

A  =   V          G  Qug (k+1,k) (k) (k) (k) (k)
 

1
2     (29) 

The (k+1,k)  is computed as in equation (19) and A(k) as in equation (20). 

The measurement  update of  V-  factors are computed as  

  )V       0  Z  =   SVD(A(k +1) (K+1) (k +1)
T

ug

1
2      (30) 

where 

A  =   V         C  Rug (k +1) (k +1) (k +1) (k +1)

T
2~ ~ 1

2       (31) 

The C(k +1)  is computed as in (20). 

Also the measurement update of states are computed as 
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 ~ ~
X  =  X  +  Kg Z  -  h{ X }(k+1) (k+1) (k+1) m(k+1) (k+1)     (32) 

where the Kalman gain Kg is computed as 

Kg  =  V   V   C  R(k +1) (k +1) (k +1) (k +1) (k +1)

T

(k +1)
T -1   

1
2

1
2    (33) 

 

6. Case Study 

This section illustrates how FIDA can be used to estimate aircraft stability and control 

derivatives from flight test data. For this purpose flight test data of NAL’s Light Canard 

Research Aircraft (LCRA) which was generated in late 1991 were utilised. Two sets of 

LCRA flight test data generated at the same flight condition (Altitude = 8000 feet  and  Mach 

no. = 0.16) were analysed to examine the consistency in estimating stability and control 

derivatives. The  time histories of important signals from these flight test data are shown in 

figure 3. Since forward acceleration (ax) was not recorded during the flight test, the kinematic 

consistency check was not feasible. Hence directly parameter estimation was carried out 

using different system identification techniques from FIDA.  

 6.1 Mathematical Model 

For parameter estimation, 5.4 seconds data from first set of flight data and 7.5 seconds data 

from second set of flight data shown in figure 3 were selected where longitudinal mode (short 

period) was found to be present due to elevator input. The following simple second order 

longitudinal model was used to fit the flight data and estimate L , Lq, L
e
, M , Mq and 

M e . 
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State Equations: 

 =  -  L   +  L    +  L   +  q eq q
e

 

q qq ee
 M   +  M    +  M   

q q ql  =  
1

  -  l
1

 

  a q q q an nl l
 =  

1
     U  +  X  +  Z  +  p  -  

2
0 a a m

2
n n

2  

Measurement Equations: 

m
0

 =   -  
X

U
 +   

q q qq lm =  K   +   

a a an n nlm
 =   +   

Two extra state equations ql and anl
were used here to correct the data for time shifts

[1]
 that 

were observed in measured pitch rate and normal acceleration signals. Since there is 

substantial roll rate during maneuver (as seen from figure 3), the measured roll rate signal pm 

is included as input to the model. Along with stability and control derivatives,  bias ( , q 

and an in the respective signals) and scale factor (Kq in q signal) which were found to be 

present in the measured signals were estimated. Following constants and position correction 

for sensors were included in the model: 

 U0  = 53.65 m/s 

X  = 3.24   m  

Xan
= 0.64   m 

Zan
 = 0.313 m 
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6.2 Parameter Estimation 

Using different parameter estimation techniques each at a time  from FIDA, the above 

mentioned stability and control derivatives were estimated and compared with corresponding 

estimates
[8]

 from maximum likelihood estimation technique (MLE) which is being 

successfully using at NAL,FMCD for the last 10 years. MLE is not part of the present FIDA 

package, however, the OEM technique is nearly equivalent to MLE. The Table 1 shows the 

comparison. Since some convergence problem were encountered in the estimation of Lq and 

L
e

, their values were fixed at corresponding known reference values. This convergence 

problem may be due to insufficient information corresponding to those derivatives in the 

flight test data. The estimated derivatives are consistent from all the techniques (for both the 

sets of data). Also from the estimates it is clear that there is significant bias in all the output 

signals and scale factor in measured pitch rate. The negative scale factor in pitch rate implies 

that the measured pitch rate signal is in reverse polarity. Also estimated 1

1
 and 1

2
indicates 

that there is time shift in measured pitch rate and normal acceleration signals equivalent 

to 1and 2 seconds respectively. This time shift in measured signals may be due to delay in 

sensor response and/or  due to human error during time tagging of different measured signals. 

The short period natural frequency ( sp) and damping ratio ( sp) are computed from the 

estimated derivatives as follows
[9]

: 

sp q =  -M  -  M  L   

sp
q

 =  
- M  -  L

2 sp

 

Typical time history plots from the different parameter estimation techniques are shown in 

figures 4 and 5. 
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7.  Concluding Remarks 

A software package called FIDA is developed and implemented in PC MATLAB for 

estimating aircraft stability and control derivatives from flight test data using different system 

identification techniques. FIDA also contains data pre-processing tools to remove wild points 

and high frequency noise components from measured flight data. FIDA is a menu driven and 

user interactive software which is useful to scientists/flight test engineers/pilots who are 

engaged in experimental flights and analysis of flight test data. Also it has an educational 

value for students and practising engineers who are new to the field of aircraft parameter 

estimation. FIDA is initially validated with simulated data and demonstrated its capability of 

estimating stability and control derivatives from actual flight test data.  The  package has a 

wider applicability to many general dynamical systems. Commercialisation of this package 

can be discussed based on the potential users enquiries and requirement. 

8.  Why MATLAB ? 

Most of the routines in this package were originally developed in FORTRAN and to use these 

programs, some skill/experience was needed. In order to make the package commercially 

viable, it was required to make it menu driven and user friendly with interactive facility. 

Hence it was decided to implement the whole code in MATLAB which is very  user friendly 

software tool. MATLAB is being used for flight data analysis and parameter estimation since 

five years and we at FMCD,NAL feel that it is very useful and easy to use tool for 

development purposes.  
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10.  Tables 

Table 1: Comparison of Estimated Parameters (I set of LCRA Flight Data) 

Parameters MLE
[8]

 GLSDC OEM EKF VLEKF 

L         ( /rad)    2.4000    2.4000     2.4008    2.4513    2.4513 

Lq    ( /rad/sec)     0.0259
*
     0.0259

*
     0.0259

*
     0.0259

*
     0.0259

*
 

L              ( /rad)     0.1150
*
     0.1150

*
     0.1150

*
     0.1150

*
     0.1150

*
 

M            ( /rad) -14.4000 -14.5169 -14.5320 -14.5234 -14.5234 

Mq   ( 

/rad/sec) 

  -0.6265   -0.6744   -0.6637   -0.5721   -0.5721 

M             ( 

/rad) 

  12.2560   12.4137   12.3646   11.6408   11.6408 

1/ 1   25.0000   27.5812   27.7697   24.8467   24.8467 

1/ 2    8.3700    8.5556     8.5653    8.0540    8.0540 

Kq    -0.9268   -0.9254   -0.9259   -0.9788   -0.9788 

         (rad)    0.0410    0.0410     0.0411    0.0406    0.0406 

q    (rad/sec)    0.0900    0.0900     0.0899    0.0900    0.0900 

an (mtr/sec
2
)    4.2660    4.2798     4.2855    4.3468    4.3468 

sp    

(rad/sec) 

   3.9883    4.0169     4.0138    3.9907    3.9907 

sp    0.3811    0.3827     0.3817    0.3788    0.3788 

 

Table 2: Comparison of Estimated Parameters (II set of LCRA Flight Data) 

Parameters MLE
[8]

 GLSDC OEM EKF VLEKF 

L         ( /rad)    2.1165    2.1157     2.1152    2.1435    2.1435 

Lq    ( /rad/sec)     0.0259
*
     0.0259

*
     0.0259

*
     0.0259

*
     0.0259

*
 

L              ( /rad)     0.1150
*
     0.1150

*
     0.1150

*
     0.1150

*
     0.1150

*
 

M            ( /rad) -11.8486 -12.0423 -12.0771 -11.2217 -11.2217 

Mq   ( 

/rad/sec) 

  -0.8414   -0.8527   -0.8530   -0.9142   -0.9142 

M             ( 

/rad) 

  11.5435   11.7069   11.7310   10.8037   10.8037 

1/ 1   25.3636   27.1767   26.7084   24.9939   24.9939 

1/ 2    9.4682    9.6171     9.5306    9.8848    9.8848 

Kq   -0.9369   -0.9348    -0.9361   -1.0004   -1.0004 

         (rad)    0.0400    0.0403     0.0404    0.0407    0.0407 

q    (rad/sec)    0.1014    0.1011     0.1010    0.1000    0.1000 

an (mtr/sec
2
)    3.7050    3.7139     3.7093    3.7679    3.7679 

sp   (rad/sec)    3.6891    3.7212     3.7258    3.6306    3.6306 

sp    0.4011    0.3990     0.3983    0.4211    0.4211 

*  
These derivatives were fixed at reference values while estimating others. 
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11.  Figures 
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Figure 1: Editing Process 
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 Figure 2: Noise Filtering Process 
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Figure 3: LCRA Flight Test Data 

 



MATLAB Users Conference 1996, Bangalore, INDIA. 

 

0 2 4 6-0.1

0

0.1

0.2

Output 1

_____Meas    -----Estm

0 2 4 6-0.05

0

0.05

0.1

_____Residual

0 2 4 6-1

-0.5

0

0.5

1

Output 2

0 2 4 6-0.4

-0.2

0

0.2

0 2 4 6-10

0

10

20

30

Time(Sec)

Output 3

0 2 4 6
-10

-5

0

5

10

 Time(Sec)

Figure 4(a): Time history match at zeroth iteration from GLSDC and OEM (I set data) 
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Figure 4(b): Time history match after 5
th

 iteration from GLSDC and OEM (I set data) 
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Figure 5(a): Estimated States with standard deviation from EKF and VLEKF (I set data) 
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Figure 5(b): Output time history match from EKF and VLEKF (I set data) 
 

 

 

 

 

 

 

 

 

 

 

 

 


