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Chapter 1

Shear Locking in Timoshenko      
beam elements

(A Pathological Problem)

Lecture 4
Special Topics of FEA
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1.1 The Pathological problem of locking
Locking is a pathological problem encountered in formulating a 
certain class of elements for structural analysis, although these 
elements satisfy completeness and continuity requirements. 

� •••• Locking causes slow convergence even for very  fine  mesh.
� •••• Locking is manifested as Spurious Stiffening and Stress 

Oscillations.

Explanations:
(1) Locking is caused by ill conditioning of the stiffness matrix due to the 

very large magnitude of the shear stiffness terms as compared to the 
those of bending stiffness (Tessler and Hughes).

(2) Locking occurs due to coupling between the shear deformation and 
bending deformation, and that it can be eliminated by appropriate de-
coupling  (Carpenter et al).

(3)  Elements lock because they inadvertently enforce spurious constraints 
that arise from inconsistencies in the strains developed from the 
assumed displacement functions. (Prathap et al).
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Prof S P Timoshenko

1.2  The Shear-flexible beam (Timoshenko)
In the classical Euler beam (meant only for thin 
beams), it has been shown that despite the 
presence of shear stress in the beam sections, the 
shear strain is ignored.

The Euler beam is of infinite shear rigidity (!)

For thick beams (of wider webs), the Euler beam 
theory is not valid. Shear deformation of the web

requires shear-flexible formulations.

x

x

NA

�
dw/dx

z , w

�zx= �- dw/dx

dw/dx
�

�=dw/dx

Euler beam Timosheko beam
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Elementary beam theory as constrained media problem
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The Euler beam has 
infinite shear rigidity �

But the practice of using a 
large  shear rigidity � for 
thin beams creates a 
problem called Shear 
Locking in shear-flexible 
beam elements.
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Equilibrium equations of the Shear flexible (deep) beams
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Shear rigidity of deep beams
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Example 1. Find the tip deflection of a cantilever subjected to a 
concentrated tip load P.  (Include shear deformation)

PL

�

Deflection at the free end :
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1.3  Formulation of the two-noded Timoshenko Beam Element
(Using Linear Lagrangian C0 Shape Functions)
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Element potential  energy:

Element stress resultants :

(1.7)

(1.8)
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Using a 2 point Gauss integration the stiffness matrix is 
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0.512 (10)-316

0.128 (10)-38 

0.32 (10)-44
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Normalized tip
Displacement
(Locked)

No of 
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FE results of analysis of deep beam cantilever beam under tip load
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E=1000
G=375
b=1, h=1
L=4

Observations

•Large errors

•A pattern in the 
error. 

•Slow convergence

Locked results
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Use a 1 point (instead of 2 point) Gauss integration
scheme for the stiffness matrix is 
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Antidote for shear locking.

Magic! An error in the integration eliminates locking!  WHY ?
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FE results of analysis of deep beam cantilever beam under tip load
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Example problems solved using a single Timoshenko beam element

Observations: Spurious shear oscillations and bending 
stiffening for the locked case.
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1.4  Explanations for the origin of locking
(The field-consistency paradigm)
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spurious constraint that stiffens bending as well as shear strains 
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1.5  Explanation of shear locking in the element by Field-
Consistency Theory

The shear strain in the element is
where                                                 and 

• For thin beams, the shear strain energy term vanishes, leading to two 
constraints: α → 0 β → 0
(First constraint is physically meaningful in terms of the equivalent 
Euler beam model, but the second constraint is a spurious one.
The spurious term ββββ effectively enhances the element's bending 
stiffness to EI*=EI+kGA(Le)2 /12, where EI and kGA are the bending 
and shear rigidities respectively of the actual beam, leading to locking. 

e=kGA(Le)2/(12EI)=K/n2 , (l=total beam length, n=total number of 
equal elements, Le= element length=l/n). 

The parameter e becomes larger for thinner beams, leading to 
spuriously high bending stiffness, and spurious shear strain 
oscillations in the elements. 

( ) ( ) L1212 ww2 −−+= θθα ( ) 212 θθβ −=
βξαθ +=dxdw- hh

( ) e112EIkGA1IIww 2*

LLF +=+== L
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1.6  How shear locking is eliminated by reduced integration
The integrand in the element stiffness matrix [Ke] is quadratic, so we need a 
2 point Gauss rule for exact integration. This element suffers shear locking.

�
�
�
�
�

�

	












�

�

−
−−−

−
−

+

�
�
�
�

�

	










�

�

−−

−
=+=

+== 
−

3/)(2/6/)(2/
2/12/1
6/)(2/3/)(2/

2/12/1

1010
0000
1010

0000

][][][

][][
2

]][[][][

22

22

1

1

eeee

ee

eeee

ee

ees
e

b
ee

s
e

b
e

e
Te

LLLL

LL

LLLL

LL

L

kGA

L

EI
KKK

KKd
L

BDBK ξ

A reduced integration actually eliminates (ignores) the spurious term  � of the
shear strain (associated with linear variation in �) so that only constant terms 

are needed to be integrated. This elimination of the spurious constraint is done
by a 1 point Gaussian rule for integration.
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If one uses a Reduced Integration scheme with a one-point rule of 
Gauss Quadrature, instead of the two-point rule necessary for 
accurate integration in the shear strain energy, it leads to 

· Elimination of shear locking by releasing the stiffening constraint β. 

· Elimination of spurious shear stress oscillations.

Reduced integration effectively  drops the 
Second Legendre Polynomial from the shear 
strain,

αβξα →+
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The Function Space Approach
to Locking Problems
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1.7  Definition of the Inner product

The inner product for the Timoshenko beam element is defined 
through the symmetric bilinear forms:
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1.8  The B Subspace

The B subspace is the space in which the column vectors of the 
strain-displacement matrix [B] lie.
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After scaling, only TWO NON-ZERO  orthogonal basis vectors are 
obtained  that span the B Space (of  2 dimensions,  m=N-R=4-2=2)
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1.9 Strain projections on the B Subspace;
Shear Locking

Orthogonal Projection of the Analytical Strain onto the B Subspace yields
the FEA computed element strains (best-fits).

(1.18)

However, we have problems for thin beams:

1. The bending strain is a lot smaller than the analytical one, showing 
that spurious bending stiffness has been introduced through FEA .

2. There is spurious shear strain oscillation in FEA results.
3. Slow Convergence even with many elements. 

These are the symptoms of locking
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fitBesth −== εε

A best fit satisfies the Projection Theorem (Pythagoras) 
222
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Locked FEA solutions agree with the best-fit strain vector at 
the element level. Thus locked solutions are variationally
correct

Thus
222 hh εεεε −=−

i.e. The Energy of the Error= Error of the Energies
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Analytical strains and their locked projections as finite element strains

e=kGAL2/(12EI).
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TABLE 2
Error norm square for locked strain projections with the linear 

two noded Timoshenko beam  element. e=kGAL 2/(12EI)
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transverse 
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moment, Mo

Locked SolutionCase
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1.10 The Function Space explanation of locking and its 
elimination

The original field-inconsistent [B] matrix is 

Locking occurs because the 2-dimensional B subspace
is field-inconsistent, which cannot be spanned by the 
standard basis vectors of its 4-dimensional parent 
space (linear in ξ), 
{L1} = [0, 1]T , {L2} = [1, 0]T, {L3} = [0, ξ]T, {L4} = [ξ, 0]T.,

(1.19)
Actually, the field-inconsistent B space is spanned by 
non-standard basis vectors,  
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1.11 Elimination of shear locking 

Reduced Integration effectively sets the highest order 
Legendre Polynomial ξξξξ in the [B] matrix to zero.

It replaces [B] by a (modified) [B*].
Lock-free strain vector is expressed as,

(1.20)

A new field-consistent space B* emerges from [B*]. This 
lockfree, field-consistent space B* is two-dimensional, 
and  can be spanned by the standard orthogonal basis 
vectors,

(1.21) 
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Lockfree stiffness matrix for the Timoshenko beam is obtained
from the field-consistent (lockfree) strain-displacement matrix 
[B*] with exact integration
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1.12  Orthogonal Projection on B* space

In general, Reduced Integrated FEA results are NOT 
variationally correct. (RI is a variational crime !)
Reduced Integrated FEA strains will agree with the 
best-fit solution, provided the following rule holds 
good, 

(1.24)
Then: 

(1.25) 

When this extraneous force        does not vanish, then 
the best-fit solution (on the B* space) will suffer 
additional strain from this extraneous force vector, 
over the lockfree (reduced integrated) FEA solution.  
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A cantilever beam with uniformly distributed loading
FI:  Field inconsistent, Locked, but variationally correct FE results.
FC: Field consistent, Lock free, Reduced Integrated FE results.
Note that FC (by FEA) deviates from the field-consistent best-fit results. 
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For this case :
The extraneous force vector 
(a non-zero vector) from
Reduced Integration consists
of self-equilibrating moments,
that shift the FC Best-fit from
the FC-FEM results.

ρ
A case of variational incorrectness through reduced integration
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1.13  Lockfree an-isoparametric formulation
(quadratic transverse displacement and linear rotation)
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Summary
Shear locking in Timoshenko’s Shear Flexible beam element occurs from spurious 
constraints that arise from reducing the discretized domain into an Euler beam (of 
infinite shear rigidity). 

Shear locking is displayed through slow convergence, Spurious bending stiffening
and shear oscillations.

The field consistency paradigm identifies the spurious constraints related to locking, 
and suggests methods to eliminate field inconsistency by eliminating the spurious 
constraints (thereby enforcing field consistency).

Reduced integration (RI) eliminates shear locking by eliminating the spurious 
constraint in the strain.   

The function space approach shows that locked strain vector in an element  (through 
FEA) is actually the orthogonal projection of the analytical strain vector onto a field-
inconsistent subspace B, arising from a field-inconsistent [B] matrix (strain-
displacement matrix). B cannot be spanned by standard orthogonal basis vectors.

FEA through reduced integration (RI) effectively projects the analytical strain vector 
onto a field-consistent subspace B*. However, RI is variationally incorrect in general, 
and the FE strain vector agrees with the orthogonal projection on B* only when the 
spurious extraneous force vector vanishes.  
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A comedy of errors…

Chapter 2

Error Analysis in
Computational Elastodynamics

Lecture 4
Special Topics of FEA
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2.1  Finite Element Elastodynamic Equations using 
the Principle of Least Action 
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In elastodynamics, the equations of motion are generally derived
in a global sense (with element assembly) 
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2.2  Free Vibration Analysis
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kii : generalized modal stiffness for mode i
mii:: generalized modal mass for mode i 
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Example 1. Free vibration analysis of a simple cantilever beam using 10  Euler beam elements. 

Table 3.1Comparison of the natural frequencies in bending of the uniform cantilever beam obtained by different methods

518.2682.4836FE result

518.3182.4915Classical 
solution

Natural 
Circular 

Frequency
�n

(rad/sec)

Natural 
Frequenc

y
fn (Hz)

Different 
methods

3.248×103516.935FE result

3.248×103516.935Classical 
solution

Natural 
Circular 

Frequency
�n (rad/sec)

Natural 
Frequency

fn (Hz)

Different 
methods

9.097×103

1447.83FE result

9.095×1031447.51Classical 
solution

Natural 
Circular 

Frequency
�n (rad/sec)

Natural 
Frequency

fn (Hz)

Differen
t 

methods

L=1m,  b=0.1m, t=0.001m I=2.5×10-7m4, A=3×10-4m2

Density ρ=2722.77 kg/m3,  Mass per unit length of the beam is ρA=0.816 kg/m
E=7.1 ×1010 N/m2,
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Fig (b) Length of the wing 
divided in 22 elements for 
FE formulation

7.105 m

0.849 m

2.1469m

Fig (a) A typical subsonic aircraft wing

Leading edge

Trailing edge
Root Tip

Example 2. Free vibration analysis of an aircraft wing using Euler beam elements.

(d)(c)

(b)(a)

Fig 4.3 Normal mode shapes of the wing of the aircraft
(a) First bending mode in y direction (frequency 7.2165 Hz)
(b) Second bending mode in y direction (frequency 21.138 Hz)
(c) Third bending mode in y direction (frequency 50.405 Hz)
(d) First torsional mode (frequency 56.8296 Hz)
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Stick Model of SARAS for Dynamic CharacterizationStick Model of SARAS for Dynamic Characterization

Example 3. Dynamic Characterization of an aircraft using a Stick Model 

Wing First Symmetric Mode 6.71 Hz (by Stick Model) and 6.72 Hz  (by detailed FE model in NASTRAN)

Wing Second Symmetric Mode 18.89 Hz (by Stick Model) and 19.51 Hz (by detailed FE model in NASTRAN)

HT Anti-Symmetric Mode 10.4 Hz (by Stick Model) and 9.1 Hz (by detailed FE model in NASTRAN)

•Beam Model with provision for Bending-Torsion Coupling (Shear Center offset).
•Results for components from in-house code benchmarked with those from detailed FE 
model in NASTRAN.
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2.3  Definitions of Inner Products in Elastodynamics

[D]= element elastic rigidity matrix 
= element inertia density matrix. 

Stiffness-inner product
(2.6)

Stiffness-norm squared value of the vector {a} is given as 
(2.7)

Inertia-inner product (2.8)

Inertia-norm squared value of the vector {c} is given as 
(2.9)
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2.4 The Rayleigh Quotient
Free vibration of a system in a given mode can be expressed as

(2.10)
Rayleigh Quotient from exact solutions for displacement and strain 
modes u and �

(2.11)

(2.12)

But interestingly (!) for a variationally correct solution,

(2.13)
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2

2
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Let        and         be the approximate modal vector and the strain     
vector.

hu hε

Rayleigh Quotient from FEA solution
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2.5 The Error Statements of Elastodynamics

Combining equations (5.6) and (5.7), we get one rule

(2.14)
Error of global strain energy = Error of global kinetic energy

Combining equations (2.12) and (2.13), we get another rule, 
valid for variationally correct solutions only,

(2.15)

Observation: The Errors in Elastodynamics are decided by 
both displacements and strains.

hhh uu 22222 )(ωωεε −=−

))(,(, 22 hhhhh uuu ωωεεε −>=−<
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2.6 The Frequency-Error Hyperboloid

)( ωω =

hZ εε −=

ω
ωh

Y =huuX −= 1

H

A

E

F

Fig 1. Geometric interpretation of eigenvalue analysis of the variationally 
correct formulation using Frequency-Error Hyperboloid. Approximate 
eigenvalues obtained form a variationally correct formulation lie in the shaded 
portion of the Hyperboloid.
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variationally correct
formulations,

(2.16)
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2.7  Why is the approximate Rayleigh Quotient higher 
than the Exact one ?

(Valid only for variationally correct formulations)
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• Geometrically, the modal displacement vector suffers less deviation
than that of the modal strain vector.  Hence 
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Example 4: Free Vibration of a Simply Supported Beam

x L
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Modal Strain
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2.8  Replacement of Consistent Mass by Lumped Mass;
A variational crime

(1-α)LαL

L

Example 5.  Free Vibration Analysis
of a Fixed-Fixed  Bar 
using 2 elements
(First Mode Only shown)

0
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24
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33
36

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

element length ratio

ei
ge

n 
va

lu
e

 lumped mass

consistent mass 

exact solution

A B

Any variationally incorrect formulation (with Lumped  Mass, Reduced Integration 
etc.) that does not conform exactly to the Weak form is variationally incorrect. 
Variationally incorrect formualtions - Do not satisfy the Hyperboloid Rule

- Cannot guarantee and upper bound of the frequency.
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Chapter 3

Rank Deficiency in elements

Lecture 4
Special Topics of FEA



54

3.1  What is rank deficiency ?
The rank of the stiffness matrix is the dimension of the B subspace

that emerges from the strain-displacement matrix [B], i.e.

Rank [Ke]= dim (B) (3.1)
In the dimension of the B subspace is given by

dim (B)=N-R

N= Number of degrees of freedom of the element  
R= Number of rigid body motions

(3.2)

To eliminate locking, a reduced order integration effectively converts 
the Field-inconsistent [B] matrix into a Field-consistent [B*] matrix, by 
simply removing the highest Legendre Polynomial in the field-
inconsistent spurious term of [B].     

Using Gram Schmidt algorithm for orthogonal basis vector spanning B*
it can be shown that for some elements

dim (B*) < dim (B) or   (N-R*) < (N-R),    i.e.   R* > R (3.3)

Rank [Ke*] < Rank [Ke] because of introduction of spurious rigid body motions 

Reduced integration may introduce rank deficiency
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1,2,3 are rigid body modes
4,5,6 are constant strain modes

7,8  are bending modes, but cannot
be sensed by a 1x1 reduced integration

1x1 reduced integration (with sampling 
point at element center of zero strain)  
effectively considers modes 7 and 8 as 
zero energy hour-glass modes (spurious 
rigid body motions)

Rank deficiency of this plane stress Quad 4 element is thus 2.

Rank deficiency of the plane stress Quad 4 element
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The Mindlin Plate element
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Appendix

The basis vectors for spanning
the B subspaces of the elements
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Some Thoughts
A burning question:

Does Mesh Optimisation Maximize Numerical Entropy?

Analytical Strain Energy with the analytical   solution u
remains Invariant (Maximum entropy)

FEA Strain Energy with the approximate  solution uh depends  on 
meshing (the position of the  middle  node). Lower entropy than at A.

Optimized mesh corresponds to maximum FEA Strain Energy (with 
highest possible entropy with the  approximations made).

Position of 
Middle Node.

Total Strain
Energy

22 hεε ≥

A
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Cui bono ?    (For whose good ?)
How the best-fit paradigm helps

(a) Gives the exact, but hidden, mechanism of the way the Finite 
Element Method works.  It shows that computations in FEM
are actually determined in a best-fit manner of the strains (and 
stresses), instead of the existing myth that they are based on 
displacements.

(b) Helps one to make a priori error estimates for bench mark 
problems easily.

( c)   Helps one to evaluate the quality of the element that he/she 
develops. The origins of the pathological problems of elements
can now be understood, diagnosed and eliminated by appropriate 
methods.
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An extract from “ Sanchaita ” by Rabindranath Tagore.

When Arts and Science met at the crossroads…

A
AA −

A
P   
Subspace

v

u

900
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Thank You

The Blind Men and the Elephant
And so these men of Indostan,

Disputed loud and long,
Each in his own opinion,

Exceeding stiff and strong,
Though each was partly in the right,

And all were in the wrong!

- John Godfrey Saxe (1816-1887)




