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Lecture 4
Special Topics of FEA

Chapter 1

Shear Locking in Timoshenko
beam elements

(A Pathological Problem)



1.1 The Pathological problem of locking

Locking is a pathological problem encountered in formulating a
certain class of elements for structural analysis, although these
elements satisfy completeness and continuity requirements.

¢ Locking causes slow convergence even for very fine mesh.

e Locking is manifested as Spurious Stiffening and Stress
Oscillations.

Explanations:

(1) Locking is caused by ill conditioning of the stiffness matrix due to the
very large magnitude of the shear stiffness terms as compared to the
those of bending stiffness (Tessler and Hughes).

(2) Locking occurs due to coupling between the shear deformation and
bending deformation, and that it can be eliminated by appropriate de-
coupling (Carpenter et al).

(3) Elements lock because they inadvertently enforce spurious constraints
that arise from inconsistencies in the strains developed from the
assumed displacement functions. (Prathap et al). 4



1.2 The Shear-flexible beam (Timoshenko)

In the classical Euler beam (meant only for thin
beams), it has been shown that despite the
presence of shear stress in the beam sections, the
shear strain is ignored.

The Euler beam is of infinite shear rigidity (!)

For thick beams (of wider webs), the Euler beam
theory is not valid. Shear deformation of the web -
requires shear-flexible formulations. Prof S P Timoshenko

Euler beam Timosheko beam
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Elementary beam theory as constrained media problem
Euler beam model

The Euler beam has
infinite shear rigidity K

But the practice of using a

large shear rigidity K for
thin beams creates a
problem called Shear
Locking in shear-flexible
beam elements.

Equilibrium Equations

2
EIQ— /((H—d—wj 0 ..»00»)

dx? dx
a_dw|_ . 4 _d_w)_ -
dx  dx? 1 dx dx 1
Combining (i) & (ii)
2
iElﬁ—q 0 . (TiD)
dx  dx?
Boundary conditions at x=0 & x=L
Either EIﬁ 0O or 08=0
dx
: dw
Either /c(e——j=o or ow=0
dx
As K— oo 9—>d—w
dx

4
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Equilibrium equations of the Shear flexible (deep) beams

L

I = 5[] El(flij dx+ ;kGA(H—C;—;V) ngdxlzo

0

dW/d_{ Y Equilibrium Equations
o ., 9 ., -dM/dx-V=0
w .
do d*w d dw
Al ———— | = .e. —kGA| 6—— (i
kG (dx 2 j q e dka (49 dxj q (i)
v Combining (i) & (ii) dV/dqu
V 2
d d*0 (1.3)
EI —q=
PR q=0 (iii)

Shear strain
Boundary conditions at x=0 & x=L

(1 1) Either EI—=0 or 068=0
. dx
Either kGA(@—d—WJ =0 or w=0
dx

Shear rigidity: kGA




Shear rigidity of deep beams

L hi/2 2 L hi/2 2 .2
1 T V-0
Ugear = [z27dV =] [ ——.(bapax=| [ . —(bdy)dx
v2 0 y=—h/2 26 0 y=—ns2 2G(Ib)
L hil2 2
U, - jlv(Ljdx 12y,
2 (kGA kGA G mﬂb
1
k =
y Ahfff
2
1 —h/2 b
N L L
e 1 | %4 1. — -V dw
U —V| — ldx= [~V ydx = =9-""
shear =) (kGA]dx g 4 Zvea T
h by Ly 150 aw)
Uear = | 5V ydx = [ SkGA(y) dx =~ kGA (9——) dx
02 02 2 AU ax (1.4)

k is called the shear correction factor

k=5/6 for a rectangular section



Example 1. Find the tip deflection of a cantilever subjected to a
concentrated tip load P. (Include shear deformation)

Deflection at the free end :

o

P> - p? P pPI’ 3EI j
3EI 3EI kGA  3EI\  kGAIZ

For thin beams,

kGAI* EI
— 00

, -0
EI kGAI?




1.3 Formulation of the two-noded Timoshenko Beam Element
(Using Linear Lagrangian C° Shape Functions)

Element displacement and geometry (iso-parametric):

Wh=N1W1+N2W2 0h=N101+N292 le% N2=% _1S§S]‘
x=Nx;+Nyx, with  x =0, x,=L x=%(§+1), .f:%—l
dx:%df
(W, wi,F, WK,
A
h N, O N, 01|86
w 1 2 1
= 3 =[N 56 1.5 D €
{eh} {0 Ny 0 Njwz e (1.9) L
92
L J BI,MI (? 92,M2
Element Strain vector: ¢=-1 =1

(8h):[d6?"’/dx j:{o ~-1/L 0 1/L }{56}

6" —aw'/dx) |[I/L (1-&)/2 —1/L (1+¢)/2

" }=[Bls°} (1.6) 10




Element stress resultants :

{M}:[EI 0 H d0/dx }:[D][B]{é‘e} (1.7)

Vv 0 kGA || 6—-dw/dx

Element potentlal energy:

w,,I, Wk,
do ‘Y R}
oot 2]
n:5{6€} [KUS Y~ (5 (P }+{Re) C

0,M,
Equilibrium !
Al =0 [K°1{O°)}={F°}+{R®)} (1.8)
Element Stiffness matrix Element Force vector

1 e
K= ([BT [D][B]=
[K€] _jl[][][]zdf

(1.9)



Using a 2 point Gauss integration the stiffness matrix is

1 e
[K“1= [[BI'[DIBI—dg =[K ] +[K"s]

-1

EI
[KI=IK 514K 1=

S O O O

S = O

oS O O O

+

kGA

1 I°/2
/2 (I9*/3
1 —I°/2

L£/2 (I£)*16

_1 /2 |
—I°/2 (I5*/6
1 —1¢/2

~I£/2 (I5)*/3]

(1.11)
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FE results of analysis of deep beam cantilever beam under tip load

E=1000 e L i r
G=375 5
b=1, h=1 L
L=4 No of Normalized tip
Locked results |®lements | Displacement
y (Locked)
_ Observations 1 0.2 (10)%
eLLarge errors
2 |0.8(10)5
*A pattern in the
error. 4 0.32 (10)*
 p I *Slow convergence 3 0.128 (10)°
16 [0.512(10)3
3




Antidote for shear locking.
Use a 1 point (instead of 2 point) Gauss integration
scheme for the stiffness matrix is

O 1 0 -1 e ey2 _ 7€ e\2
0 0 0 0 | -1 -r/2 1  =IJ2
0 -1 0 -1 /2 ()14 -L/2 (L)*/4

I : . (1.12)

Normalized
displacement

| | | —— No. of elements
1 2 3 4 5

Magic! An error in the integration eliminates locking! WHY ? 14



FE results of analysis of deep beam cantilever beam under tip load

L
E=1000 o i i
G=375 5
b=1, h=1
L=4 T
Number | Normalized tip Normalized tip

y of Displacement Displacement

0y elements | (Locked) (Lock-free,

Reduced Int.)
h 1 0.2 (10) 0.75
B ) 0.8 (10) 0.75+0.75/4

=0.9375

15



Example problems solved using a single Timoshenko beam element
(a)

P (b)

C EI E l El Z
M, E E
o L — o L ——l
1 2, o! , 2,

&=-1 £=0 &=1 &=—1 £=0 &=1

PL/2
0 4 BN

0
—oéﬁ—o—o—o—o—o— L :lr‘x‘"“
T

O O O O—0 Q
3 |
M, /(1+¢)
S— T 3 . 3 5. - Y

P Bending moment, M

Bending moment, M

o

~

6¢ M, 0/o
0/0/ ‘?eL Pb.x.x:f,d/x.x.x.
0 *—0—c9 —P—P—® 3e
5 =Pl |0
& sar sy é be Shear force,V
" Shear force, /o ear force,

—— analytical ; —0 — locked ; —e— lock free ; e=kGAL®/ (12ED)

Observations: Spurious shear oscillations and bending

stiffening for the locked case. 16



1.4 Explanations for the origin of locking
(The field-consistency paradigm)

Linear displacements: 6" = ax e
. dw" . . do"
Shear strain ,-g" =" —;_p Bending strain —/ =4
dx dx
Rayleigh-Ritz procedure |, L 0|, | £/3 ~L*/2]l[a] | 0
0 0 —I’/2 L b| |qL7 /2
g — 3gL° he_ gL 1.5g
Element locks when shear 12E1 + &L 2K 12E1+#7
rigidity K is increased ,
indefinitely. As kow, a0, b0 = 2L 0

dx

The parameter a effects both bending and shear strains. It is a
spurious constraint that stiffens bending as well as shear strains



1.5 Explanation of shear locking in the element by Field-

Consistency Theory

The shear strain in the elementis 8" - dw"/dx = a + B¢
where @=(6,+6,)/2—(w,-w,)/L  and g=(6,-6)/2

For thin beams, the shear strain energy term vanishes, leading to two
constraints: a—0 B—0

(First constraint is physically meaningful in terms of the equivalent
Euler beam model, but the second constraint is a spurious one.

The spurious term [ effectively enhances the element's bending
stiffness to EI*=EI+kGA(L¢)? /12, where EI and kGA are the bending
and shear rigidities respectively of the actual beam, leading to locking.

w,,/w, =I'/1=1+kGAL/(12El)=1+e
e=kGA(L¢)’/(12El)=K/n2 , (I=total beam length, n=total number of

equal elements, L¢= element length=I/n).

The parameter e¢ becomes larger for thinner beams, leading to
spuriously high bending stiffness, and spurious shear strain
oscillations in the elements.

18



1.6 How shear locking is eliminated by reduced integration

The integrand in the element stiffness matrix [K¢] is quadratic, so we need a
2 point Gauss rule for exact integration. This element suffers shear locking.

1 e
[K1= [[BI'[DIBId§ = (K1 +[K"]
-1

0 0 0 0] L £ -1 2]

0 1 0 —1 e e\2 _ e e\?2
(K=K ]+[K¢ =21 JKGAI L2 (I3 —L/2 ()16

[0 =1 & =l 1£/2 (I9*16 —I°/2 (I9)*/3]

A reduced integration actually eliminates (ignores) the spurious term f of the
shear strain (associated with linear variation in &) so that only constant terms
are needed to be integrated. This elimination of the spurious constraint is done

by a 1 point Gaussian rule for integration.

_0 0 0 0 1 L€/2 _1 L€/2 ]

O 1 O —1 e e\2 __ 7€ e\2
[Ke*]:[KebH[Kes*]:ﬂ +kGA /2 (/14 -L°12 (L°)°/4

0 -1 0 -1 1672 ()14 —I512 (I9)*/4]




If one uses a Reduced Integration scheme with a one-point rule of
Gauss Quadrature, instead of the two-point rule necessary for
accurate integration in the shear strain energy, it leads to

- Elimination of shear locking by releasing the stiffening constraint £.

- Elimination of spurious shear stress oscillations.

Reduced integration effectively drops the
Second Legendre Polynomial from the shear
strain,

a+ pE—a

20



The Function Space Approach
to Locking Problems

21



1.7 Definition of the Inner product

The inner product for the Timoshenko beam element is defined
through the symmetric bilinear forms:

awh,u)é:{ {gh}T{o kGA}{}
SRS

a@",u" = | e’ }{EI 0 }{ e bix

e
Er—d =<8h,€>
0 kGA}{}2 3

y 0 kGA
1 e
) _Il {8h}Tﬁl k((;A}{ }Lz dp=<ele’ > (1.13)

El=Flexural Rigidity, kGA=Shear Rigidity

22



1.8 The B Subspace

The B subspace is the space in which the column vectors of the
strain-displacement matrix [B] lie.

[B]— 0 —1/L 0 1/L (1.14)
/L 1-&/2 —1/L (A+&)/2

The Gram-Schmidt Algorithm for getting the orthogonal basis vectors
spanning the B Space:

v}=1{b}

- (1.15))
Wik} =1{bgs} - Z << >> {Vj}

After scaling, only TWO NON-ZERO orthogonal basis vectors are
obtained that span the B Space (of 2 dimensions, m=N-R=4-2=2)

o [2/L (1.16)
{vl}_ 1 ’ {Vz}— 6

2
BcP= ; P ={{p} Apy=>{a ™ ~1<E<1, {a;}e RZ}

i=1

(1.17)

dim(B)=2<dimP/= =2x2=4 23



1.9 Strain projections on the B Subspace;
Shear Locking

Orthogonal Projection of the Analytical Strain onto the B Subspace yields
the FEA computed element strains (best-fits).

N a2 < E, V. >
el s (1.18)

However, we have problems for thin beams:

I.  The bending strain is a lot smaller than the analytical one, showing
that spurious bending stiffness has been introduced through FEA .

2. There is spurious shear strain oscillation in FEA results.
3. Slow Convergence even with many elements.

These are the symptoms of locking

24



Locked FEA solutions agree with the best-fit strain vector at
the element level. Thus locked solutions are variationally

correct

Frrur gh :E:Best—fit

o &)

/*
A best fit satisfies the Projection Theorem (Pythagoras)

—12 212
e—e| =l |

[

Thus e~ = el e

i.e. The Energy of the Error= Error of the Energies

25



(a) P (b)

QM EI E l EI

I« L > e I
ol 1 . ol i 2e
=-1 =0 E=1 =-1 E=0 g=l
PL/2
0 ¢ [+e & 0
it O—O—0O L O—O——0—0
° T \0 ° ° 2 e e P
M, A 1+e) PL
' SV SR YV YSVE W S
M Bending moment, M Bending moment, M
& e
A g
o/ @ M, O
o he L < oo e sy 9 g V@
®——0—9 — == 3e P 0 I ‘-‘/
o - g l+e /
o Shear force,V /o Shear force,V
—— analytical ; —o0 — locked ; —e— lock free ; e=kGAL?/(12ED

26



TABLE 1

Analytical strains and their locked projections as finite element strains
e=kGAL2/(12EI).

Cantilever with tip | Cantilever with tip load
moment M, P
Analytical M, /El [PL(1+& )/ 2ET)
strain {512{ 0 } fe/= P/ kGA
vector
Locked (M /ED A I+e) (PL/2EI)/(1+e)
strain €)= 6e M,E (/=1 p 3¢
veclor (1+e)LkGA kGA(]+]+e)

J

A S i

-=1<Vj,Vj >

vil,  <vvp>=0

FE Strain vectors exactly agree with these orthogonal projections of analytical styains

[0 [2rL
{vl}_ 1 ’ {Vz}— é:

|




TABLE 2

Error norm square for locked strain projections with the linear
two noded Timoshenko beam element. e=kGAL?/(12EI)

laf =5 [a¥ Pla}ez  {a}=1e}-Fe}

Case Locked Solution
Cantilever ,
with iip 2 EI I+e
moment, M
Cantilever
with tip ol _ L (Pcf ( e +£j
transverse N =528 Tte 3
load P

r 2 2
et =2 =lel - e




1.10 The Function Space explanation of locking and its
elimination

The original field-inconsistent [B] matrix 1s

[B]:{o ~1/L 0 1/L }

/L (1-&)/2 -1/L (1+&)/2

Locking occurs because the 2-dimensional B subspace

is field-inconsistent, which cannot be spanned by the
standard basis vectors of its 4-dimensional parent

space P? (linear in &),
{L]} = [0’ ]]Ts {LZ} = []’ O]T, {L3} = [05 E&]Ts {L4} = [E.n O]T_,
(1.19)

Actually, the field-inconsistent B space is spanned by

non-standard basis vectors, 0 2/L
n}= ) v, }= ¢

29




1.11 Elimination of shear locking

Reduced Integration effectively sets the highest order
Legendre Polynomial € in the [B] matrix to zero.

It replaces [B] by a (modified) [B*].
Lock-free strain vector 1s expressed as,

= e e B ) (120

/L 1/2 1/L 1/2

A new field-consistent space B* emerges from [B*]. This
lockfree, field-consistent space B* is two-dimensional,

and can be spanned by the standard orthogonal basis

vectors, (%1 {0} (%] {1}
Vv = , v2 =
1 1 0 (1.21)

B <Pz ; P={p}:(p)={a}, {a}e R}
dim(B)=2=dimP’ =2x1=2 (1.22)




Lockfree stiffness matrix for the Timoshenko beam is obtained
from the field-consistent (lockfree) strain-displacement matrix

[B*] with exact integration

1 e
[K°¥1= (1B [DILB#1d = [K“p]+[K ",

—1
_O 0 0 0 I 1 Le/2 _1 L€/2 ]
e e e i EINO 1 0 —1| kGA|L/2 ()14 L2 (L)*/4
[K*¥]=[Kp]+[Ks*]="— n (L) (L
0 -1 0 -1 1572 (I9*14 —1°72 (I9)*/4]

(1.23)

31



1.12 Orthogonal Projection on B* space

In general, Reduced Integrated FEA results are NOT
variationally correct. (RI is a variational crime !)

Reduced Integrated FEA strains will agree with the
best-fit solution, provided the following rule holds
good,

{Fee f=—[ [B]- B+ [DKe}ax =0 (1.24)

Then:

N m E
{gh*}:{g*}zz <EVE> {V. *}, <v*yE>=0 for i+ (125)
i=l1 <Vi*’vi*> ! L J

When this extraneous force ;.. \does not vanish, then
the best-fit solution (on the Iig space) will suffer
additional strain from this extraneous force vector,
over the lockfree (reduced integrated) FEA solution.

32



TABLE 3

Analytical strains and their locked and lockfree projections as finite element strains

e=kGAL*/(12EI).

Cantilever with tip | Cantilever with tip
moment M, load P
Analytical M, /EIl fe)— PL(1+&)/(2EI)
strain tef=y P/kGA
vector
[ ocked (M /E N I+e) (PL/2EI)/(1+e)
strain [e}= 6o M, & (/=1 » 3
vector (1+e) LKGA TR
Locl'(free - [M,/EI [e) = PL/(2EI)
strain te *1=y 7, P/kGA
vector
{e'}= {8}—m2<8v >{v} <, >=0 | =0k =1 B
<y, 1 S
m=2 .
{gh*}:E}:Z <8’VJ>{V*'}a <V1*,V2*>=0 B*

J=1""77"

<V:,V;>

J

{vl }_ 17 {Vz }_O

33




Error norm square for strain projections with the linear two noded Timoshenko beam

TABLE 4

element. e=kGAL?/(12EI)

1
ld =5 [la¥ [PHataz  {a}=te}-Fe}
-1
Locked Solution Lockfree
Case Solution
Cantilever ;
with tip lgff =224 e lg** =0
moment, M, 2 EI Ite
Cantilever
with tlp Hquz _L (Pc) ( e +£j Hq *HZ _L (PL)2
transverse 2 2EI \ I+e 3 2 6EI
load P
— 2 2
" =l ol =Je-e"]" =1ef -Je*[
— 2 2
S N




A case of variational incorrectness through reduced integration

A cantilever beam with uniformly distributed loading p
Fl: Field inconsistent, Locked, but variationally correct FE results.
FC: Field consistent, Lock free, Reduced Integrated FE results.
Note that FC (by FEA) deviates from the field-consistent best-fit results.

2FC (FEM) o Analytical

For this case : % v

The extraneous force vector ‘

(a non-zero vector) from = L =

Reduced Integration consists % agh. £

of self-equilibrating moments, 61 &0 &1

that shift the FC Best-fit from " o

the FC-FEM results. 1 e % o

pL 6
{Fec |=-[[B]-[BT [DHelax i e
e

Bending Moment

2 2
(1+e)

A

F\ 0

)

\”\FC (FEM and Best-fit) T
pL

An% %

2FI
PL( 3e ~1
(1+e)

Shear Force - 3 5




1.13 Lockfree an-isoparametric formulation
(quadratic transverse displacement and linear rotation)

Ly
Displacements: " = i N;w, 6" = i N6, (1.26)
i=1 i=1
Shape functions le% N2=% N3 =1-¢&
Strain vector: " }= (Z?/jfv ) dxj = [Blo°}
)= L (25(11)/L (1_—141)L/2 - (2531)/L (135?/ 2 450/ L}{ae} (1.27)

Standard basis vectors spanning 3-dimensional B space:
pr=100.81, =110 and {v} = 1[0, 1] (1.28)



Summary

Shear locking in Timoshenko’s Shear Flexible beam element occurs from spurious
constraints that arise from reducing the discretized domain into an Euler beam (of
infinite shear rigidity).

Shear locking is displayed through slow convergence, Spurious bending stiffening
and shear oscillations.

The field consistency paradigm identifies the spurious constraints related to locking,
and suggests methods to eliminate field inconsistency by eliminating the spurious
constraints (thereby enforcing field consistency).

Reduced integration (RI) eliminates shear locking by eliminating the spurious
constraint in the strain.

The function space approach shows that locked strain vector in an element (through
FEA) is actually the orthogonal projection of the analytical strain vector onto a field-
inconsistent subspace B, arising from a field-inconsistent [B] matrix (strain-
displacement matrix). B cannot be spanned by standard orthogonal basis vectors.

FEA through reduced integration (RIl) effectively projects the analytical strain vector
onto a field-consistent subspace B*. However, Rl is variationally incorrect in general,
and the FE strain vector agrees with the orthogonal projection on B* only when the
spurious extraneous force vector vanishes. 37



Lecture 4
Special Topics of FEA

Chapter 2

Error Analysis in
Computational Elastodynamics

A comedy of errors...
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2.1 Finite Element Elastodynamic Equations using
the Principle of Least Action

2
Action | — I L(q.q,t)dt Lagrangian L =T -V
1

Hamilton’s Principle 67 = () for oq(t),  oq(t;)= oq(t,)=0

Lagrange’s Equation for motion

d oL oL
dt dq,; dg;

l

=Q;

Q; = Non—conservative  generalised  force

39



In elastodynamics, the equations of motion are generally derived
in a global sense (with element assembly)

N N N N1 o . , N . N .
L=T-V =T~ QU =2 W |=2 SV IM NS~ 2 (&Y IK NGV = {5°) (F)
e=1 e=1

e=l e=l e=l1 e=1

Element Stiffness Matrix: [K°]= I [B1" [D][BldV

Element Consistent Mass Matrix: [M*]= I [N [pl[N]dV

Element Generalized Force Vector .
(time dependent) : (F)=[INT {f(t)}dV

With element assembly, we get the global form

L=T-V :%{SG}T[MG]{SG}—(%{5G}T[KG]{5G}—{5G}T{FG})

d oL dL
dt dq; dg;

l

=0

Equation of motion

[MONSC Y +[K 69 =(F°} @Y




2.2 Free Vibration Analysis

[M°1{69}+[K“1{67 } ={0} (2.2)

Let {5 G }z 10}sin(w, 1) (2.3)
{[KG]—%Z[MG]}{¢}=0 2.4)
det{[KG]— a)nz[MG]}: 0

Eigenvalue a)l-z,

Eigenmode {¢.},

0) is  natural circular  frequency (rad/sec)

l

41



Orthogonality of the Eigen-modes (Normal modes)

{¢i}T[KG]{¢j}:O i#j, WY IK Ko} =k;
WY mHpt=0 i=j Y MHe}=m,

(2.5)

Natural Frequencies (rad/sec)

k; : generalized modal stiffness for mode i
m;.: generalized modal mass for mode i

>

K. I qi(t)

I_LV\/"\/Vk_TnE‘_y Q(t)

42



Modal coordinate translational degree of freedom

Example 1. Free vibration analysis of a simple cantilever beam using 10 Euler beam elements.

L=1m, b=0.1m, t=0.001m I=2.5x10-7m*, A=3x10-4m?
Density p=2722.77 kg/m3, Mass per unit length of the beam is pA=0.816 kg/m
E=7.1x1010 N/m?,

09r

08r

07r

0EBr

0s5r

04r

03r

02r

01r

O

First bending mode scaled to unity at the end ! Second bending mode scaled to unity at the end ; Third bending mode scaled to unity at the end
+ FEA e (S
+ FEA
i 1 E oaf Analytical B £ oaf a4 Analytical 1
Analytical . = = *
i m
z = 4
] = o8} . = DB ¢ . ]
# - F = %
) . g e o4l .
5 041 N o 0
= =
# i Rl iy g0 S |
= =
| £ N g
. % 023t . g b2y ]
r = : E
T = %, & =3 4
S 04t A i
# S 04} 1 2 Y i
J 2 . | |
# | E el # o, | = 086 »
# 4 08 . . . . . . . . .
il L L L 1 1 L 1 1 -0.8 = = . = = : : . : 1 2 5 4 5 B 7 g 9 10 1l
2 3 4 5 [3 7 B 9 m 1 1 2 3 4 5 6 7 8 s oo Nodal coordinate along the length of the bear(1 Om)
Maddal ranedinata slann the lanath of tha ezl e Modal coordinate along the length of the beam(1.0m)

Table 3.1Comparison of the natural frequencies in bending of the uniform cantilever beam obtained by different methods

Natural Differen Natural Natural
Natural Circular | Natural ¢ Freauenc Circular
Different | Frequenc Frequenc Different FNatura Circular methods fq(Hz) y Frequency
methods y qw Y methods r;q(lllie;)cy Frequency n w, (rad/sec)
S, (Hz) (rad/sec) " o, (rad/sec)
. Classical Classical | 47 5 9.095x103
Classical | ¢ 4915 51831 ; 516935 | 3.248x10° solution
solution . . solution
9.097x103
FE result 82.4836 518.26 FE result 516.935 3.248x103 FE result 1447.83
43




Example 2. Free vibration analysis of an aircraft wing using Euler beam elements.

) 7105 m Leading ?dge
— / »

2.1469

Trailing edge
Root 0.849 m Tip

Fig (a) A typical subsonic aircraft wing

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

| Fig (b) Length of the wing
divided in 22 elements for
FE formulation

of mode

Normalized bending component

Fig 4.3 Normal mode shapes of the wing of the aircraft

(a) First bending mode in y direction (frequency 7.2165 Hz)
(b) Second bending mode in y direction (frequency 21.138 Hz)
(¢) Third bending mode in y direction (frequency 50.405 Hz)

44
(d) First torsional mode (frequency 56.8296 Hz)



Example 3. Dynamic Characterization of an aircraft using a Stick Model

*Beam Model with provision for Bending-Torsion Coupling (Shear Center offset).
*Results for components from in-house code benchmarked with those from detailed FE
model in NASTRAN.

|
——
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HT Anti-Symmetric Mode 10.4 Hz (by Stick Model) and 9.1 Hz (by detailed FE model in NASTRAN)



2.3 Definitions of Inner Products in Elastodynamics

[D]= element elastic rigidity matrix
[ p]= element inertia density matrix.

Stiffness-inner product N°
<a,b>= Y [{a)' [DI{b}dx

ele=1 ele

Stiffness-norm squared value of the vector {a} is given as

ldf =<a,a >

Inertia-inner product (c,d)= Z _[ (Y [ pl{d)dx

ele=l ele

Inertia-norm squared value of the vector {c} is given as

‘c‘z =(c,c)

(2.6)

(2.7)

(2.8)

(2.9)
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2.4 The Rayleigh Quotient

Free vibration of a system in a given mode can be expressed as
U0} ={u(x)}e™ (2.10)

Rayleigh Quotient from exact solutions for displacement and strain
modes uand ¢ H H )
E
W = ] (2.11)
u

Let «" and ¢" be the approximate modal vector and the strain

Vector. Rayleigh Quotient from FEA solution

(2.12)

(wh)Z —

But interestingly (!) for a variationally correct solution,
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2.5 The Error Statements of Elastodynamics

Combining equations (5.6) and (5.7), we get one rule

e e = @?l? - @ u

(2.14)
Error of global strain energy = Error of global kinetic energy

Combining equations (2.12) and (2.13), we get another rule,
valid for variationally correct solutions only,

<€h,€—€h >= (uh,a)zu—(a)h)zuh) (2.15)

Observation: The Errors in Elastodynamics are decided by
both displacements and strains.

48



2.6 The Frequency-Error Hyperboloid

It can be shown that for
variationally correct
formulations,

(2.16)

Fig 1. Geometric interpretation of eigenvalue analysis of the variationally

correct formulation using Frequency-Error Hyperboloid. Approximate

eigenvalues obtained form a variationally correct formulation lie in the shaded 49
portion of the Hyperboloid.



2.7 Why is the approximate Rayleigh Quotient higher
than the Exact one ?
(Valid only for variationally correct formulations)

I/lh gh
d/gu\u )
E
_ (wu” _<ee"> 6. wum ldle"] 1 lele’]
cos(6,) ‘u‘uh ’ (6;) HE‘H‘S}[H 2229: - \Z\‘:h‘ <eel> - > ‘u“uh‘

Hence for variationally
correct formulations

2.17)

» Geometrically, the modal displacement vector suffers less deviation

than that of the modal strain vector. Hence ( a)h)Z
> 1

2
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Example 4: Free Vibration of a Simply Supported Beam

. ~
- L '
Analytical Approximate
Modal Disp. w=asin(zx/L) o (1}@1}
L L
Modal Strain , , z\ . p [ d*w') 2b
8—(—d w/dx )_G(Z) sin(zzx/ L) € 12 12
Eigenvalue 5 A A
@ =71'El/(pAL") (@")? =120*EI /(pAL")
H5H2 _HEhHZ _ a)z\u\z _(wh)z‘uh‘ :ﬂ ﬂ_4 g2 —4p?
|2
h h ho 2 ha2 El 2
<g,e—-€" >=W ., 0u—(w ) u ):4—3(77ab—b )
L
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2.8 Replacement of Consistent Mass by Lumped Mass;

A variational crime L
Example 5. Free Vibration Analysis - )
of a Fixed-Fixed Bar 4 o g
using 2 elements , A (1-a)L

|<—>| <

v

(First Mode Only shown)

36
33 |
30 |
27 +
24
21 |
18
15
12

9:- """" it b

6 .

exact solution

3+ lumped mass
0 1 1 1 1

consistent mass

eigen valuc

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

element length ratio

Any variationally incorrect formulation (with Lumped Mass, Reduced Integration
etc.) that does not conform exactly to the Weak form is variationally incorrect.

Variationally incorrect formualtions - Do not satisfy the Hyperboloid Rule

- Cannot guarantee and upper bound of the frequency.
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Lecture 4
Special Topics of FEA

Chapter 3

Rank Deficiency in elements
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3.1 What is rank deficiency ?

The rank of the stiffness matrix is the dimension of the B subspace
that emerges from the strain-displacement matrix [B], i.e.

Rank [Ke]= dim (B) 3.1)
In the dimension of the B subspace is given by
dim (B)=N-R (3.2)

N= Number of degrees of freedom of the element
R= Number of rigid body motions

To eliminate locking, a reduced order integration effectively converts
the Field-inconsistent [B] matrix into a Field-consistent [B*] matrix, by

simply removing the highest Legendre Polynomial in the field-
inconsistent spurious term of [B].

Using Gram Schmidt algorithm for orthogonal basis vector spanning B*
it can be shown that for some elements

dim (B*) <dim (B) or (N-R*)<(N-R), ie. R*>R 3.3)

Rank [Ke*] < Rank [K¢] because of introduction of spurious rigid body motions

Reduced integration may introduce rank deficiency ez




Rank deficiency of the plane stress Quad 4 element

1,2,3 are rigid body modes . e e
4,5,6 are constant strain modes L

7,8 are bending modes, but cannot =

be sensed by a 1x1 reduced integration

1x1 reduced integration (with sampling
point at element center of zero strain)
effectively considers modes 7 and 8 as
zero energy hour-glass modes (spurious
rigid body motions)

Rank deficiency of this plane stress Quad 4 element is thus 2.

T
17T

(@) (b) (¢) (d)
Figure 6.12-2. (a) Mesh of four bilinear elements, showing Gauss points of an order 1
rule in each element (squares). (b,c,d) Possible mechanisms (‘‘hourglass’ modes).

| IO —

Figure 6.12-1. Independent displacement modes of a bilinear element.

LN
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(W, 0,

i

(W2, 0)

- t

1 L 4
E=1

|

g=1

»l

|

L >

2

[soparametric two-noded Timoshenko beam element

- = . . ~ . s ' *
Two-noded Timoshenko beam element (V; = 4, N/ = 2, N, = 2. Rank deficiency = 0, dimB = dimB = 2)

Rank of K,

Element Integration No. of Dimension of
. - (no. of nonzero N p
type rule : _ Mechanisms BorB
eigen values)
o Full 2 0 2
two noded
- 3 .-)‘
(4 d.o.0) Reduced 2 0 2
(W1, 01) (W, 05) (W3,05)

1$—21—13

E=0 E=1

« L2 —»<«— L2 —»

Isoparametric three-noded Timoshenko beam element.

Three-noded Timoshenko beam element (N, = 6, N/ = 2. N.= 2, Rank deficiency = 0, dimB =

dimB™ = 4)
: Rank of K, : :
Element Integration ¢ o No. of Dimension of
= (no. of nonzero : p
Lype rule : Mechanisms Bor B
g eigen values)
oo o Full 4 0 4
three noded
Reduced 4 0 4

(6 d.o.f)




n
~
3 2
(-1,1) (L,1)
1 > E
-1,-1) (-1,-1)
[soparametric 4-noded rectangular element

: Rank of K., ) .
Element Integration ‘ ‘ No. of Dimension of
‘ = (no. of nonzero R *
type rule . Mechanisms BorB
eigen values)
I:I Full 5 0 5
Reduced 3 2 3

Four noded (8 d.o.l)
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The Mindlin Plate element

Rank Rank of K. . . .. .
: ¢ ¢ Dimension Dimension

. deficiency (no. of iy -
leme Integration rule 5 ‘ of B of B
Element — No. of nonzero <mace cbace
Lype mechanisms eigen values) P SPe
Type [ 45 [4:]
Full 2x2 2 x2 0 9 9 9
71 Reduced | %1 1 5 9 5
. Selective 2x2 | = | 2 7 9 7
Four noded
2x2 2 x| 0 9 9 9

(12 d.o.0 Shear Selective
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Appendix

The basis vectors for spanning
the B subspaces of the elements
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For the simple Timoshenko beam element (Fig. 1a) the element strain vector is given by

{g’“‘} _ [B]{(s*} _ 0 —1/L 0 /L {(5"}
UL (1-872 —1/L (1+8)2

(W, 0)) (W,, 6,)
: i !

1 % 2
E=1 E=1
| L. >

Isoparametric two-noded Timoshenko beam element

Here L is the element length and {5°} =[w,, 0, w,,0,]" is the nodal displacement vector. The space B is
evidently a subspace of the polynomial space P> (linear in &). Applying the Gram-Schmidt process on the
column vectors of [B], we get the normalized orthogonal basis vectors {u,} for the subspace B (of two dimen-
sions) as

{u,}=[0 11" and {w}=[2/L &1

The function space B is a subspace of the space P, which is actually the space R°. It is obtained from [B].
by dropping the highest Legendre polynomial, i.e.. the £ term. Thus,

* —1/L ."'l ;
[B'] = 0 'L 0 I/L
/L 172 -1/L 1/2

The normalized basis vectors for the subspace B™ (again of two dimensions) are given by
* ra * ra
tay b =[0 117 and {u,}=[2/L 0]

So. in this example, using a lower order integration does not bring in a change in the dimension of the [B]
matrix.
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The three noded Timoshenko beam element (Fig. ['b) uses quadratic Lagrangian interpolation functions for
displacement and geometry. The element strain vector is given by

e . 2E-1VL -4 &L 2E VL oo
(0~ [BLST = 0 (2&5-1)1 0 | { ] (2 l]f:tb:
2ENVE —E1-EN2 AEL (1-&8) —(28+1VL &1+5)72
(W, 8 ) (W2 02) (Ws 0 5)
P zl I 3
=1 E=0 E=1

« L/2Z —»<«— L2 —»

Isoparametric three-noded Timoshenko beam element.

Here £ is the element length and {0} = [w, & w., fhow, H:]" 15 the nodal displacement vector. Using the
Ciram-Schmidt procedure on the column vectors of the above matrix. the four orthogonal basis vectors span-
ning the four dimensional subspace B( 5 =/7) are determined as

[0]

:HI:_][]-

25+ 1)L |
{ ) and u._—-ll: T o) l
(3&-1)/6) l(3&~1y6)

dle+5) | kGAL
- i B N
15 12E]
The strain displacement matrix [£] that emerges from using a two-point Gaussian quadrature rule instead of
the necessary three point rule for integration for the stiffness matrix is obtained by first expressing £ in terms
of the Legendre quadratic polynomial as

where &=

E=(GE-1)3+1/3=P,+153

and then dropping the Legendre polynomial £, = 3;':—1 . Thus the matrix [B'] is obtained from the [B]
matrix by replacing 5 by (1/3) as follows

(2E8+ 1)L

{E+(1/3)]

T > |

The normalized basis vectors for subspace B (of dimension 4). as obtained by the Gram-Schmidt process are

[t e ol e 4l
=4 o

= . Iy =+
lo] o

=
-2
r
|
)
=
|

=

|

|

[E%)

|

Iy

|

e =

o
w3 | D0y

o

[S]

'y =

b

y [ !
N [

S0, in this example too, using a lower order integration does not bring in a change in the dimension of the [&]
M atrix.
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For the QUAD4 element (Fig. 2) for plane stress/strain the element strain vector is given by

13

b= {£.5,0) = [B]{&)
(&) = [B]{ &)
(n=1) 0 (I-mn 0 {1+ 0 1+ 0
da da da da
=) I+ &) (1+&) (1=8) |1 51
=l o = o A= LIz e
ab ab ab as |
(&-1) (p=1) (I+& (I-m (1+&) (I+p) (1-5 (1+p)
4b da db da 4b da 4h da

Here 2a and 2h are the sides of the rectangle and { & | = fu, v, o+, " The space B s evidently a sub-
space of the space of polynomials (linear in £ and #). Applving the Gram-Schmidt process on the column
vectors of [8], we get the normalized orthogonal basis vectors {u, | for subspace B as

(-1,1) (1,1)

(-1,-1) (-1-1)

Isoparametric 4-noded rectangular element

F?;—' b(n-1) {(80{12| L)1)
g1 2 2.
iy =4 0 U~ =< Tf‘ ”}:<(8(]b*||ﬂ‘ )(gfl)
- 1~
1 -1 - —_
o 3a
9bt; 354+ H(273 5+ 100)
I 3 3 3
wy =4 ﬁ s =1 —%(7{;'4—20.5')
{30!_;‘ [ 273abé

where

805" +2847)

f=- = L=2400a" E4 b ) - 33a7H(E+ )+ 80a' + 87547 K + 805"

L= (n-1020a7+7hY). 1, = a (420&+ 140) + " b (1649 + 4476E) + 5605

= a (707+608) +H (746 7+ 218

The function space B is a subspace of the space B . which is actually the space R It is obtained from [B].
by dropping the highest Legendre polynomials, ie., the £ and 7 terms. Note that this must strictly be the
higher order term. Equivalently, this means that the number of points required for optimal integration 15
reduced by one. Thus

L 1/'dg 0 |/da 0 1Vda 0 ~lda 0O
B=l o 1apb 0 14b 0 14b 0 1/4b|0}
—1/dh ~1/da -1/4b Vda V4b Vda 1/4b —1/da

. . R . .
The normalized basis vectors for the subspace B are given by

al { b (104-35")]
(0} =400 {w)={ -1ib {“;E:‘(I(lb:%a:)
b] ~la+na)l 26ab

where

4 20+

\Z

So. in this example, using a lower order integration reduces the number of nonzero vectors by 2. as is
. R : .
reflected in the dimension of the [B | matrix.
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For the Mindlin plate element (Fig. 2) the element strain vector is given by

(v =18, 0., 0. +6, d-w, d-w.}"=[B]{5)
() =Bl{5"} =
o =1 a o l—i o o 141 ] ] _l+y o
da da da 4a
] ] =1 i il _Lg i ] 142 ] 1 I-g
4h 44 4k )
) a—1 =1 o 1+ £ -1 o 1+ £ 1+ 1 ) 1-£ _l+g
4h da 4 4a 4h 4a 4b 4
1 £ . N=51-m &£ . (+5(1-g) 14 . (I+A0l+m £-1 (=501 + )
4h 4 44 4 44 4 4k E]
—p =Sl —m a =l 42N T—w) 0 e LS00+ 0 L (1=S0 14+ a
| 4a 4 da + da + e +
Here 2a and 2b are the sides of the rectangle nd | &) = {w, &, &, .. w. £, @17 When the stiffness

matrix is evaluated with full integration. the number of basis vectors of the [B] matrix is 9. Using a selective
integration strategy (2 = 2 for bending and | = [ for shear) to evaluate the stiffness matrix, is equivalent to

replacing the [£#] matrix by the following [£#°] matrix in Eq. (9).

0 n-1 0 0 -7
4a H4a
£-1
1] 0 = 0 -
&h
[B1=[p ! 221 o _Llte
4h da dh
1o, 1L
L3l 4 d4h
T S T |
a4 da 4

-7

da

B

I+ 17 0 0 b+
da da
1+ & 1-&
0 0 4h v 0 dh
0 I+& 1+7 0 1-& l+7n
dh da dh da
[ TP N 1
db 4 db 4
T S T 0
da 4 da 4 |

The subspace £, spanned by the column vectors of the [£°] matrix, has 7 basis vectors so that this integration
rule reduces the dimension of the 8 space and hence is not optimal. A shear selective integration rule corre-

sponds to the following [B'] matrix.

0 n-1 0 0 I-7 0
d4a d4a
o o <t oo o lte
4h 4h
B1=|p <=t 220 o _lig Lo
4h da h 4o
4h 4 4bh 4
-5 (1-n) p-1 (-
_4:3 4 da 4

[ T L
da da
o *& o o L£
4h 4h
leg l4p l-g 1+
4b 4a 4h 4a
T 4

L+ (1+75)
0 — == 0
4 da 4

The comesponding B space is 9-dimensional, which is equal to the dimension of the B space used to evaluate
the stiffness matrix in Eq. (9) by full integration. Thus, a shear selective integration strategy eliminates lock-
ing. without reducing the dimension of the B space.



Some Thoughts

A burning question:
Does Mesh Optimisation Maximize Numerical Entropy?

Y S R

Total Strain
E Analytical Strain Energy with the analytical solution u
nergy remains Invariant (Maximum entropy)
A
/ Optimized mesh corresponds to maximum FEA Strain Energy (with
highest possible entropy with the approximations made).
A <
FEA Strain Energy with the approximate solution u® depends on
meshing (the position of the middle node). Lower entropy than at A.
2 2
el =e’|

Position of
Middle Node.
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Cui bono ? (For whose good ?)
How the best-fit paradigm helps

(a) Gives the exact, but hidden, mechanism of the way the Finite
Element Method works. It shows that computations in FEM

are actually determined in a best-fit manner of the strains (and
stresses), instead of the existing myth that they are based on
displacements.

(b) Helps one to make a priori error estimates for bench mark
problems easily.

(c¢) Helps one to evaluate the quality of the element that he/she
develops. The origins of the pathological problems of elements

can now be understood, diagnosed and eliminated by appropriate
methods.
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When Arts and Science met at the crossroads...

An extract from “ Sanchaita” by Rabindranath Tagore.

wa_cr;’ Cboare  A(G PNHY QA wi‘ﬁ,
PRU L I E2 I

Qs (brac (&S O oy —

)
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e e
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I/
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bt awa, g 3T
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Subspace

W
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Thank You

The Blind Men and the Elephant

And so these men of Indostan,
Disputed loud and long,

Each 1n his own opinion,

Exceeding stiff and strong,
Though each was partly 1n the right,

And all were 1n the wrong!

- John Godfrey Saxe (1816-1887)
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