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ABSTRACT: Numerical simulation of flow through a Variable Mach number Flexible Nozzle (VMFN) 
at Mach 4 is carried out using the CFD code IMPRANS to validate the design of the nozzle based on the 
method of characteristics with boundary layer correction. The CFD analysis for the contour uses an 
implicit Reynolds-averaged Navier-Stokes (RANS) solver with Baldwin-Lomax turbulence model. 
Detailed flow characteristics like the centerline Mach number distribution and Mach contours of the 
steady flow through the converging – diverging nozzle are obtained to study and assess the suitability of 
the design.  
 
1. INTRODUCTION 
  The standard method for the design of a convergent – divergent nozzle to supply uniform flow with the 
design Mach number at the wind tunnel test section is based on the method of characteristics [19] with 
boundary layer correction. However, it is important to check the validity of the design by other means 
before taking up the fabrication of the nozzle, instead of waiting for the actual tunnel measurement. With 
the availability of advanced numerical techniques to solve the full Reynolds-averaged Navier-Stokes 
(RANS) equations, it is now possible to obtain detailed flow field inside the nozzle, which can provide 
valuable input to assess the suitability of the design.  
  The present work describes the application of an implicit Reynolds-averaged Navier-Stokes code 
(IMPRANS), developed at the CTFD division of National Aerospace Laboratories (NAL), Bangalore, to 
the Mach 4 contour of a Variable Mach number Flexible Nozzle (VMFN). The VMFN has been designed 
to augment the testing capability of the existing 0.6m × 0.6m transonic wind tunnel at the National 
Trisonic Aerodynamic Facility (NTAF) of NAL to supersonic range of Mach numbers upto 4.  The 
RANS solver [4-10] is based on an implicit finite volume nodal point scheme wherein a control volume is 
formed by joining the centroids of the neighbouring cells around a nodal point in the computational 
domain. The numerical scheme for solving the two- and three-dimensional Reynolds-averaged Navier-
Stokes equations governing steady and unsteady viscous compresssible flow has been derived 
indigenously by using Euler's implicit time differencing formula with nodal point spatial discretization. 
Certain basic ideas from the implicit finite difference scheme of Beam and Warming [2] and Steger [20], 
the nodal point schemes of Ni [16] and Hall [12], the Runge Kutta time-stepping scheme of Jameson et al. 
[15] and the cell-centered schemes due to Hollanders and Viviand [14] and Hollanders et al. [13] have 
been combined efficiently to evolve the present method. The code has been applied successfully for 
simulating compressible flow around stationary or moving bodies like aerofoils, wings, helicopter rotor 
and wind turbine blades [3-11,18]. The algebraic eddy viscosity model due to Baldwin and Lomax is used 
for turbulence closure [1]. 
 
2. NUMERICAL METHOD 
  The Reynolds-averaged Navier-Stokes equations that govern three-dimensional compressible viscous 
flows can be written in nondimensional conservative form as  
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Here, U is the vector of conserved variables, E, F and G are flux vectors, (x,y,z) is the Cartesian 
coordinate system and t is the time variable. 
Applying Euler’s implicit time differencing formula 
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to equations (1), we obtain 
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Here   is the solution vector at time level n and ( ) ( )tnUtUU n Δ== ( )nnn UUU −=Δ +1  is the change in 

 over time step  In order to facilitate the finite volume formulation, the above equations are written 
in the integral form as  
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where Ω is any three-dimensional flow domain, Γ is the boundary surface and n is the unit vector normal 
to the surface bounding the control volume in the outward direction. 
  In the nodal point finite volume approach [4-10], the flow variables are associated with each mesh point 
(i, j, k) of the grid and the integral conservative equations are applied to each control volume 

obtained by joining the centroids of the eight neighbouring hexahedron cells surrounding the nodal 
point. Application of nodal point spatial discretization to equations (4) leads to 
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where Smx, Smy and Smz are the x, y and z components of the surface vector corresponding to the m-th 
surface of the control volume. Linearizing the changes in flux vectors using Taylor’s series expansions in 
time and assuming locally constant transport properties, equations (5) can be simplified to, after omitting 
superscript n, 
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Here A = ∂EI / ∂U, B = ∂FI / ∂U, C = ∂GI / ∂U, ER = ∂EV1/ ∂Ux, FS = ∂FV2/ ∂Uy and GT = ∂GV3/ ∂Uz are 
the Jacobian matrices, EI, FI and GI are the inviscid flux vectors and EV, FV and GV are the viscous flux 
vectors. 
  It may be noted here that the surface integrals in equations (4) are evaluated by summing up the 
contributions due to the flux terms over the six faces of the computational cell. The terms containing 
inviscid flux vectors are calculated by using the flow variables at the six neighbouring points and the 
derivatives in the viscous flux terms are discretized directly in the physical plane using Taylor's series 
expansions. The resulting block tridiagonal system of equations is solved by using a suitable block 
tridiagonal solution algorithm and proper initial and boundary conditions. A blend of second and fourth 
order artificial dissipation terms [17] is added explicitly to ensure convergence and to suppress 
oscillations near shock waves. Implicit second order dissipation terms are also added to improve the 
practical stability bound of the implicit scheme.  
 
3. NUMERICAL SIMULATION OF FLOW THROUGH VMFN 
  For simulating flow through the Variable Mach number Flexible Nozzle, subsonic inflow conditions are 
imposed at the inlet while the static pressure corresponding to the exit Mach number is prescribed at the 
supersonic outlet. No-slip condition for velocity and adiabatic wall condition for temperature are applied 
at the walls of the converging – diverging nozzle. At the exit, all the variables except pressure are 
extrapolated from the interior. 
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  Computations have been carried out using IMPRANS for both 2-D and 3-D steady flows inside the 
Mach 4 contour of VMFN at a Reynolds number of Re=30 million by employing a 281 × 91 × 91 grid. 
Fig.1 depicts the results for the 3-D laminar and turbulent flows in terms of the centerline Mach number 
distribution and Mach fields on the central vertical, central horizontal and exit planes of the nozzle. Here, 
the centerline Mach number distribution is also compared with the corresponding 2-D result. It is found 
that the exit Mach number for the turbulent case is lower than that for the laminar case due to larger 
boundary layer thickness. This can be more clearly seen from the centerline Mach fields. In addition, the 
3-D case always predicts a lower Mach number than the 2-D case due to larger boundary layer thickness 
in the presence of the side walls. For the 3-D laminar and turbulent cases, the centerline exit Mach 
number is found to be 3.98 and 3.80 respectively. The thick boundary layer for the turbulent case, as seen 
from the figure, not only reduces the exit Mach number, but also reduces the region of maximum Mach 
number in the exit plane. The mid-plane vertical distributions of flow variables at different axial stations 
are shown in Fig.2 for the turbulent flow case. As expected, the Mach number, temperature, density and 
axial velocity profiles display variations only near the upper and lower walls of the nozzle but remain flat 
for most part of the cross section. The available uniform flow area also decreases as one proceeds 
downstream due to growing boundary layers on the walls and turns out to be about 25% of the tunnel area 
at the test section. 
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Fig. 1 Mach number distribution along the centerline and Mach fields on central vertical and horizontal planes and
the exit plane of a Mach 4 nozzle for Re = 30 million 
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Fig. 2 Mid-plane vertical distributions of important flow characteristics at different axial locations.
                                              Turbulent flow with Re = 30 million.

Fig. 2 Mid-plane vertical distributions of important flow characteristics at different axial locations 
for turbulent flow through Mach 4 nozzle at Re = 30 million 
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