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Nomenclature

C, Cij = controller transfer function, i, j element of C
de, da, dr = elevator, aileron, and rudder surface deflections
Fk = kth second-order filter section
fs = sampling frequency
mx = variable magnitude for sensor x
Nz, Ny = normal, lateral acceleration
P, Pij = plant transfer function, i, j element of P
p, q, r = roll, pitch, and yaw rates
w, wc = frequency variable, critical frequency
wx = weight factor for sensor x
Xenv = envelope for sensor X
XF, XNF = filter (notch filter) for sensor X
�n, �d = damping of the numerator/denominator
!n, !d = natural frequency of the numerator/denominator

I. Introduction

T HE term “structural coupling” refers to the interactions between
the flight control system (FCS), the structural dynamics, and the

airframe aerodynamics. The FCS motion sensors will sense not only
the rigid-bodymotion of the aircraft but also theflexiblemodes of the

structure on which they are mounted. These high-frequency signals,
if not properly attenuated, could be amplified in a closed loop and
could lead to instabilities at the structural frequencies. The desire for
increased agility and lightweight structures has reduced the gap
between the rigid-body and structural frequencies; hence, structural-
coupling effects have become more pronounced. Additional notch
filters are introduced in the sensor feedback paths to attenuate the
effects of structural coupling. Special ground tests called structural
coupling tests (SCT) are carried out on the fully equipped aircraft to
quantify the structural modes picked up by the inertial sensors, and
these experimental data are used for the design of the notch filters.

This paper describes the design of the structural notch filters for a
generic fighter aircraft with an emphasis on minimizing phase lag at
rigid-body gain crossover frequency, which is typically around 1Hz,
while meeting the structural stability gain margin requirement of
8 dB (gain stabilization) as stated in MIL-F-9490D [1]. These notch
filters can introduce significant phase lag at the rigid-body gain
crossover frequency, which affects the stability of the rigid-body
dynamics, and hence the additional phase lags are minimized. It is
assumed that the structural modes are sufficiently separated from
rigid-body modes, thereby making gain stabilization feasible.

In [2], a suboptimal strategy for the design of notch filters for the
coupled lateral/directional axes of an aircraft was presented. The
conventional design methods are mostly based on trial and error or a
loop-by-loop design and often lead to a very conservative design.
Mehra et al. [3] and Le Garrec and Kubica [4] discuss methods of in-
flight structural mode identification for adaptive notching of
structural modes. However, traditionally one relies on the results
obtained from structural coupling tests to obtain the structural modal
parameters, followed by an offline design of notchfilters.Mehra et al.
[3] and Halsey and Goodall [5] present an alternative approach using
Kalman filtering to estimate the rigid-body component from the
sensor measurements. However, this method relies on the accurate
knowledge of the rigid-body modes. Hoffmann [6] used genetic-
evolutionary algorithms for designing notch filters for one sensor
path with an assumed number of filter sections.

In this paper, a novel approach to the design of the structural notch
filters in the presence of coupling between all three axes is proposed.
The notch-filter design problem is formulated as a two-step
optimization process. The first step finds the optimal attenuation
required (at each discrete frequency point) in each of the sensor paths
while meeting the stability margin requirement for gain stabilization.
These are collated over the frequency range to generate “optimal”
attenuation envelopes. The theoretical minimum phase lag for these
attenuation envelopes can be easily computed using the famous
Bode’s gain-phase relationship. This significantly accelerates the
entire design process by facilitating a multi-objective tradeoff in
systematic design exercise. The second step involves the design of
individual notchfilters for the various sensor paths so as tomeet these
optimal attenuation envelopes while minimizing the phase lag at
1 Hz (rigid-body gain crossover frequency) contributed by these
filters. The effect of the number of filter sections in a sensor path and
the resulting phase lag has also been studied. This work is an
extension of our results presented in [7].

II. Structural Response and Bounds on Gain Margins

The controller inputs are the five plant outputs, namely, the pitch
rate (q), normal acceleration (Nz), the roll rate (p), the yaw rate (r),
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and the lateral acceleration (Ny). The controller outputs are
the elevator, aileron, and rudder deflection commands (de, da,
and dr).

The servo-elastic structural response data measured in SCT
consists of 15 transfer functions from the three control inputs to the
five sensor outputs. Typical worst-case structural response plots
across all the tested configurations for the elevator excitations are
shown in Fig. 1. It can be seen that themagnitude of the cross transfer
functions (i.e., de to p) is of the same order as the direct transfer
functions (i.e., de to q and de to Nz). A combination of analog and
digital notch-filter sections is provided in the acceleration and rate
sensor paths. An analog notch-filter section is required to cater for the
attenuation requirements in the band 30–50 Hz, in which the
performance of the digital filters degrades significantly around half
the sampling frequency (40 Hz).

The structural model of the aircraft (P), the notch filters (placed in
sensor feedback paths), and the controller (C) are shown in Fig. 2.
The margins are calculated (as per MIL-F-9490D) by breaking the
loop at one sensor/actuator consolidation point at a time with the
remaining loops closed. The figure shows a schematic for obtaining
the pitch rate sensor margin by opening the loop at the pitch rate (q)
sensor with all the other loops closed. Gain margins for the other
loops can be similarly evaluated by opening one loop at a time with
the other loops closed.

As discussed earlier, the notch-filter design is intended for gain
stabilization, and hence a tight bound on the true gain margin using
only the magnitude information is required. The bounds on the
structural stability margins in the actuator paths are computed using
the method proposed in [7] for the case of three inputs and three
outputs (the 3 � 3 case). The sensor stability margins require results
for the 5 � 5 case. Let the loop transfer function be given byL, which
has the following form:
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The transfer function from �q� to �q0� �Gqq0 � has to be evaluated with
the �Nz p r Ny � to �Nz0 p0 r0 Ny0 � loop closed. The
bound on jGqq0 j can be obtained in two steps by closing two loops at a
time, reducing it to two 3 � 3 cases.

The 3 � 3 transfer functionG from � q Nz p � to � q0 Nz0 p0 �
with the � r Ny � to � r0 Ny0 � loops closed is given by
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where
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Using results from [7] for the 3 � 3 case, it follows that if the
following conditions are satisfied

jL44j �
jL54jjL45j
1 � jL55j

< 1 (1a)

and

jL55j< 1 (1b)

then

jGkl�Lij�j 	 Gkl�jLijj�; for k; l� 1; 2; 3

Because the magnitudes of Lij’s for each frequency are known, one
can easily calculateGkl�jLijj�, and thiswill be a bound on jGkl�Lij�j if
Eq. (1) is satisfied. Next, if

jG22j �
jG32jjG23j
1 � jG33j

< 1 (2a)

and

jG33j< 1 (2b)

one can compute a bound on the magnitude of the Gqq0 transfer
function with the �Nz p � to �Nz0 p0 � loop closed as well.

Note that the conditions (1) and (2) are not very restrictive and are
satisfied in general for the problem of designing notch filters for gain
stabilization. From a small gain theorem, the conditions (1b) and (2b)
imply that the system is stable with only the third loop closed. This
should normally be valid because only scalar sums are considered.
Similarly, the conditions (1a) and (2a) imply that the system is stable
with the second and third loops closed (in terms of scalar sums). This
is also expected to be true in general.
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III. Structural Filter Design Process

This section presents the two-step process for notch-filter design.
The design proceeds by first finding out the optimal attenuation
envelopes in each sensor path. In the second step, the individual
notch-filter sections are designed for the optimal attenuation
envelopes while minimizing the phase lag introduced by the notch
filters at the rigid-body gain crossover frequency (
1 Hz).

A. Step 1: Design of Optimal Attenuation Envelopes

1. Weighted Attenuation

Let the attenuation required in each sensor path at a frequency �wk�
be denoted by

Xk � �mq; mnz; mp; mr; mny �

For a set of constant positive weighting parameters

W � �wq; wnz; wp; wr; wny �

the sum of the weighted attenuations is minimized at each discrete
frequency point. The constrained optimization problem may be
stated as follows: For each w�wk, find an Xk that minimizes
�W�Xk�, subject to all actuator and sensor margins � 8 dB.

Optimal attenuation envelopes are obtained by collating the
optimum attenuations at each frequency. Thus, for every set of
weighting parameters, a set of optimum attenuation envelopes can be
found out. The phase lag introduced by the notch filters in each of the
sensor paths at 1 Hz can be readily found from the corresponding
attenuation envelopes using Bode’s gain-phase relationship [7]. The
weights are adjusted in an iterative fashion to obtain acceptable phase
lags in all the sensor paths. A few typical steps from the full design
process are shown in item A in Table 1. The phase lag introduced by
the notch filters in each of the sensor paths is also presented. The
weights in items A.1 and A.2 in the table are selected as 1.0 for a
specific channel and 0 for all the others. This gives the minimum
phase lag attenuation required in the specific channel.

2. Variable Weights

The preceding method uses constant weights for obtaining the
optimal attenuation envelopes. It is obviously possible to vary the
weights in the cost function with frequency. At any discrete
frequency point, “partial” phase lag contribution (at 1 Hz) can be
computed from partial attenuation envelopes constructed using
results available for all lower frequencies and assuming zero
attenuation for all higher frequencies. The exponential of the
weighted partial phase information can be used as weights for the
current frequency point. If a particular sensor channel has a large
partial phase lag as compared with the other channels, then the
incremental phase increase in this channel should be minimized
while letting the phase lag in the other sensor channels increase so
long as it is possible tomeet the design constraints. If the partial phase
lag in all sensor channels till a frequency point wk is represented as
�k � �’q ’nz ’p ’r ’ny �k, then the minimization problem is

restated: For each w�wk, find an Xk that minimizes
�exp�W��k�1����k�Xk� ��k�1��, subject to all actuator and sensor
margins � 8 dB.

The results are presented in item B of Table 1. The choice of the
constant weight �W� is user selectable and may be varied to weigh
specific sensor channels as deemed desirable for the problem at hand.

B. Step 2: Design of Individual Filter Sections

The values of the optimal attenuations over the entire frequency
range generate five envelopes asQenv, NZenv, Penv, Renv, and NYenv,
with an associated theoretical limit of the minimum phase lag
achievable at 1 Hz, as discussed in the previous section. Figure 3
shows a plot of computed attenuation requirements of four digital
notch filters in the inertial sensor paths. The dashed lines represent
the optimal attenuation envelopes in the figure. Individual notch
filters for each sensor path are designed with multiple filter sections
to minimize the net phase lag at 1 Hz and simultaneously satisfy the
optimal attenuation envelope constraint. Each filter section is
represented as a second-order filter

TF� �1=!n�
2s2 � 2��n=!n�s� 1

�1=!d�2s2 � 2��d=!d�s� 1

where !n and !d are the numerator and denominator frequencies,
and �n and �d are the numerator and denominator damping
coefficients. For example, the kth second-order filter section requires
four parameters (Fk � �!n; �n; !d; and �d �k) to be tuned.
Thus, theQ-structural filter design problemmay be posed as follows:
Find F� �F1; F2 . . .FN �, corresponding to the Q filter
�QF � F1; F2 . . .FN �, where N is the number of filter sections.

Table 1 Weight selection and corresponding phase lags in each sensor path

Phase lag calculation at all sensor channels using Bode’s integral
Phase lag at 1 Hz

Serial no Cost function q Nz P R Ny

A Weighted attenuation �W�Xk�
1 � 1 0 0 0 0 � 10.34 67.12 69.99 57.72 66.55
2 � 0 0 1 0 0 � 66.83 60.62 8.766 62.62 49.955
3 � 1 1 1 1 1 � 14.67 1.27 11.49 4.22 2.12

..

. ..
. ..

. ..
. ..

. ..
. ..

.

4 � 1 0:065 0:45 0:08 0:008 � 11.797 10.80 10.333 6.42 9.13

B Variable weights exp�W��k����k�1 � �k�
1 � 1 1 1 1 1 � 11.99 8.78 10.70 8.79 6.74
2 � 1:27 0:93 1:14 0:93 0:72 � 11.64 11.728 11.14 11.35 10.77
3 � 1:31 0:97 1:12 0:94 0:68 � 11.60 11.735 11.38 11.53 11.28
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Fig. 3 Notch filters in sensor paths vis à vis required attenuation.
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The minimum phase lag at 1 Hz �X� is subject to the following:
1) QF <Qenv: The attenuation of the designed filter is more than

the optimal envelope.
2) �n < �d: Each filter section looks like a notch.
3) jFij< 10 dB, for i� 1; 2; . . . ; N: Thefilter bounce back at high

frequencies is limited.
4) jQFj< 0:01 dB: The overall signal amplification is limited.
This optimization problem is solved using standard MATLAB®

routines. The results for some notch-filter designs (with combined
digital and analog filter sections) are presented in Fig. 3. The solid
lines are obtained from the filter design exercise. It can be seen that
the filter frequency response grazes the attenuation envelope as
closely as possible, especially at lower frequencies. The gain plots of
the individual filter sections for theQF are shown in Fig. 4. From the
plots it can be observed that the low frequency gain of each filter
section is 0 dB. This ensures noninterference with the control law
gains over the rigid-body bandwidth. The actuator margins are
evaluated after designing all five structural filters, as presented in
Fig. 5, and show that the military specification for the structural
frequency range is satisfied.

C. Selection of the Number of Filter Sections

The individual notch-filter design was carried out with multiple
filter sections in each of the five inertial feedback (q, Nz, p, r, and
Ny) channels. The variation in the additional phase lag at 1 Hz
introduced by theQ-structural filter with the number of filter sections
is shown in Fig. 6. It is observed that as the number offilter sections is
increased, the phase lag approaches the theoretical phase lag in the

limit. This can be used as a guideline in selecting the number of filter
sections. In practice, the number of filter sections required can be
frozen when the addition of one more section does not improve the
phase lag significantly.

IV. Conclusions

An elegant two-step process for the optimal design of notch filters
for a multi-input, multi-output system with significant interaxis
coupling to achieve gain stabilization is presented. The design
emphasis is on minimizing phase lag at rigid-body gain crossover
frequencieswhilemeeting the structural stabilitymargin requirement
of 8 dB as required by MIL-F-9490D. In the first step, the optimal
attenuation envelopes are obtained by trading off phase lags between
the various sensor channels. The individual notch filters for each
sensor path are designed in the second step. The use of Bode’s
integral to estimate the theoretical phase lag from the gain response
of a filter significantly accelerates the first step and also helps in
identifying the optimum number of filter sections required in each
sensor path. A priori knowledge of the number of filter sections in a
sensor path is not required; instead, it can be selected based on a
tradeoff study between the computational load and an acceptable
phase lag.
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