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Pattern Synthesis Studies for Planar and Non-planar Conformal Arrays

1. Introduction

Phased array antennas are being used in various fields, viz. radio and microwave
communication, radio astronomy, space and terrestrial telecommunications. Irrespective of
the spatial distribution of the antenna elements, beam of phased array can be steered by the
phase variations along the array. The maximum gain can be achieved depending on the array
configuration. However these antenna arrays have limited angular range of scanning. Further
for small platforms such as unmanned aerial vehicles (UAV) and fighter aircraft, phased
array antenna having high directivity cannot be mounted because of their large size and
weight. Conformal arrays, one of the general types of phased arrays offer a possible solution
to these problems. Conformal array antenna assumes the shape of the structure/platform, viz.

aircraft, missiles, ships. They generally belong to the class of non-linear arrays.

A modern concept for the use of conformal array is termed as smart skin, in which the surface
of a platform is covered with antenna elements forming an array (Drabowitch ef al. 2005).
Conformal arrays offer several advantages over the conventional phased arrays that includes

the following:

1. Since the antenna elements are mounted along the surface, there is no aerodynamic
drag. In other words, conformal array provide aerodynamic shape compatible with the

corresponding platform.

2. The conformal design yields potentially greater effective aperture for the same class

of platform.

3. Payload weight gets reduced. No rigid support of radome is necessary. Furthermore
the error in scan angle that occurs with a radome in a linear or planar array is

eliminated or reduced.

4. A conformal antenna design can provide 360° coverage without any mechanical

rotation of antenna array.

5. The signal environment of the antennas is, in general, very complex. [t consists of
multiple desired signals coming from various directions with different frequencies and

polarizations along with natural or deliberate interfering signals (jammers/ hostile



sources), multipath, etc. Conformal arrays offer improved I'Iexibility while extracting

the useful information.

In general, conformal array have non-uniform element spacing and a non-planar shape due to

which many complications arise such as
1. The loss of certain desirable bearu pattern characteristics.

2 Since the array is three-dimensional it may be difficult to ensure that all the elements
radiate the same polarization. One may suggest to use circular polarization, but it is
difficult to obtain an element pattern that remains perfectly circularly polarized over a

wide range.
3. A non-uniform magnitude of the spatial steering vector.
4 Itis difficult to etch elements on singly- or doubly- curved surfaces.

Such complications can severely degrade the performance of the antenna array. This opens a
novel area of interest for the researchers. In the present report, simulation study for the
pattern synthesis of circular aperture, circular arrays, hexagonal arrays and cylindrical arrays
is carried out. Simulated results are validated against the literature. Starting form the most
basic continuous circular aperture, pattern is synthesized using different excitations (Section
2). Simulations are then extended for the circular aperture with discrete antenna elements
(Section 3) excited with different amplitude distributions, viz. Taylor, Dolph-Chebyshev and
Villeneuve weighting. The concept of phase mode excitations is employed for the generation
of the beam pattern. In Sections 4 and 5, pattern synthesis of circular sector arrays and the
hexagonal arrays respectively is presented. Section 6 consists of simulations on cylindrical

arrays excited with the Dolph-Chebyshev and Villeneuve weightings.



2. Continuous Circular ALerture

Circular and cylindrical arrays are used in applications that require coverage over the full
160° of azimuth with little variation of sidelobe level or beamwidth. They have potential of
usage w.r.t. operation over wide bandwidths. The circular arrays are preferred choice for
direction finding applications. This is due to the wide-spaced elements that give a high
sensitivity of differential phase-to-signal direction. However they are found to be not so good

for forming low sidelobe beams.

The basic symmetry of circular arrays offers several advantages, which in addition to 360°
scan angle, include an ability to compensate for the effects of mutual coupling by segregating
the array excitation into a series of symmetrical spatial components. Further its directional
patterns remain constant in shape over broad bandwidth. Other circular array applications
include Wullenweber arrays for direction finding, wide bandwidth communication arrays,
wrap-around antennas for shipborne communications, spacecraft antennas, and null-steering
antennas for mobile communications.

For one-dimensional (or linear) apertures, the uniform distribution and the Taylor equal-
éidelobe distribution are widely used. The uniform aperture of length L produces (sinme)/ mu
.pattem, where u=(L/A)sin@, with 13.26 dB sidelobe ratio. The wavelength A and the angle ¢

are measured from broadside.

2.1 Uniform Weighting

The circular antenna arrays are excited so as to arrange the signals from all the elements to
add together in phase for a single mainbeam direction. The circular apertures (Fig. 2.1)
provide the limiting case for most of the array configurations such as the concentric circular

array, hexagonal arrays etc. ¥

A

Figure 2.1 Geometry of a circular aperture of radius R.
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Figure 2.2 Wave front arriving at circular array from direction &.

Assuming the mainbeam direction at §=0°, the excitation at angle ¢ around the array of

radius » (Fig. 2.2) is given by
2w
F(¢) = exp(;icosgﬁ] (2.1)

For a circular array with isotropic elements and very small inter-element spacing, the

normalized pattern (Rudge et al. 1983) in the elevation plane is expressed as

1 °% {2
D) =5~ OjF(mexp;(Tcosw—e)Jd;b (2.2)
Thus,

¥ BJ (2.3)

D{6)=J,| —sin—
(6) 0( PR
where, D(0) is the directional pattern, J,(x} is the zero order Bessel function, & is the angle

measured with respect to the horizontal axis and A is the free-space wavelength.

Figure 2.3 shows the azimuth plane pattern of a phase-compensated circular array having a
continuous aperture distribution with no amplitude tapering. The diameter of array is taken ta
be 52. The computed results are validated against those available in literature (Rudge et al.
1983). It can be observed that the pattem consists of high near-in sidelobes (-9 dB). The
beamwidth of the mainlobe is narrow as compared to a corresponding linear array of length
equal to the diameter of the circle (Fig. 2.4). The reduced beamwidth and multiple sidetobes
are due to increased concentration of the clements at the sides of the circular aperture as
compared to a linear array. The low sidelobes can be obtained by means of symmetrical

amplitude taper on the front half of the circular array with zero or low excitation on the back



of the array (James 1965). Beam sLering of'this pattern can be achieved by electronic control

of both amplitude and phase of each element.
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Figure 2.3 Validation plot for azimuth plane pattern of a phase-compensated circular
array of diameter of 54: a continuous aperture distribution with no amplitude lapering.

(a) Computed plot (b) Reference plot {Rudge ef a/, 1983}
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Figure 2.4 Comparison of beam pattern of linear array and circular array with
continuous distribution. The length of finear array is equal to the diameter of the
circular array (51).

The corresponding elevation plane pattern (Fig. 2.5) is given by
2mr
D(a:):.fo T(l—cosa) (2.4)

where, D(c) is the beam pattern in vertical plane and « is the angle in the vertical plane. The
computed results are validated against the literature (Rudge et al. 1983). It can be observed
that the beamwidth in elevation plane is large. Since this is equivalent to end-fire position for
a linear array. This provides wideband performance, as the mainbeam is a function of J,(x),
which is not a function of frequency. Moreover this demonstrates that single ring circular
arrays provides a fan beam for 360° coverage and thus have application in surveillance radar.
However on¢ cannot have independént control of the horizontal and vertical beamwidths. If
amplitude tapering is incorporated for achieving low sidelobes in the horizontal plane, the
vertical plane pattern will have broader beam. However in both the planes the sidelobes

decay monotonically.
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Figure 2.5 Validation plot for efevation plane pattern of a phase-compensated circular array of a
diameter of 54; a continuous aperture distribution with no amplitude tapering. (a) Computed plot
{b) Reference plot {Rudge ef al. 1983)



l‘igure 2.6 tepresents the normalized beam pattern of the circular aperture in xy-plane for
R/n= 10. The pattern is synthesized with uniform weighting. The beam patiern (Trees 2002)

is given as B(f) =287 ACH) (2.5)

R

where, u, = 27Rsin9 and R is the radius of circular aperture. Since », contains a factor of R
the visible region is 0 <u, <2R/\ Using ug= ¥4/'7, the visible region can be writlen as
0 <y, <27R/\

The simulated results are validated against the literature (Trees 2002). It can be observed that
height of first sidelobe is —17.6 dB (approx.). On comparison with a square aperture of the
same area, the circular aperture has a slightly larger 3-dB beamwidth, but the sidelobes are

significantly lower (-17.6 dB versus —13.4 dB).

2.2 Taylor Weighting

Taylor (1960) developed a procedure for the pattern synthesis of a circular aperture. It is a
slight modification of the method used for line sources. The Taylor distribution has a pattern
in which all the sidelobes are of equal level (Taylor ideal line source) or in which # sidelobes
are of equal level (Taylor approximate line source), 7 being the transition index. The Taylor
pattern is the continuous equivalent of the discrete Dolph-Chebyshev array distribution. It

offers the narrowest possible beamwidth for a given sidelobe ratio.

Relating a parameter H in terms of sidelobe ratio, SLR = 17.57 + 20 log —I'(—EH—) , the Taylor
I
pattemn for circular aperture (Hansen 1976) can be obtained as
2 2
i - H foru =H (2.6)

aNut -H?

21 !Fl‘\c'H —-u )
foru =H 2.7)
aNH? —u’
where, J; and /; are the Bessel and the modified Bessel functions of the first kind and order

one.

Figure 2.7 describes the Taylor pattern for a circular aperture of aperture length 10A and
sidelobe ratio of 30 dB. Here the value of H is taken as 1.1977 for SLR corresponding to
30 dB. The computed plot is validated against those available in open literature (Hansen

1976).



h Y .
B | £ ok b ok EEECEE PR PR

Vi .........
| \ :_H A ; ‘ s 5
Hit (i

I H: If Ill U
0 2 4 6 8 10 12 14 16 18 2

Beam pattern (dB)

1 1

[d%] (%]

Cr> o
T

e

SRS
=SSen
N

b i

0 T T T T Y T T T
Y. T
— 20 -
03]
2
c
T
2 ;
W -ar o .
Qa :
E :
o X ]
rg : ]
40
60 ; L
[+] 2 4

Figure 2.6 Validation plot for beam pattern of a circular aperfure with radius of R/iA = 10; 0 =<u <2R/
The uniform distribution is employed. {a) Computed plot {b) Reference plot (Trees 2002).
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Figure 2.7 Validation plot of Taylor pattern for a circular aperture of length 104 and sidelobe
ratio -30 dB. (a) Computed plot (b) Reference plot (Hansen 1976).
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3. Circular Arrays

A circular array consists of equally spaced N-clements placed in a circular ring (Fig. 3.1). It is
of particular importance because it is also a basic element of cylindrical arrays and even

conical and spherical arrays, or arrays on generalized bodies of revolution.
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Figure 3.1 Geometry of a circular array.

For a circular array with isotropic elements, the array weighting corresponds to the sampling

of continuous aperture weighting. For the generation of the M spatial harmonics, the number

of the elements, according to the sampling theorem, should be N 2 2(?}& 1, where R is

the tadius of the circular aperture. This implies that the spacing between the elements on the

arcisdsi.
2

The pattern characteristics of circular and cylindrical arrays cannot be expressed as the
product of an element pattern and the array factor. This necessitates the consideration of the
array patterns with directional elements. Moreover the mutual coupling between the elements
narrows the element pattern, so in practice, omnidirectional elements cannot be designed.
Although it is true for planar arrays, it is much more important in conformal arrays. This is
because all the elements in conformal arrays point in different directions. The interaction
between widely separated omnidirectional elements results in narrowed pattern and very
limited bandwidth. Thus, if the array is designed using elements that radiate primarily in the
radial direction, or in some forward sector, the characteristics of circular array will be

substantially different and the bandwidth will also be improved (Mailloux 2005).
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3.1 Circular Arrays with Uniform Excitation

The beam pattern ( Trees 2002) of the circular array with uniform distribution is given by
N-i
B(0.9)= Y w, expljk,RsinOcos(¢ - ¢,)+ jB,] (3.1)
n=0

where S, is the phase {actor with tespeci to the origin, expressed as

B, =-k,Rsind, cos(géo -@, ) (3.2)

If the main response axis is steered, it is convenient to define new set of variables. Thus,

rewriting eq(3.1), we have

B(9,¢) = Z_a),r exp| jk,pcos(é - @, ) (3.3)

t
where, p= R[(sin Ocosg—sinf, cosd, ) +{sin@cosg —sinf, cosg, )i F

sin#cos¢ —sin G, cosg,

cosé = ]
[(siné) cosg —sinf, cosg, f + (sin fsing —sing, sing, )2]5

For uniform excitation and equally spaced elements, @, = 71!— and ¢, = %ﬂz .
The resulting beam pattern is
B(9,¢;): meNe_ijgij(kop) (3.4)

The beam pattern of a uniform circular array with 2zR, =10 for the §,=0 is shown in Fig. 3.2
Two cases, viz. ¢=0and ¢= % are considered. Thus the beam patterns reduces to

BO,4)= 3 j™e ™5,k Rsin®) (3.5)

m=-«

The number of elements in an array is varied (N =10, 20, 25) and the resulting pattern is

obtained. Figure 3.3 shows the beam pattern for a uniform circular array steered to broadside,

. 3 )
ie. for ¢ = % or _éz It also consists of the beam patterns for N = 10, 20, 25 antenna

elements. It is observed that the mainlobe width is not affected by increasing the number of
elements in circular array. The computed plots are validated against those available in open

literature (Trees 2002).

12
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Figure 3.2 Validation plot for beam patterns of uniformly excited circular array steered to broadside,
¢ =0and & with N =10, 20, 25. (a) Computed plot (b) Reference plot (Trees 2002).
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Figure 3.3 Validation plot for beam patterns of uniformly excited circufar array steered to broadside;
¢ = x/2and 37/2 with N = 10, 20, 25. (a) Computed plot (b) Reference plot {Trees 2002).
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3.2 Phase Mode Excitation in Circular Arrays

In circular arrays, omnidirectional patterns arc often synthesized in terms of a spatially
orthogonal set of phase modes. Davies (1965) showed that phase modes may be treated in the
same way as the elements of a uniformly spaced linear array, and all the techniques
developed for linear array pattern synthesis may be applied to the circular array subject to the
comments as follows:

1. Phase modes are omnidirectional in azimuth, so the elements are also
omnidirectional. The radiation pattern of the circular array cotresponds to the
array factor of the linear array.

2. Phase modes are orthogonal (since they are the outputs of a discrete Fourier
Transform), so there is no mutual coupling.

3. The radiation pattems have the same shape (in @-space) as those formed by a
linear array (in kdsiné-space) with an inter-element spacing of half-wavelength,
independent of frequency.

A far-field nth-order phase mode paitern is defined as having constant amplitude and a phase
varying linearly from 0 to 2nm The nth-order phase mode may be generated in the far field

by exciting a corresponding nth-order current phase mode on the array.

In the Butler-matrix-fed circular array, the beam is scanned through 360° by changing only
the phases of the matrix input currents. The Butler matrix inputs are used to feed the antenna
elements forming a narrow radiated beam. This beam can be scanned usually like the linear

array beam by the operation of phase shifters alone.

The operatton of this multimode array can be described in terms of phase modes (Drabowitch
et al. 2005). This involves the distribution of currents impressed on the radiating elements by
the matrix. However the radiation patiern of the multimode array varies as it 1s scanned
continuously rather than in discrete steps. For continuous scanning of a multimode atray, the
mode amplitudes are held constant and a linear phase progression is set up on the mode
inputs by operating the variable phase shifters. All these modes have far-field patterns. In an
N-element array the highest order mode (K=N/2) has an element-to-element phase variation
of mradians. For example, in the array of the dipole elements around a cylinder, the mode

pattern is obtained by summing different number of modes.

Let us consider a continuous circular array {(ie. one with an infinite number of

omnidirectional elements and negligible inter-element spacing). The excitation of an array F

15



can be taken as a periodic function of azimuth angle 6, of period 27, and can be exprered as
a Fourier series

F(@)= icm exp(jm8) (3.6)

m=—N

Each term of the series is known as a phase mode, and Cp 15 the corresponding phase moae
coefficient. It can be seen that a zero-order phase mode (m=0) corresponds to an excitation of
constant phase as a function of azimuth angle. The first order phase mode (m=1) corresponds
to one cycle of phase over 360° of azimuth. The negative-order phase modes simply

correspond to the phase variation in the opposite sense.
When an array is excited by a single phase mode, the far-field pattern Dr( &) will be
D (8)=C, j"J,(k,r)exp(jm8) 3.7

The far-field phase modes are omnidirectional in azimuth, but each having the characteristic

variation of phase with azimuth angle similar to the corresponding excitation phase mode.

When a discrete atray is analyzed, the same theory applies, but the excitation function F(8) is

sampled at the element locations by a sampling function S(6). For an » omnidirectional

elements
=33 ) oo -1
S@) = exp(ing0) =1+ 3 cxp(jngf) + D exp(jng0) (38)
g=-— q:l g=-0
giving
. o
D (@& =C,j"J (k,r)exp(jmb}+ Z C,JEJ (k1) exp(—jgd) + Z C_j"J,k,ryexp(-jht)
g=1 g=—=
(3.9)

where g=(ng-m) and h=(ng+m).

The first term is identical to that for a continuous array. The two series terms represent ripple
terms as a function of €. As a rule of thumb, the inter-element spacing should be no greater
than half-wavelength in order to keep the spatial ripple acceptably low. For an N-element
array, it is possible to have N+l phase modes, though the +N/2 and -N/2 phase modes are
actually identical. The discrete Fourier Transform to generate the phase modes from the
element signals is conveniently provided by a Butler matrix. A plane wave incident on the

amay will excite all the phase modes simultaneously.

16



. . . . 2
Let us consider a circular array of radius R with N elements equally spaced at «, = Y

where J=1, 2, ....N. The radiation pattern of the array (Sheleg 1968) is given by

N
E(¢)= Z{ZBK‘EMK ejJK(2:rﬂ'N):|A(¢ ~a, )e,-‘{zmu)cos(wa,) (3_10)

J=1 K

The approximate pattern of the dipole in front of a cylinder is
A(¢)=%(l+cos¢) (3.11)

The mode amplitudes By are held constant (B¢ = 1) and with phases corresponding to those
in Table 3.1.

TABLE 3.1
The phases of the pattern modes of a 32-element array (Sheleg 1968)
Mode Relative Gain Relative Phase at ¢ = 0
(in dB) (in degrees)

0 . 0.0 0.00

1 0.2 0.74

2 g | 0.1 7.51

3 0.2 14.63

4 : 0.2 2927

5 0.0 44.63

6 ) 0.5 63.06

7 (0.2 91.93

8 0.5, 11535

9 0.8 144.56
10 1.0 ;168.45
11 -0.5 -128.07
12 0.7 -105.74
13 3.5 -35.18
14 5.1 2091

15 5.6 120.92
16 5.6 -172.05

17



Figures 3.4 illustrate the mode-by-mode build-up of the pattern of a 32-element array with
uniform excitation of the modes. The spacing between elements is considered as 0.5\ The
results are shown for the modes correspondingto K =0, £ 1,+2, ...... , = 15. [t can be seen
that the beam narrows as more modes are added and until + 11 modes are reached, the far-out

sidelobes decrease as if the modes are perfect.

As already mentioned, the multimode array mvolves the continuous distribution of current.
The radiation pattern is the sum of the modes contribution made to the pattern of a circular

array by its elements. The resultant pattern of a continuous current sheet is expressed as,

Sm[zN+1(¢_¢o)}

E@)-——-

(3.12)

where, ¢ is the angle off-broadside and ¢, is the phase difference between adjacent modes.

Figure 3.5 shows the comparison of the patterns of a 32-element circular array and of
continuou;s current sheet using 21 modes (+ 10 modes) with uniform distribution By = 1 and
the phases corresponding to Table 3.1. The computed results are validated against those
available in literature (Sheleg 1968). Figure 3.6 demonstrates the similar comparison for 31
modes (:{: 15 modes). It is apparent that the patterns for discrete and continuous cases agree

within 0.5 dB.

18
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It is well-known that the sidelobes from a linear array can be lowered by tapering the
amplitude distribution over the array. By analogy, it should also be true for circular array if
the mode amplitude distribution is tapered. Using phases from Tabie 3.1, simulations are
performed for continuous current sheet using cosine taper and compared with the

6orresponding 32-clement circular array pattern (By =cos(Kn/32)) using 31 modes (Fig. 3.7).

|deal Modes

Relative Power (dB)
8
1

Approximated Modes
-30

; ,rﬂ 1 fq’"%‘ﬁ"n.
QT

-180 -150 -120 -9 -30 0 30 60 a0 120 150 180

Azimuth Angle (Degrees)

Figure 3.7 Comparison of the patterns of a 32-element circular array and of continuous
current sheet using cosine amplitude taper on 31 modes.

sin(é{ WJ ﬁsin[—y—{— Ve ]Sin(w ;w" ]
B,(v)= . 2 = (3.13)
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The term inside the brackets modifics the beam pattern of the uniform weighting. The roots

. s 2 _
of the uniform weighting are ¥, = ﬁ, n=1,2,..., n —1. The numerator of the bracketed

N
~ term is the set of the modified Chebyshev roots corresponding to the first 7 —1 interior
' sidelobes. The denominator term is the corresponding set of the uniform weighting. The
; modified Chebyshev roots are used in order to avoid the discontinuity at n = .
The Dolph-Chebyshev pattern (Trees 2002) for an array with N = 2M+1 elements is

’ expressed as

M . —
B,(y)=e*"4"]]sin VYo lgin| LYo (3.14)
= 2 2
where, the roots are given by
v, =2c0s"| Lcos(2p— 1) p=1,..2M (3.15)
, - ar - .

magnitude of the mainlobe corresponds the value of x,,

1
x =coshl ——cosh™ R 3.16
¢ (N 1 L) (3.16)
e, R; is the sidelobe ratio with respect to the mainlobe.

» modified Chebyshev roots are determined by using egs (3.15) and (3.16). It is multiplied

o= E— , where, - is the 7 th Chebyshev root .

n

Ncos'l(}l— cos[(ZE - 1)&}}

a

and v, =oy,, n=1,.., K-l

i, 0=

s 3.8 and 3.9 represent the beam patterns for a 21-element and 41-clement linear array
.20 dB sidelobe level. It can be observed that the Villeneuve beam pattern is same as the
tized Taylor beam pattern. The plots are validated against those available in literature
s 2002). If the number of antenna elements is N =11, some difference between the
and Villeneuve beam patterns can be observed (Trees 2002). Morcover, the

sneuve technique is preferred as compared to Taylor pattern.
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' further extended for the circular array, whose elements are excited by
ribution. The desired pattern is obtained using the expression

b ], = —WL (3.17)

j"J (22R,)

| are the weights corresponding to the Villencuve distribution, J,, 1s the Bessel
; th order. Since the highest spatial frequency that affects the beam pattem sM =
aximum limits of phase modes, 2Af + 1 can be used. Figure 3.10 shows the beam
:a 25-element circular array with radius 27R = 10A. The 21-phase modes are
ﬁr the pattern synthesis of circular array at § = 90°. The sidelobe Ievel of -20 dB
—\ index 7 = 6 arc taken. Hence, the sidelobes are controlled up to sixth sidelobe
'. which they start decaying gradually. Computed results are validated against that
B the literature (Trees 2002).
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4, Circular Sector Array

gigcular sector armay, consists of elements located over one-quarter (90°) of the
smference. Circular sector amrays usually have sectoral ring of radiators mounted
ally on the conducting cylinder (Fig. 4.1). The mainlobe of the radiation pattern is in
direction perpendicular to the radiators and zero in endfire. The far-field contributed due

!'qhments is evaluated over an angular range of 90°, i.c. £45° w.r.£. the broadside.

%)

2

(a)
A .
9 /

(b)

X 4.1 Circular sector array antenna. (a) Layout of linear conformal array antenna,
Element positions.
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he voltage radiation pattern of the complete array is given by

Q
:

(a.1)

i=1

B N . N
- $(0)=Y.S, @) =28, (@)e ot
ik i=l

is the free space wavenumber and, r;is the element position vector given bry

x, ) {asinf,
=1y E 0
z, acost,

e, a is the radius of the circle.

unit direction vector R in the direction of observation g is given by

R\ (sinfcos¢ siné
R, |= sin@sing =|0
R, cos¢ 4e0 cosd

» element voltage radiation patterns, S, (0),i= 1,2 , N, are given by
T T
-0, 240 <8s—+6,
5,6)= cos0=00 - Jor 2 4.2)
0 elsewhere
_Qi-N-1)m
TN

= |||| that there are N clements, evenly distributed over the quarter circumference of the
facular cylinder. ‘

Boures 4.2 through 4.5 illustrate the radiation pattern of a circular sector array antenna with

ent radius of the circle, viz. TA , ﬂ—, A and »1 respectively. The patterns are
W2 W2 2 a2

N
Ajuated for - 45° <@ <45° using the formula 20 log {L(ﬁl] All elements are equally

ioned along the quarter of the circumference. The radii of the four conformal array

25 are chosen in such a way that the array antenna lengths, projected onto the X-axis

" 14&, E, 72 and %i respectively.
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:
i |
Bf one compares these radiation patterns of curved array antennas for the given angular range

# those of non-curved array antennas having the same number of antenna elements and the
me projected lengths, the sidelobes of curved array antennas will have higher sidelobe level

isser 2005).

Power Radiation pattern (dB)

-45-40-35-30-25-20—15—10 5 0 5 10152025 30 35 40 45
. Theta (degrees)

‘ 74
sure 4.2 Power radiation pattern of 8-el_ement, 90° circular sector array antenna for a = m ;

Power radiation pattern {dB)
)
o

-40 HE DR N N B SN SR e,
-45-40-35-30-25~20-15-10 5 0 5 10152025 30 35 40 45
Theta (degrees}

74
‘Figure 4.3 Power radiation pattern of 8-element, 90° circular sector array antenna for a = 5 ﬁ .
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S T A U A N S N A P
-45-40-35-30-25-20-15-10 -5 0 5 10 15 20 25 30 35 40 45
' Theta (degrees)

L 888338 so0

. 7
44 Power radiation pattern of 8-element, 90° circular sector array antenna for a = :7_5 .

iiiiiiiiiiii'\ii

-40
.45-40-35-30-25-20-15-10 -5 0 5 10 15 20 25 30 35 40 45

Theta (degrees)

354
4.5 Power radiation pattern of 8-element, 90° circular sector array antenna for a = m .
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Further beam is scanned in the x-z plane and the conformal phased array :Ltenna is given by

N .
S(Q)ZZ Se‘ (g)ejkoacos(t?fﬁ, )-cos(8;-8,) (43)

i=l

where, 8, is the desired beam pointing direction.

For a beam scanned to the direction &, = 30°, the conformal array anienna power radiation
. /) 354 - .
patterns for the two different radii — and —~= are shown in Figs. 4.6 and 4.7 respectively.
2o a2

Figure 4.8 shows the power radiation pattern of 8-element and 16-¢lement, 90° circular sector

array antenna for the radius of circle a = 354 . It can be seen that the far sidelobes beyond

42

+30° are much higher in case of 8-element 90° circular sector array as compared to the 16-

element array.

Power radiation pattern (dB)

-45-40-35-30-25-20-15-10 -5 0 5 10 15 20 25 30 35 40 45
Theta (degrees)

Figure 4.6 Power radiation pattern of 8-element, 90° circular sector array anfenna, scanned to

o 74
8,=30" fora= —.

7
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Power radiation pattern (dB)

-40
45-40-35-30-25-20-15-10 5 0 5 10 1520 25 30 35 40 45

Theta (degrees)

Figure 4.7 Power radiation pattern of 8-element, 90° circular sector array antenna, scanned fo

. 352
8,=30"fora= ——

42
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Power radition pattern (dB)

40}iiﬁiiiiiiiiii%§i
4540 -35-30-25-20-15-10 -5 0 5 10 1520 25 30 35 40 45
Theta (degrees)

Figure 4.8 Power radiation pattern of B-element and 16-element, 90° circular sector array

A o
and 8,=0".

35
42

anfenna for a =
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5. Hexagonal Arl'ays
In hexagonal arrays, the elements are located on a hexagonal (or equilateral triangular) grid

(Fig. 5.1). The vertical spacing between rows isd, = lgdx , where d, = 512— is the horizontal

inter-element spacing.

y
A
® ® 4 o
—9 —o- & &>«
dx
; dx
_..Y_--. -------- o------ S ] .I -_!
< d, —>
@
(®)

Figure 5.1 Configuration of a typical hexagonal array. (a) Element configuration,
(b} Nineteen elements hexagonal array.
The reasons for this specific spatial distribution of the antenna elements are

1. This distribution samples the spatial field. Moreover it is the optimum sampling
strategy (Trees 2002) for the signals that arc hand-limited over a circular region of

Fourier plane.
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2. If the beam is scanned inside a ane whose axis 1s normal to the array then less
number of antenna elements (13.4% less) is required, which is preferred in view

of the economical cost.
3. It is useful for all the desired beam patterns having circular symmetry.

In a standard hexagonal arrays (SHA), the total number of antenna elements is 7, 19, 37, 61,...

according to the expression,
N -l

N, =1+ 6n (5.1)
n=1

where, N, is the number of elements in the horizontal row through the origin. In general, N, is

a odd number in order to have a symmetric array.

The beam pattern is

!

" ol N, =lm|-1
B, (., )= iw‘m exp{jﬁ{m %_3_ , _Mux J} > exp{jmu,} (5.2)

N, -1 2 n=0

m=-

where, u, and u, are the direction cosines along x- and y-direction.

5.1 Uniform Weighting

For uniform weighting, the weights are given by

- (5.3)

The comresponding beam pattern for a hexagonal amray is given by

N,
Y N — -1 N, w1
5'“(“,;,%)"}\}L ZZ: Cxp{jf{m%—iuy Arwx—m—ux:”. Zexp{jmmx} (5.4)

P A 2 =

Figures 5.2 show the beam pattern cuts (¢ = 0°, ¢ = 10°, ¢ = 20° and ¢ = 30°) of a standard
91-element hexagonal array with 11 elements in each horizontal row. The array 15 excited
with the uniform weighting. On analyzing the distribution plots one can infer that the pattern
is almost simtilar to the uniform distribution pattern for a linear array except that the sidelobes
are at higher level. Results obtained are validated with those available in open literature

{Trees 2002).
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5.2 Radial TaLer Weighting

In order to reduce the sidelobe level of hexagonal array pattern with uniform distribution,

radial tapering is incorporated in the weighting. The radial taper is given by
2
wR(r):lﬁ(—;;J , 0<r <R (5.5)

where, R is the radius of the continuous aperture. For radial taper weighting, the weights arc

_Nefl-1)aY Y
. BT Y I Ly

nm RZ

given by

(5.6)

Figures 5.3 present the beam pattern cuts (§=0°,¢=10" ¢=20"and ¢=30% R = 2.75N) of
a standard 91-element hexagonal array with radial taper weighting. It is apparent that the
sidelobes are much lower and the mainlobe is wider as compared to the pattern of array with
uniform weighting without any tapering. The computed results are validated against the

literature (Trees 2002).

5.3 Radial Taper Squared Weighting
For further improving the sidelobe level and the mainlobe width, the radial taper squared

weighting is incorporated. Thus,

wR(r):[l[lJT,o <r <R (5.7)

R

The corresponding weights are given by

T o]

nm RI
| ]

The beam pattemn cuts (¢ = 0°, ¢ = 10°, ¢ = 20° and $ = 30% R =2.75\) of a standard 91-

2

(5.8)

element hexagonal array with radial taper squared weighting are shown in Fig. 5.4. The
reduced mainlobe width and the sidelobe level are apparent. The computed plots are validated

against the literature (Trees 2002).
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6. Cylindrical Arrays

In many applications, the physical location of the sensors must conform to the shape of the
curved surface where it is located On, €.g. arrays mounted on aircraft, missiles or submarines.
These non-planar arrays are referred to as conformal arrays. The two commonly used

conformal array geometries are ¢ylindrical and spherical.

— -
- -
'.‘4
R -
LA .,

o PR O, 2

y

Figure 6.1 Cylindrical array geometry and the cylindrical coordinate system.

The beam pattern of the cylindrical array geometry (Fig. 6.1) is expressed as,
N-

2. M
B(g’ ¢) - ejfm.’,, cos 8 {Z w;mejk,_,R sind cos(g-g )} (6 1)
-1

N

F

m=1

where, N is the number of circular arrays and M is the number of elements in each circular

array. ‘The centre of the circular arrays is the z-axis and the array is symmetric in the z-
direction about the origin. If w,,, is separable, w;m = w; w;, where w, and w,, are the weights
corresponding to the linear and circular arrays respectively,

The beam pattern can then be reduced to (Trees 2002)

N-1

B(0.¢)= iw;e"“”“““"Ba—,(G,qf) (6.2)

A==

2

or B(0.9)=B,.(6.4)8.,(6,4) (6.3)



Figure 6.2 illustrates the cylindrical array beam pattern at ¢ = 0. It is assumed that the
cylindrical array consists of 11 circular arrays with radius 27 R = 10\, Each circular array
consists of 25-elements fed by the Villeneuve uniform phase mode excitation. Simulations
are performed using 21-phase modes. The linear elements of circular arrays in the z-direction

is excited by Dolph-Chebyshev weighting.

,,,,,,,,,,,,,,,,,,,,,,,,,

Beam pattern (dB)

i
04 0.5 0.6 0.7 0.8 0.9 1
theta / pi

Figure 6.2 Beam pattern (at ¢ = 0°) of a cylindricat array consisting of 11 circular arrays with
Doiph-Chebyshev weighting; Each circular array has 25-elements fed by Villensuve phase
mode excitation.
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7. Summary

Conformal arrays are the most general type of phased array whose elements are mounted
flush on a non-planar surface. They have applications in arrays for missiles, submarines,
ships, high-speed aircraft, and also in systems that require wide-angle coverage. They
generally belong to the class of non-linear arrays. Conformal antenna array on cxisting
structure improves the aerodynamic or stealth characteristics vis-a-vis classical antenna. The
present report presents the synthesized beam patterns of planar and non-planar arrays, viz.
continuous circular aperture, circular arrays, circular sector arrays, hexagonal arrays and
cylindrical arrays. The characteristics of different distributions like uniform, Villeneuve
phasc excitation, Taylor, and Dolph-Chebyshev weighting, used for the pattern synthesis of

various conformal array geometries, are discussed.

The basic symmetry of circular and cylindrical arrays offers several advantages, which in
addition to 360° scan angle, include an ability to compensate for the effects of mutual
coupling by segregating the array excitation into a series of symmetrical spatial components.

Further its directional patterns remain constant in shape over broad bandwidth.

The circular apertures provide the limiting case for most of the array configurations such as
the concentric circular array and the hexagonal arrays. In circular array pattern, the mainlobe
width is narrow as compared to a corresponding linear array of length equal to the diameter
of the circle. The reduced beamwidth and more number of sidelobes are due to increased
concentration of the elements at the sides of the circular aperture as compared to a linear
array. Further the low sidelobes can be obtained by symmetrical amplitude taper on the front
half of the circular array with zero or low excitation on the back of the array. Beam steering
of the pattern can be achieved by electronic control of both amplitude and phase of each

element.

Circular arrays are of particular importance because it provides a basic element of cylindrical
arrays and even conical and spherical arrays, or arrays on generalized bodies of revolution.
For a circular array with isotropic elements, the array weighting corresponds to sampling of
the continuous aperture weighting. The mainlobe width of the pattern 1s not affected by

increasing the number of elements in circular array.

The pattern characteristics of circular and cylindrical arrays cannot be expressed as the
product of an element pattern and the array factor. This necessitates the consideration of the

array patterns with directional elements. Moreover the mutual coupling between the clements

1



narrows the element pattern, so in practice, omnidirectional elements cannot be designed.
Although it is true for planar arrays, it is much more important in the case of conformal
arrays. This is because all the elements in conformal arrays point in different directions. The
interaction between widely separated omnidirectional elements tesults in narrowed pattern
and very limited bandwidth. Thus, if the array is designed using elements that radiate
primarily in the radial direction, or in some forward sector, the characteristics of circular

array will be substantially different and the bandwidth will also be improved.

The Taylor pattern is the continuous equivalent of the discrete Dolph-Chebyshev array
distribution. It offers the narrowest beamwidth for a given sidelobe ratio. The Villeneuve
phase mode technique is discrete analogue of generalized Taylor 7 -distribution, used for
continuous line source synthesis. It 1s essentially a combination of the best features of the
uniform and Dolph-Chebyshev weightings. It involves the beam pattemn synthesis initially
with uniform weighting and then replacing the first 7 -1 roots with modified Dolph-
Chebyshev roots. When this distribution is expressed as a Fourier series, in which each term
represents a current mode uniform in amplitude but having a phase varying linearly with
angle. The pattern modes are the Fourier components of the radiation pattern of the current
distribution. The radiation pattern is the sum of the modes contribution made to the pattermn of
a circular array by its elements. The Villeneuve phase excitation 1s better than Taylor

weighting for number of clements less than 11.

If one compares the radiation patterns of curved array antennas for the given angular range
with those of non-curved array antennas having the same number of antenna elements and the
same projected lengths, the sidelobes of curved array antennas will have higher sidelobe

level.
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List of Symbols

Angle measured in vertical plane S
Phase factor w.t.t. the origin o
Free space wavelength K
Transition index ko
Azimuth angle L
Phase difference between the M
adjacent modes N
Phase difference at the nth
element Ny
Aspect angle
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x-component in y space R
y-component of § space r
Beam pointing direction R,
Angle measured from broadside S8
Radius of the circular sector 5.4
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Beam pattern W,
i

Amplitude of modes D]
Beam pattern in u space
Phase mode coefficient [wyse ]

Directional pattern of circular
array in elevation plane

Spacing between the antenna
elements

Spacing between the x-axis
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