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ABSTRACT 
 

This paper proposes a new harmonic wavelet transform (HWT) based on 
Discrete Cosine Transform (DCTHWT) and its application for signal or image 
compression and subband spectral estimation using Modified Group Delay (MGD). 
Further, the existing DFTHWT has also been explored for image compression. The 
DCTHWT provides better quality decomposed decimated signals, which enable 
improved compression and MGD processing. For signal/image compression, compared 
to the HWT based on DFT (DFTHWT), the DCTHWT reduces the reconstruction error. 
Compared to DFTHWT for the speech signal considered for a compression factor of 
0.62, the DCTWHT provides a 30% reduction in reconstruction error. For an image, the 
DCTHWT algorithm due to its real nature, is computationally simple and more accurate 
than the DFTHWT. Further compared to Cohen-Daubechies-Feauveau 9/7 biorthogonal 
symmetric wavelet, the DCTHWT, with its computational advantage, gives a better or 
comparable performance. For an image with 6.25% coefficients, the reconstructed 
image by DFTHWT is significantly inferior in appearance to that by DCTHWT which 
is reflected in the error index as its values are 3.0% and 2.65% respectively.  

 
For spectral estimation, DCTHWT reduces the bias both in frequency 

(frequency resolution) and spectral magnitude. The reduction in magnitude bias in turn 
improves the signal detectability. In DCTHWT, the improvement in frequency 
resolution and the signal detectability is not only due to good quality DCT subband 
signals but also due to their stretching (decimation) in the wavelet transform. The MGD 
reduces the variance while preserving the frequency resolution achieved by DCT and 
decimation. In view of these, the new spectral estimator facilitates a significant 
improvement both in magnitude and frequency bias, variance and signal detection 
ability; compared to those of MGD processing of both DFT and DCT fullband and DFT 
subband signals.  
Key words: DCT Harmonic Wavelet Transform, Signal and Image Compression,  
                  Subband Spectral estimation and Modified Group Delay. 
 
1. INTRODUCTION 
 

A wavelet transform (WT) decomposes a signal into its subband components of 
nonuniform bandwidth and can be realized by a filter bank. In WT, the decimation of 
the subband components results in spectrum expansion. Further restoration of the 
processed overall spectrum corresponding to the original sampling rate, involves 
interpolation and summation of the interpolated subband outputs in time. The harmonic 
wavelet transform based on DFT (DFTHWT) [12] does the subband decomposition in 
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the frequency domain by grouping the Fourier transform (FT) coefficients and the 
inverse of these groups results in decimated signals. Further after processing, the FT of 
the subband signals can be repositioned in their corresponding positions to recover the 
overall spectrum, with the original sampling rate.  Therefore, this will not involve 
explicit decimation and interpolation operations. As a consequence, also, no band 
limiting and image rejection filters are necessary. In view of this, the harmonic 
subband decomposition is very attractive due to its simplicity.  Further, the 
decomposition being done in frequency domain, it is well suited for those processing 
methods which are performed in frequency domain, like group delay processing. 

 
The DFTHWT is very attractive as long as no processing of the components is 

involved prior to inverse transformation. However, for a signal segment obtained 
without using any window function, there can be a severe leakage effect from one 
signal subband into another. If different subbands have to be processed differently, this 
is not achieved as the signal energy from one to another has already leaked. The 
DFTHWT may be tolerable for a signal with well-separated frequency components of 
sufficiently high magnitude. But for closely spaced components of significantly 
different magnitudes, during the computation of the FT itself, energy will leak from the 
higher amplitude component to the lower one. This results in a large bias in the spectral 
magnitude and may even totally eclipse smaller amplitude spectral peaks.  In such a 
case, decomposing the signal based on DFTHWT and processing the subbands may not 
be very effective. Further leakage in DFTHWT will also limit its use in signal or image 
compression application. The reason for this is that it is not possible to get a good 
signal reconstruction by omitting the lower scales (corresponding to high frequencies) 
in WT as the leaked energy cannot be recovered unless all the scales are considered.   
 

A good spectral estimator will have minimum variance and bias; and provides 
the required frequency resolution. In practice, it is required to estimate the spectrum of 
a signal of finite limited length. The Gibbs ripple effect that varies from segment to 
segment, the driving noise of a system whose output forms the signal, the observation 
noise at the output of a system or the associated noise with the signal; contribute to the 
variance of an estimate. For the popular averaged windowed periodogram spectral 
estimator, the window used and the number of segments averaged decide its variance. 
For this, the variance reduction achieved is only at the cost of frequency resolution and 
hence for a given length of data, there is a tradeoff between frequency resolution and 
variance. The parametric model based methods provide high frequency resolution and 
low variance [8] even for a relatively short data length. However this is valid only when 
the signal is matched to the assumed model and the signal to noise ratio (SNR) is high 
[6]. 
 

In order to overcome the above tradeoff between variance reduction and 
frequency resolution, the modified group delay function (MGD) [1, 2] was introduced. 
The spectral ripple, the source of variance, manifests as zeros close to the unit circle in 
the Z-plane. In reducing the variance by a window, the zeros close to the unit circle are 
moved towards the origin and hence the ripple magnitude or variance is reduced. 
However as the window also pulls the signal poles towards the origin, the spectral 
peaks get broadened resulting in a poorer frequency resolution. But in the MGD, the 
effect of the zeros close to the unit circle is reduced without disturbing the signal poles 
and hence the reduction in variance without any loss of frequency resolution. Since the 
MGD removes the zeros close to the unit circle, even due to the associated white noise, 



Signal, Image and Video Processing, 2008 

 3

its performance is valid even when the SNR is low. The MGD has been successfully 
applied for formant and pitch extraction of speech signals [2], spectral estimation of 
real and complex signals [1, 11]. Further, the MGD has been applied to WVD and 
instantaneous power spectrum to remove the Gibbs ripple [3, 6] and both the Gibbs 
ripple and ringing effect, respectively; preserving the frequency resolution of the 
rectangular window. 

 
DCT is the DFT of a symmetrically extended signal. The symmetrical extension 

reduces the abruptness of truncation significantly and results in a smooth transition 
from one period to another (due to built in periodicity of DFT), as if there is no 
windowing and no side lobes to enhance the Gibbs and leakage effects [14], resulting in 
a significant reduction in the leakage effect or variance. In view of this, the analytic 
DCT [4] which is the DFT that has the desired properties of DCT, is explored.  Such a 
DFT derived from DCT has a smaller magnitude and frequency bias.  The lower 
magnitude and frequency bias are due to low leakage and improved frequency 
resolution (due to symmetrical data extension), respectively. The lower magnitude bias 
improves the detectability of a smaller spectral peak in the presence of a larger one.  
The improved spectral detail may result in a higher variance. However, the application 
of MGD to a DFT derived from DCT reduces the variance significantly while 
preserving the frequency resolution of the analytic DCT. 
 

 The performance of any spectral estimator improves when it is applied to its 
subband components rather than to the original fullband signal. The subband 
components, due to their reduced bandwidth, can be decimated and this stretches the 
spectrum improving the frequency resolution and the detectability of a weaker spectral 
peak in presence a stronger one [5]. Further if the two components fall into different 
bands, their mutual influence on each other is totally removed. Thus any further 
processing in subbands will be much more effective than in the case of a fullband signal 
as the frequency resolution and the signal to noise ratio improve by the decimation 
factor [9, 10]. These motivate, to extend the desirable properties of the DCT to 
harmonic wavelet transform by grouping the DCT coefficients, instead of DFT 
coefficients and apply MGD to subband signals of DCTHWT. Such an attempt reduces 
the undesired leakage effect of DFT and its implications in DFTHWT. Also the 
simplicity and computational efficiency of the harmonic wavelet transform tempts to 
extend its application for image compression and processing.  
 

In this paper, a new harmonic wavelet transform based on DCT (DCTHWT) is 
proposed. Further the DFTHWT and the new DCTHWT have been explored for image 
compression. Compared to DFTHWT, the DCTHWT provides subband components of 
a good quality and this enables better signal or image compression. Also, a subband 
spectral estimator based on DCTHWT and the modified group delay, has been 
proposed. The application of MGD to the DCTHWT subband components results in a 
significant variance reduction. The DCT subband decomposition enjoys the simplicity 
and computational efficiency of the DFT based harmonic wavelet transform. Further, as 
the MGD is a frequency domain operation, it can be directly applied to decimated 
harmonic subband DFTs derived from the DCT of subband components. Thus in the 
decimated subbands, the MGD reduces the variance more effectively than in fullband. 
For the proposed spectral estimator, the subband decomposition, smaller magnitude 
bias and better spectral details provided by DCT enable good detectability (for a low 
level spectral peak in the presence of a high level one) and improved frequency 
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resolution. The proposed DCTHWT is found to be computationally efficient and for 
signal and image compression it has a lower reconstruction error than the DFTHWT. 
 
 
2. HARMONIC WAVELET TRANSFORM BASED ON DFT (DFTHWT) [12] 
 

To localize both in time and frequency, the short time Fourier transform (STFT) 
in which a window function slides along the time axis, is used. Here, the FT of the 
signal within the window provides the spectral information of the signal at the window 
position. However, as the FT of the same window gets convolved with the different 
frequency components of the signal, the frequency resolution is same, for all 
frequencies. A generalization of this, where the window function can be different for 
different frequencies has led to the wavelet transform (WT). Using windows of 
different duration, the information about the signal both in time and frequency in the 
desired way can be obtained in terms of the window functions or wavelet basis 
functions used. Thus the main feature of WT is multi-resolution signal analysis and it 
breaks the coupling of the uniform resolution between the low and high frequency 
regions. That is, it provides higher frequency resolution and lower time resolution 
(localization) for low frequencies and higher time resolution and lower frequency 
resolution for higher frequencies. This is well suited for the analysis of nonstationary 
signals, which are to be processed in practice.  

 
The wavelet transform ),( baWx characterizes the correlation or similarity 

between the signal )(tx to be analyzed and the wavelet function ( )abt /)( −ψ . Such a 
correlation is given by  

     dt
a

bttx
a

baWx ⎟
⎠
⎞

⎜
⎝
⎛ −

= ∫
∞

∞−

*
2/1 )(1),( ψ      (1) 

 where )(tψ is the prototype/mother wavelet. By shifting and scaling )(tψ by the 

parameters b and a , respectively; all the basis functions ( )abtatba /)()( 2/1
, −= − ψψ  

are obtained. 

 
 
 
 
 
 
 
 
 
 

Computing ),( baWx  using Eqn. (1) is quite involved even for discrete values 
of b and a . Hence generally, the WT is implemented by a dyadic structure that uses a 
two-channel filter bank [13] with a lowpass filter )(0 ωH  and a highpass filter )(1 ωH  
(Fig.1). The outputs of the analysis filter bank are decimated in time and these form the 
WT coefficients at different scales (frequencies). The WT coefficients at different 
scales after processing (if any) can be combined in time domain by a synthesis filter 

Fig.1 WT implemented by a dyadic structure filter bank 
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bank realized by a dyadic structure that uses reconstruction filters )(0 ωF  and )(1 ωF .  
The synthesis filter bank involves interpolation prior to filtering and combining the 
different channel outputs.  The filters )(0 ωH , )(1 ωH , )(0 ωF  and )(1 ωF  are related to 
each other to overcome aliasing and to provide perfect reconstruction [13].   

 
         Eqn. (1) can be realized in the frequency domain using Parseval’s theorem as [17]  

         ( ) ωωω
π

ω deaXabaW bj
x

*
2/1

)(
2

),( Ψ= ∫
∞

∞−

                                 (2a) 

Therefore the, the wavelet transform can be derived by windowing the spectrum 
)(ωX with )(* ωaΨ  and inverse Fourier transforming the product.   

 
                                ( )[ ]ωω aXFabaWx

*12/1 )(),( Ψ= −        (2b) 
 

)(ωΨ  and )(ωX  are  the FT of the mother wavelet )(tψ and the signal )(tx . That is,  

),( baWx  for a particular scale ''a  can be computed by the Eqn. (2b) using )(ωX and 
)( ωaΨ  by FFT algorithm.  Especially )(ωΨ  is very simple for the Harmonic wavelet 

transform (HWT) of Newland [12], and it is zero at all frequencies except constant over 
a small frequency band. 

               
⎩
⎨
⎧ +<<−

=Ψ
otherwise

gg

,0

,,1
)( 00 ωωωωω

ω                                   (2c) 

The wavelet )(tψ for this is [17]  

       tj

c

cc e
t

t
t 0sin
)( ω

ω
ω

π
ω

ψ =                                                 

       )(sin)( 0 tcet c
ctj ω
π
ω

ψ ω=       (2d) 

 
That is, the mother wavelet is a modulated sinc function. The daughter wavelets are 
derived from )(tψ  by scaling and this involves scaling of the frequencies gω  and 0ω  
which determine the bandwidth and the centre frequency of the scales, respectively. 
Even though the decomposition of the signal in the frequency domain looks attractive 
due to its simplicity, if the interest is also to localize in time, this choice of )(ωΨ  is not 
suitable as sinc function exists over the interval ∞≤≤∞− t  with a decay rate inversely 
proportional to time. Some type of spectral weighing (like Gaussian) other than 
rectangular is necessary for improving localization in time, but this may result in non-
orthogonal wavelets due to possible overlap in the frequency domain. Thus the type of 
spectral weighing will decide the wavelet, as the spectral weighing function is the FT of 
the wavelet.  
 
 For HWT, the spectral weighing is a rectangular function and for a discrete 
signal it is zero except over a finite band ],/,/[ qp ππ where qp,  can be real numbers, 
not necessarily integers. 

Using the above )(ωΨ  in the HWT, the subband decomposition is done in 
frequency domain unlike in time domain by a filter bank. This is achieved by grouping 
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the { }12/ +N  coefficients of a discrete Fourier transform (DFT) of length N  and this 
is equivalent to applying a window in the frequency domain. Fig.2a shows the grouping 
of the DFT coefficients for a dyadic type of subband decomposition with a DFT 
length 16=N . At each stage of division, the upper group is left without being divided. 
This is true with the filter bank also, where the output of lowpass filter )(0 zH is divided 
and the output of highpass filter )(1 zH  is left without being divided (Fig.1). 
 

The decimation carried out in the filter bank is achieved by constructing a DFT 
for each subgroup using the symmetry property; that is, the conjugate of the values in 
the subgroup are filled in the reverse order in the upper half of DFT and for 321 ,, GGG  
the value of the st1  bin is made as zero (Fig. 2a).   

 
An inverse DFT of 4321 G,G,G,G  will give the decimated subband signals and 

hence 4321 G,G,G,G  are the DFTs of the decimated signals. In the reconstructed array, 
the locations 1 to 16 represent the DFT coefficients of a real signal and KK,, *

7
*
8 XX  

are the complex conjugates of KK,, 78 XX .   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
For synthesis, the last group ( 4G ) values are placed as it is in a new DFT array 

{ }91 to . Then next groups ( 123 G,G,G ) are concatenated with the first element zero 

   Fig. 2b Harmonic wavelet transform synthesis. 
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being removed in each group. Then the bins { }1610 to  are filled by the conjugate of the 
values of the bins{ }81 to  in the reverse order. This procedure is shown in Fig.2b. 

 
The replacement of the smaller groups into their corresponding original 

positions in the DFT array corresponds to interpolation and summing of the subband 
signals in the filter bank. Hence the inverse FT of this restored DFT gives the 
synthesized signal. 
 
 Even though in the above scheme the DFT symmetry for a real signal is 
attempted, the coefficients of the DFTHWT will not be real. In the original DFT of a 
real signal, only the first and thN )12/( +  coefficients are real and others are complex. 
As DFT coefficient grouping progresses, some of the complex coefficients take the real 
coefficient position corresponding to thN )12/( + (of the original DFT) in the new DFT 
length and due to this the coefficients of DFTHWT will be complex but not purely real.   
 
 The first coefficient of each group 123 ,, GGG  is put as zero to preserve the 
second coefficient which would have become the first coefficient and would have been 
lost while processing by mean removal operation. This is valid even while processing 
the group 4G . 
 
3. MODIFIED GROUP DELAY (MGD) [1, 2] 
 

The fine structure, viz., the ripples in the magnitude spectrum or the spikes in 
the group delay result in zeros close to the unit circle in the z-plane and contribute 
significantly to the variance of the spectral estimate. Thus, the spectral ripples or 
variance is due to the zeros or the numerator of a transfer function. On the other hand, 
the signal or system spectral peaks are due to the denominator. By normal smoothing 
using windows, the ripple effect or variance can be reduced but only at the cost of 
frequency resolution. This is because in addition to the zeros close to unit circle, the 
signal poles also get pulled towards the origin. To reduce the variance of a spectral 
estimate without any loss in frequency resolution, it is necessary to reduce only the 
effect of the numerator and this can be achieved by dividing the signal transfer function 
by an estimate of the numerator. The GD domain achieves this operation without any 
singularity as it involves the multiplication of GD by the squared spectral magnitude of 
the numerator, rather than division.  

 
For a minimum phase signal )n(x  the spectral magnitude )(X ω  and phase 

)(ωθ are given by 

                           ∑
∞

=
=

0
cos)()(ln

n
nncX ωω ,                     (3a)        

                                 ∑
∞

=
−=

0
sin)()(

n
nnc ωωθ                                       (3b)  

 
where )n(c  are the cepstral coefficients. The Group delay )(ωτ , the negative 
derivative of the phase )(ωθ , is  
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                   ∑
∞

=
=−=

0n
ncos)n(nc)(

d
d)( ωωθ
ω

ωτ                                           (4) 

If )n(x  is a signal generated by an all-pole system driven by a white noise or sinusoids 
associated with white noise and further, if it can be represented by 

)(/)()( ωωω DNX = then, )(ωD  corresponds to the system or sinusoids and )(N ω  to 
the excitation or the associated noise. Its group delay [6, 3] is 
 

                           )()()( ωτωτωτ DN −=                               (5) 
 

                                          22 )()(
)(

ωω
ωτ

D

K

N

K DN −=                                                   (6)  

)(ωτ N  and )(ωτ D are group delay functions of )(ωN and )(ωD , respectively. NK  
and DK  can be considered as constants for simplicity. For the zeros close to unit circle 
due to signal truncation or input driving noise of a system or the associated noise with 
the signal, 2)(N ω  is small and hence from Eqn. (6) the ripples will mask the signal 

peaks in the group delay domain as magnitude of 2)(D ω is sufficiently large for poles 

well in side the unit circle. On multiplying )(ωτ  (Eqn.(6)) by 2|)(| ωN  , 

                                  2)()()( ωωτωτ No =  

    Or                  2
2 )(

)(

)()()( ω
ω

ωα
ωαωτ N

D
D

No −=                                                    (7)  

This modification reduces the masking effect of ripples due to the zeros close to 
the unit circle on the spectral peaks due to poles. To get )(o ωτ  which is free from 

fluctuations 2|)(| ωN  has to be determined with the given signal. The 2|)(| ωN  

estimate, 2|)(ˆ| ωN  is generally derived using a cepstrally smooth spectrum 
2|)(~| ωX obtained by truncating the cepstral coefficient sequence of the signal given by  

    2

2
2

|)(~|
|)(||)(ˆ|

ω
ωω

X
XN =                                                             (8) 

The spectral estimate of reduced variance is derived from the modified group delay 
using the Eqns. (4) and (3a). 
 
 
4. DCT BASED HARMONIC WAVELET TRANSFORM (DCTHWT) 
 

The harmonic wavelet transform based on DFT (DFTHWT), as already 
explained, has the attractive features of simplicity as it has built in decimation and 
interpolation operations. The decimation is achieved by taking inverse transform of 
each group of DFT coefficients and the interpolation by concatenation of the groups of 
DFT coefficients. The very purpose of orthogonal wavelet transform is to decompose 
the signal into orthogonal components, which are independent and their further 
processing will not affect one another. However, this is not so, as in the DFTHWT the 
Fourier coefficients, which are already affected by leakage, are grouped. For example, 
for compression with DFTHWT, the signal reconstructed by removing the group 
corresponding to the first scale may differ from the original signal significantly even 
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though its contribution is negligible. In an ideal situation, this group may not have 
significant contribution to the signal but due to the DFT leakage problem the energy 
gets scattered from second and higher scales (to first scale). Hence processing on any 
scale like deleting the first scale will affect the neighboring scales indirectly as the 
leaked energy also gets processed. But if no processing is done and simply the grouping 
of the Fourier coefficients is undone, it is possible to get back the original signal.  

 
Therefore to utilize the attractive features of the harmonic wavelet transform, it 

is very much necessary to reduce the leakage effects and in this direction, use of DCT 
instead of DFT is an important step. This is because DCT extends the data 
symmetrically resulting in a smooth transition from one DCT period to the other and the 
discontinuity, which is the root cause for leakage, is significantly removed. Further as 
the leakage is reduced, the spectral magnitude bias is reduced which enables 
detectability of the low level spectral peak in the neighborhood of high level one. 
Compared to the DFT, the DCT has a better frequency resolution due to data extension 
and this enables DCT to resolve the closely spaced spectral peaks, which is not possible 
by the former. Thus from the spectral estimation point of view, the DCT is superior as 
it is having lesser bias both in spectral magnitude and frequency and hence a better 
detectability. However, as its frequency resolution is more, it may have a higher 
variance as it captures more spectral details. 

  
The DCTHWT for a one dimensional real signal like speech and for a two 

dimensional real signal like an image will be considered. 
 

4.1 DCTWHT for a real one dimensional signal 
 

For a real symmetric signal )(txs and a real symmetric wavelet )(tsψ function, 
Eqn.(2a) becomes  

  ( )∫
∞

∞−

Ψ= ωωωω
π

dbaXabaC ssx )cos()(
2

),(
2/1

                      (9a) 

)(ωsX and ( )ωsΨ  are the Fourier transform of )(txs  and )(tsψ  respectively. 
(Generally the wavelet function is a symmetrical one but to have consistency in the 
notation  )(tsψ is used). In other words, they are the cosine transforms of )(txs  and the 

mother wavelet )(tsψ . ),( baCx  is the wavelet transform in cosine domain instead of 
Fourier domain. Hence the corresponding equation for Eqn.(2b) is 

 ( )[ ]ωω aXCabaC ssx Ψ= − )(),( 12/1                                                   (9b)                                  

Therefore the cosine wavelet transform coefficient ),( baCx  for a particular scale ''a  
can be computed by the Eqn. (9b) using )(ωsX and )( ωasΨ  by a fast cosine transform 
algorithm which indirectly uses FFT algorithm. Again )(ωsΨ  is very simple for the 
Harmonic cosine wavelet transform (CHWT), and it is zero at all frequencies except 
constant over a small frequency band. 

  
⎪
⎩

⎪
⎨

⎧
+−<<−−

+<<−
=Ψ

otherwise
cc

cc

s

,0
,

,,1
)( 00

00

ωωωωω
ωωωωω

ω       (9c) 

The wavelet )(tsψ for this is  
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   t
t

t
t

c

cc
s 0cos

sin
)( ω

ω
ω

π
ω

ψ =       

                                      )(sincos)( 0 tctt c
c

s ωω
π
ω

ψ =                                                 (9d) 

Hence the mother wavelet is a cosine modulated sinc function. Here also, the 
decomposition of the signal in the frequency domain is simple but suffers from the 
problem of poor time localization due to slow decaying of the sinc function. Though a 
spectral weighing other than rectangular improves the localization in time it results in a 
non-orthogonal wavelet set. The type of spectral weighing will determine the wavelet 
as it is the cosine transform of the wavelet.  
 
 For the cosine harmonic wavelet transform, the spectral weighing is a 
symmetrical rectangular function and for a discrete signal it is zero except over 
symmetrical finite bands ]/,/[ qp ππ and ]/,/[ qp ππ −− where qp,  can be real 
numbers, not necessarily integers. 

 
The Discrete cosine transform (DCT) enables the implementation of the above 

cosine transform discussed as it forms the symmetric signals )(txs and )(tsψ  by itself 
(for the given non-symmetric )(tx  and )(tψ ). For a sampled signal )n(x , 

)1(,2,1,0 −= Nn K ,the DCT of N  points, is defined as the DFT of a N2  point 
symmetrically extended signal )n(y . 

                 
⎩
⎨
⎧

−≤≤−−
−≤≤

=
12),12(
10),(

)(
NnNnNx
Nnnx

ny                  (9) 

 
)n(y is even symmetric with respect to the point ( )[ ]21−N . This leads to DCT and is 

given by           

 
⎪
⎩

⎪
⎨

⎧

−≤≤−−

−≤≤
+

= ∑
−

=

12),2(

10,
2

)12(
cos)(2

)(

1

0

NkNkNC

Nk
N
nk

nx
kC

x

N

nx

π

               (10)  

Here, the DCT has been derived from the DFT.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Fig. 3(a).  
    DCT Harmonic Wavelet Transform  
    N=16, Subbands: C4, C3, C2, C1     
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Using the above )(ωsΨ  in the CHWT also, the subband decomposition is done 
in frequency domain unlike in time domain by a filter bank. This is achieved by 
grouping the N2  coefficients of a discrete cosine transform (DCT) of length N2 and 
this is equivalent to applying a window or weighing by a constant in the frequency 
domain.  

 
The DCT coefficients can be grouped in a way similar to that of DFT 

coefficients and the DCT being real, there is no necessity to do the conjugate operation 
in placing the coefficients symmetrically. The symmetrical placement is also not 
necessary due to the very definition of the DCT as it provides only half the number of 
coefficients and the inverse DCT definition takes care of the symmetry. The grouped 
coefficients for each band have to be treated as if they are the DCT coefficients of that 
subband (Fig.3). For the reconstruction, each group is concatenated to get DCT of the 
fullband signal. 
 
 For an orthogonal CHWT, the wavelet function is fixed and corresponds to a 
rectangular weighing in the frequency domain and indirectly, grouping of the DCT 
coefficients results in such a wavelet transform. 
 
4.2 DCTWHT for a two dimensional signal 

  
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 

 For a 1-dimensional signal in the DFTHWT, the grouping of the DFT 
coefficients with possible conjugate symmetry (Fig.2a) though makes the WT 
coefficients complex, this will not pose problem for reconstruction as after 
concatenation of the groups, the conjugate symmetry is restored to get the real signal.  
  
 An extension of this to 2-dimensions results in an error. Here first for the 
columns the DFT is taken and the )0( π−  region is divided in to two groups )2/0( πto  
and )2/( ππ to . The group )2/( ππ to  will have conjugate symmetry and its IDFT 

Fig.3. (b) 2D-DFTHWT, (c) 2D- DCTHWT 
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results in a real signal. But the group )2/0( πto  will not be so and its IDFT will result 
in a complex signal. For a signal of this group, a DFT along the rows results in a DFT 
which may not have any symmetry at all and the grouping becomes uncertain. But by 
making the signal for this group real, that is omitting the imaginary part of the one 
coefficient ( 5X in Fig.2a), this problem can be solved. Again while taking the DFT 
along the rows and grouping, there will be a similar problem and this again can be 
solved by neglecting the imaginary part of one coefficient. This omission of the 
imaginary part of a DFT coefficient once for the columns and for the rows results in an 
error. For the next scale, the LL block is fed as the input as shown in the Fig. 3(b). Thus 
depending upon the number of scales considered, this error process will repeat. This 
results in an error even when the image is reconstructed with 100% 2D DFTHWT 
coefficients.   
  
 For a 2D signal, the DCTHWT does not pose such a problem. This is due to the 
fact that the DCT is a real transform and the grouping does not involve conjugate 
symmetry to get real signals. Here for the image, the DCT coefficients for the column 
are grouped and their inverse DCT results in DCTHWT coefficients for the columns. 
The DCT coefficients along the row for each scale are taken and grouped. The inverse 
DCT of these groups will result in 2D DCTHWT (Fig.3c). This procedure is repeated 
for further scales considering the LL block as input. Since no approximations are made, 
there will not be any error when the image is constructed with 100% coefficients. 
 
 
5. POWER SPECTRUM ESTIMATION BASED ON DCTHWT AND MGD 
 

As already stated the power spectrum estimate should have desired frequency 
resolution, low variance and good detectability. There is a trade off between frequency 
resolution and variance with the averaged windowed periodogram estimate. The 
variance can be due to any of the reasons as mentioned in section-3 and by using the 
MGD method it is possible to reduce the variance without any loss of frequency 
resolution (with reference to rectangular window). However, if the signal contains 
closely spaced spectral peaks and low- level spectral peaks in the neighborhood of high 
level ones, treating the fullband spectrum for the MGD may not result in required 
frequency resolution and detectability though it reduces the variance while preserving 
the frequency resolution of a rectangular window (corresponding to the data length). 
This may become severe particularly when the signal is associated with noise. As 
indicated, decomposition of the fullband into suitable subbands and decimation of the 
subband outputs will improve the performance from the point of view of frequency 
resolution and detectability. However the increased frequency resolution may lead to 
increased variance and this can be reduced by applying MGD to decimated subband 
components. In view of this, it is felt desirable to apply MGD to subband decimated 
signals and then combine the processed subband signals to get the overall spectrum 
with the original sampling rate.  
 
 Use of filter bank for this purpose involves:  generation of subband signals, their 
decimation in time domain, converting these decimated signals to frequency domain for 
MGD processing, conversion of the MGD processed responses to time, their 
interpolation and summing. The Fourier transform of the synthesized overall signal 
gives the fullband spectrum with the original sampling rate. Thus it has too many 
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operations and is very much involved. The advantage of applying MGD to subband 
signals is attractive provided these operations are reduced in number and made simpler.  
 
 It has been seen in section-2 and 4 that Harmonic Wavelet Decomposition is 
very much simpler compared to that of the filter bank. This is due to the fact that 
subband signals are generated in frequency domain directly by mere grouping of the 
Fourier coefficients. The decimation operation is built in and no explicit decimation is 
required. Also on the synthesis side, interpolation is built in and it need not be done 
explicitly.  Further, the HWT does not use any antialiasing filter prior to down sampling 
but this is achieved by just grouping the FT coefficients and no image rejection filter is 
required for reconstruction. Thus the HWT decomposition is very simple and as the 
subband decimated signals are available in frequency domain directly (Fig.2a), they can 
be straight away used as inputs for the MGD. 
 

As it is seen that the MGD can be applied in the DFT domain, it is necessary to 
have an equivalent DFT for each group of DCT coefficients. The equivalent DFT 
coefficients will have the properties of the DCT viz., low leakage which implies low 
magnitude bias and improved frequency resolution by a factor of 2, that result in a low 
frequency bias. 
 

In section-4, the general procedure of deriving DCT by taking the DFT of a 
symmetrically extended signal was considered. The equivalent DFT which has the 
desired properties of the DCT can only be computed using the analytic DCT [4]. It is 
not possible to get a DFT equivalent to a DCT, from the DCT, just by applying the 
inverse DCT and further computing the DFT of the one sided signal of the symmetric 
signal as this does not exploit the properties of the DCT and it is same as the DFT of 
the original signal. The analytic DCT spectrum, )(kCa

x  is given by 

                           )k(jC)k(C)k(C xHx
a
x +=                                       (11) 

where )(kCxH  : Hilbert transform of )(kC x . 
  

 If the desired DFT is represented as )k(X d , then its magnitude |)k(X| d  and 
phase )k(dφ  are given by  

                   )k(jC)k(C)k(C)k(X xHx
a
xd

22
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and            ⎥
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⎣
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)k(C

tan)k(
x

xH
d

1φ                                             (12b) 

 
This is similar to (dual to) getting a one sided spectrum from a symmetric spectrum 

by an analytic signal [4]. For a real signal the spectral magnitude is symmetric. For an 
analytic signal, the spectrum is one sided which implies that for a one sided signal, the 
spectrum is analytic. In DCT, the signal is symmetric. To get a one sided signal from 
the DCT, its analytic spectrum must be considered.  
 

The magnitude of the analytic spectrum is the envelope of the DCT spectrum. 
That is, the DFT coefficients are the envelope of the DCT coefficients and this is the 
reason for the frequency resolution of the DFT to be poorer than that of DCT. Further, 
the DFT coefficients so obtained from the DCT enjoy the desired properties of the 
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DCT, viz., the reduced spectral leakage / reduced spectral magnitude bias and better 
detectability. These desirable features of the DCT [14] and the relation to get the 
equivalent DFT from the DCT [4] have motivated to apply the MGD to subband 
components derived from DCTHWT.   
 

For each of the DCT subbands, K,C,C,C,C 4321 , the equivalent DFTs 
K,G,G,G,G 4321  are derived (using Eqn. (11) and DFT symmetry) and the MGD is 

applied to each of these to reduce their variance or the effect of noise on them.  The 
application of MGD to subband spectra rather than to the fullband will be very effective 
as the spectral resolution is improved due to spectral expansion by decimation and also 
as the spectral components are separated reducing their mutual effect on one another, 
while processing. The MGD processed spectrum for the subband can be derived from 
the MGD using Eqns. (4) and (3a). The MGD processed subband spectra so obtained 
can be concatenated directly to get the overall fullband spectrum using the DFT 
symmetry as shown in the Fig.2b. The fullband spectrum so obtained is of reduced 
variance, improved frequency resolution and has good detectability.   
 

The choice of subbands and their number depend upon the signal spectrum. In 
the reconstructed fullband spectrum, there can be discontinuities both in level and 
shape. The level discontinuity can be reduced by making the subsequent spectrum to 
have the same spectral DC level as its previous one. Further, any shape discontinuity 
can be reduced by a moving average smoothing over a small number of points, across 
the boundaries.   

 
This method thus exploits the desirable properties of the DCT, viz., the low 

leakage resulting in a reduced magnitude bias that improves detectability (for the low 
level spectral peaks in the presence of a high level one) and an improved frequency bias 
due to better spectral details provided by the analytic DCT and subband processing. 
The concept of the HWT efficiently provides the subband decimated signals in the 
frequency domain for applying the MGD and also reconstruction of the full band MGD 
processed spectrum by mere concatenation of the individual MGD processed subband 
spectra. 

 
 

6. SIMULATION RESULTS 
 

To illustrate the performance of the DCTHWT over that of the DFTHWT in terms 
of leakage, (i) A speech segment (65536 samples) (Fig. 4) (ii) Low Frequency Images: 
“Boat” (512 x 512) and “Street” (480 x 640) (Fig.7 and 9) are considered.  

 
The Speech signal is decomposed into 16 scales by DFTHWT and DCTHWT (Fig. 

5a and 5b). Scale numbers are also indicated.  In the DCTHWT, the 6 scales corresponding 
to lower frequency are of smaller magnitude compared to the other scales. This is due to 
low energy leakage or scattering.  However, this is not so with the DFTHWT (Fig.5a). The 
signal is reconstructed removing these 6 scales and the errors for the reconstructed signal 
are shown in Fig.6. For a compression factor of 0.62 (10/16), the error energies for the 
methods which use DFTHWT and DCTHWT are found to be 0.3590 and 0.2746 
respectively which implies a 30% reduction in reconstruction error using DCTHWT. The 
reconstruction error is given by 
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                            100% ×
−

=
DCTEE

DCTEEDFTEEErecon   

 
where DFTEE  is DFT Error Energy and  DCTEE  is the DCT Error Energy. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Speech Waveform (65536 samples) 
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The “Boat” image is decomposed into 3 levels by DFTHWT and DCTHWT as in 
Fig 7(a). The scales at different levels are shown in Fig.8 (a) and 8(b). The lower scales 
have a more intense structure for DFTHWT compared to that with DCTHWT. This may be 
due to leakage effect in DFT. The image is reconstructed by considering different % of the 
coefficients, setting remaining coefficients equal to zero. The performance index considered 
here is the average pixel error (APE) [21]. 
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The Average Pixel Error (APE) for different % of coefficients in case of 
DFTHWT and with DCTHWT are tabulated in Table 1(a). From this, it is clear that, 
with DCTHWT we can achieve better compression compared to that of DFTHWT.  
Fig.7 (c) and 7(d) shows the reconstructed images by considering 6.25% of the subband 
coefficients that means retaining only LL3, HL3, LH3, and HH3 subband coefficients, 
setting remaining sub band coefficients equal to zero. The reconstructed image using 
DCTHWT has a better resemblance to the original image (Fig. 7(b)) than that by 
DFTHWT. The percentage errors for DCTHWT and DFTHWT are 3.1% and 3.23% 
respectively. 

 
The performance of compression by DFTHWT and DCTHWT is compared 

with that of Cohen-Daubechies-Feauveau 9/7 (CDF9/7) biorthogonal symmetric 

Fig. 7(a) Three level decomposition
HL3LL3 

HL1

HH1LH1

LH2 HH2

HL2
LH3 HH3

Fig. 7(b) Original “Boat” Image Fig. 7(c) DFTHWT  

Fig.7 Image Reconstruction with 6.25% Coefficients for “Boat” image 

Fig. 7(d) DCTHWT  Fig. 7(e) CDF9/7  



Signal, Image and Video Processing, 2008 

 18

wavelet [18]. This is chosen as both DFTHWT and DCTHWT result in symmetric 
wavelets. For different compression factors, the DCTHWT has a comparable error 
performance with that of CDF9/7. However, this performance for DFTHWT is inferior 
both to that of DCTHWT and CDF9/7. Further the performance of Daubechies-4 (DB-
4) is inferior both to that of DCTHWT and DFTHWT and this is due to DB-4 being 
orthogonal but of asymmetrical nature, which may result in phase error. 
 

From the Fig 7(e) it is evident that there are some striations on the inclined 
posts. But such a distortion is not there for the images reconstructed by DCTHWT and 
DFTHWT. In this respect, the performance of DCTHWT and DFTHWT is superior to 
that of CDF9/7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table-1(a): APE by different methods for “Boat” image 
% Coeffs DFTHWT DCTHWT CDF9/7 DB4 

100% 0.986 0 0 0 
25% 2.572 2.297 2.275 2.7813 

6.25% 4.187 4.017 3.957 4.8653 
1.56% 5.794 5.691 5.678 6.5908 

Table-1(b): APE by different methods for “Street” image 
% Coeffs DFTHWT DCTHWT CDF9/7 DB4 

100% 0.964 0 0 0 
25% 1.821 1.258 1.246 1.6773 

6.25% 3.053 2.695 2.603 3.3186 
1.56% 4.752 4.456 4.292 4.9634 

Fig. 8(a) DFTHWT Scales 
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For the “boat image”, even though the error index shows a difference, this is not 

obvious from the pictures shown for 6.25% compression. The “street” image is able to 
bring out such a difference. Even without any compression, there is a significant 
difference between the original and the reconstructed image by DFTHWT (Fig.9b), 
which is not desirable. This is due to the approximation made in the algorithm by 
neglecting the imaginary part of the complex coefficient, both during row and column 
wise grouping, which repeats for every scale. This difference appears as undulations on 
the road in the “street image”, which does not exist for the DCTHWT (Fig.9c) as no 
approximations are made while grouping (as the DCT coefficients by themselves are 
real both for row and column wise). Regarding compression, the DFTHWT shows 
additional undulations on the road of the “street image” (Fig.9d). The DCTHWT, 
though introduces some undulations on the road (Fig.9e), they are significantly less 
compared to that by DFTHWT. This performance difference is due to less DCT leakage 
and is also significantly reflected in the error index, APE shown in Table-1(b). The 
percentage errors for DCTHWT and DFTHWT are 2.65% and 3.0% respectively. 

 
 For this image also, the performance of DFTHWT and DCTHWT are 

compared with those of CDF9/7 and DB-4 algorithms. It is evident from the APE 
values in Table-1(b) that the performance of DCTHWT is comparable to that of 
CDF9/7, but that of DFTHWT is inferior. However, the reconstructed image by 
CDF9/7 (Fig.9f) is blurred compared to that by DCTHWT (Fig.9c) and DFTHWT 
(Fig.9b). DB-4 has a larger error than both that of DCTHWT and DFTHWT.  

 

Fig. 8(b) DCTHWT Scales 
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It is important to note that the DCTHWT can provide better compression 
performance to that by CDF9/7 wavelets with computational efficiency as the latter 
realizes the decimation and interpolation operations without any explicit filtering 
required for antialiasing and image rejection. 

(a) Original “Street” Image 

(c) DCTHWT (100% coefficients) 

(e) DCTHWT (6.25% coefficients) 

Fig.9 Image Reconstruction for “Street” image 

(b) DFTHWT (100% coefficients) 

(d) DFTHWT (6.25% coefficients) 

(f) CDF9/7 (6.25% coefficients) 
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To bring out the performance of the subband spectral estimation based on DCTHWT 
and MGD, a signal (SNR=3dB) with two sinusoids at π30.  and π70.  radians plus an 
additive zero mean white Gaussian noise of length 1024 samples is considered. Further 
50 such data segments are used for statistical analysis. The DFT length used is 1024. 
The following nomenclature will be used for simplicity. 

 
Fullband DFTMGD : FDFT,  Fullband DCTMGD : FDCT 
Subband DFTMGD : SDFT,   Subband DCTMGD : SDCT 
 
The cepstral coefficients used are 2 for FDFT, 1 for FDCT, 3 for SDFT and 2 

for SDCT. The overlay of 50 spectral estimates obtained by each method is shown in 
the Fig.10. The spread indicates that variance of FDCT is better than that of FDFT. 
Further, SDCT variance is better than that of SDFT and its performance is much better 
than those  of FDFT and FDCT. The spread of the estimates is quantified by the index, 
normalized sum sample variance (NSSV) given by  
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,P: number of segments. N : FFT points. 
 
The NSSV values for FDFT, FDCT, SDFT and SDCT are 0.62, 0.1977, 0.1292 and 
0.0537 respectively. That is, the SDCT has a variance 2.6 times lower than that of  
SDFT.  The mean and variance are shown in Fig. (11) and the variance plots also 
support the performance superiority of the SDCT.   
 
The 4th order autoregressive (AR) process )n(y  considered is given by 

)n(y0.924)n(y2.654)n(y3.809)n(y2.76)n(u)n(y 4321 −−−+−−−+=  
where )n(u  is zero mean white Gaussian noise. 50 data segments of the AR process, 
each of length of 1024 samples, are considered. DFT length used is 1024. 

The mean spectrum is shown in Fig. 12(a). In case of subband methods, around 
π50.  rad, the mean spectrum is some what discontinuous (i.e., not a smooth transition 

at the position indicated by a dotted line).  The discontinuity is due to band splitting 
which is not a part of the true spectrum and hence has been reduced by smoothing 
across the boundary (as explained in section-5). After this discontinuity, the subband 
DCT follows the ideal spectrum in a better way compared to subband DFT.  

 
The deviation of the individual estimates with respect to the ideal one is 

quantified by the index, average root mean square error (ARMSE) given by  

                                          ∑=
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 P: number of segments. N : FFT points. )i(Sk  : individual estimates and )(iS : ideal 
spectrum. 
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The RMSE’s are plotted in Fig. 12(b). Average RMSE’s (ARMSE) are 
computed for first band, second band and whole band and their values are tabulated in 
Table 2.  The overall ARMSE for SDCT is less than those by other methods.  

 

 
   
    Table 2. ARMSE by different methods 

 
 

 
 
 
 
 
 
 

 
 
To bring out the resolving capability and detectability in estimating the spectral 

content of a signal, a composite signal made up of four sinusoids is considered. Their 
frequencies are πππ 550415040 .,.,.  and π8.0 .  Their corresponding amplitudes in order 
are 080015020 .,.,.  and 0150. .  The 3rd and 4th sinusoid are 48 dB and 63 dB below the first 
one and are well separated. Further, 50 segments of data, each of length 1024, are 
considered in estimating the mean plot (Fig.13).   DFT length used is 1024. 

 
The leakage effect due to the DFT is so high that it masks (cannot detect properly) 

the low level in case of  FDFT as well as SDFT. Also they cannot resolve the closely spaced 
sinusoid well (Fig.13 (a) and(c)). But the proposed method resolves the closely spaced 
peaks very well and also detects and brings out the low level peaks very well as shown in 
Fig.13 ((b) and (d)). 
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6. CONCLUSIONS  
 

A new Discrete Cosine Harmonic Wavelet transform (DCTHWT) and its 
application to signal/image compression and subband spectral estimation that uses the 
Modified Group Delay (MGD), were proposed.   

 
The proposed DCTHWT compared to the DFTHWT, has a significantly smaller 

reconstruction error as it is less affected by leakage and is preferred for signal/image 
compression and for further processing.  

 
For the considered speech signal and for a compression factor of 0.62, 

DCTWHT provides a 30% reduction in reconstruction error.  
 
For image compression/reconstruction, the DFTHWT is inferior to DCTHWT 

due to the approximation in the algorithm as only the real part of a complex coefficient 
is considered both during row and column wise coefficient grouping which repeats for 
every scale. For an image, the DCTHWT algorithm due to its real nature is 
computationally simple and more accurate than the DFTHWT. The “boat” image 
reconstructed by DFTHWT with 6.25 % coefficients is significantly inferior in 
appearance to that by DCTHWT and this is reflected in the error indices as their values 
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Fig. 13. Spectrum of two closely spaced and two low level sinusoids 
by (a) FDFT, (b)  FDCT, (c) SDFT, (d) DCT 
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are 3.23% and 3.1% respectively. For the same compression factor, the errors for the 
reconstruction of “street” image by DFTHWT and DCTHWT are 3.0% and 2.65% 
respectively. 

 
DCTHWT, with its computational advantage, gives a better visual performance 

compared to that of CDF9/7 biorthogonal symmetric wavelet, though the former has a 
larger error. For the “boat image”, with 6.25 % coefficients, the average pixel errors for 
DCTHWT and CDF9/7 are 4.02 and 3.96 respectively. For the same compression 
factor, the values of this error index for the “street” image by DCTHWT and CDF9/7 
are 2.69 and 2.60 respectively. 

 
As the DCTHWT facilitates good quality decimated subband components 

directly in the frequency domain, the MGD (being a frequency domain operation) can 
be applied directly.  The decimated subband DFT components are derived from DCT 
by analytic DCT. In the DCTHWT, DCT by itself provides an improvement in 
frequency resolution by a factor of 2. As each subband gets stretched due to 
decimation, the frequency resolution further improves and also as the components get 
separated, the detectability of low level peaks in the presence of high level one in turn 
improves.  The increased frequency resolution may lead to increased variance and this 
is remarkably reduced in subbands by the MGD without any loss in frequency 
resolution, as its processing ability is very effective in these derived DFT subbands.  
Hence the new estimator when applied to sinusoids in noise and AR signals plus low 
level sinusoids, has been found to have a significant improvement in terms of:  
reduction in variance, bias both in magnitude and frequency and hence in signal 
detectability; compared to those of MGD processing in fullband and subband signals 
provided by DFTHWT.   
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