
Abstract

We study the effects of a meniscus on the oscillations of a viscous liquid filling a right
circular cylindrical container by using the natural viscous complex eigenfunctions of the
problem; the case of no-meniscus was considered in Kidambi(2007). The free surface of
the liquid is assumed to have a pinned contact line. By projecting the governing equations
onto an appropriate basis, a nonlinear eigenvalue problem for the complex frequencies is
obtained. This is then solved to obtain the modal frequencies as a function of the contact
angle θc, the Reynolds and Bond numbers Re and Bo and the liquid depth h . The effect
of the meniscus is, in general, to decrease the modal frequency and increase (decrease) the
damping rate according as θc < (>)900. However, there are parameter values for which
the meniscus results in a frequency increase and anomalous behaviour in the damping
rate. Extensive comparison with experimental (Howell et al 2000) and computational
(Martel et al 1998, Nicolás 2002) results for the θc = 900 case (Kidambi 2007) is very
good; comparison with the one available experimental result of Cocciaro et al (1993) for
θc = 620 is also very good. Extensive results for a variety of contact angles have been
tabulated for Reynolds and Bond numbers for which experimental results (Howell et al
2000 ) exist in the flat interface case, for comparison with future experimental results that
may be obtained with curved menisci.

1 Introduction

This work seeks to determine the effects of a meniscus on the damping rate and frequency of
linear surface waves in a circular cylinder of radius R. The determination of these quantities
is a classical problem in fluid mechanics that not only has a history going back hundreds of
years but which also has been studied extensively in recent times, a selection of the recent
literature being Shankar (2007), Nicolás (2005), Nicolás (2002), Martel, Nicolás & Vega (1998),
Miles & Henderson (1998), Henderson & Miles (1994) and Benjamin & Scott (1979). For each
mode, the parameters influencing these two quantities are the gravitational Reynolds number
(Re =

√

gR3/ν), the Bond number (Bo = ρgR2/σ), the liquid depth H and the contact angle
θc. ρ, σ and ν are the density, surface tension and kinematic viscosity of the fluid and g is the
acceleration due to gravity. Though a linear problem, it has been surprisingly hard to solve
completely. The analytic approaches have almost exclusively, with the sole exception of the
pioneering work of Nicolás (2002) which solves an eigenvalue problem, consisted of deriving
asymptotic expressions for these two quantities with Re−1/2 as the small expansion parameter.
These calculations are tedious and have not been carried beyond O(Re−1). The frequency at
relatively high Re is predicted quite well by this approach, determined as it is by inviscid
mechanisms in this regime; at low Re, the prediction deteriorates and is already off by almost
20% even for the not-so-low Re ≈ 300 (Howell et al 2000). The damping rate is harder to predict
because the sources of damping are various and hard to quantify, ranging as they do from the
wall and free surface boundary layers to the moving contact line and surface contamination.
The dynamics of the moving contact line is not particularly well understood and hence some
workers going back to Benjamin & Scott (1979), have chosen to focus on the case of a pinned
contact line; in particular, there has been a systematic effort to compare experimental values of
the frequency and damping rate for various modes with theoretical values. Oscillations of the
free surface in a brimful container and small free surface oscillations of very viscous liquid are
two common situations where pinned contact lines may occur. Pinned contact lines have also
been experimentally observed in a low-amplitude (Cocciaro, Faetti & Festa 1993) and a low-
Reynolds number (Perlin, Schultz & Liu 2004) regime. The damping rates for the oscillations
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with a pinned contact line are well predicted at high Re with the difference in experimental
and analytic values often less than 5%. However, the comparison is not so good at the lower Re
with errors in the 10 − 20% range; moreover, the calculation to higher order will only worsen
the error as positive terms add to the damping rate.

The pinned contact line problem, though simpler than the problem where the contact line
moves, is nevertheless interesting and important because a) it allows a systematic study of the
various factors affecting surface waves, singly and in combination, b) it is a clean linear problem
whose solutions can be directly compared with experimental results, c) an understanding of the
linear dynamics is essential to the building of a weakly nonlinear theory and d) it provides a solid
foundation on which to base similar studies of the moving contact line problem. Till recently,
the problem was considered only through the asymptotic approaches, which while providing
valuable insights into the predominant sources of damping, have proved inadequate for low Re
and high mode number regimes. Nicolás (2002), to our knowledge, is the only paper till now
to formulate and solve an eigenvalue problem for the complex frequency for arbitrary values
of Re. The method is based on the separation-of-variables technique and uses two sets of real
eigenfunctions, one for the sidewall and one for the endwall and free surface. Nicolás’ results
are in good agreement with experimental values even in the low Re regime, thus bettering the
asymptotic results.

However, almost all studies till now, both experimental and computational, have been for the
case of a flat static free surface, the sole exceptions being an experimental study by Cocciaro et
al (1992) wherein the damping rate and frequency in the pinned contact line regime have been
measured for a θc = 620 and one set of values of Re,Bo and h and computational studies by
Shankar (2007) and Nicolás (2005) that take the meniscus into account but only in an inviscid
analysis. In the rest of the literature, the contact angle θc is 900 and there is no meniscus.
However, for real substances, the contact angle is almost never 900 and a meniscus is present.
Still, for normal gravity conditions and containers with large dimensions, the meniscus is quite
small with negligible effects. However, in microgravity conditions or in flows in containers of
dimensions comparable to the capillary length, these effects can no longer be neglected and
may even dominate. In these cases, quantifying the effects of a meniscus on the frequencies
and damping rates becomes important. It is known from the work of Martel et al (1998)
that the free surface boundary layer, for the case of θc = 900, contributes to damping only at
O(Re−3/2). Though this results in an accurate enough value for large Re with only three terms
(till O(Re−1)) it would increasingly be in error for Re → 0. The situation is more uncertain
when a meniscus is present. No studies similar to Martel et al (1998) exist for this case. Thus,
it is not clear at what order the free surface contribution may become important and it is likely
that the meniscus has an important role to play even at relatively large Reynolds number.

The present study seeks to fill this gap in the literature by formulating and solving an eigenvalue
problem for the frequencies but with a meniscus present. The spirit of the work is the same as
that in Nicolás (2002) with a semi-analytic solution based on the separation-of-variables method
being used; the details, however are quite different. To start with, the present approach uses
the natural eigenfunctions for the unsteady Stokes operator, introduced in Kidambi (2006) for
calculating the unsteady Stokes flow in a cylindrical lid driven container, and these turn out to
have complex eigenvalues which vary with the mode and Reynolds number. In contrast, Nicolás
employs two sets of Fourier - Bessel eigenfunctions with fixed real eigenvalues. Each term in
Nicolás’ expansions cannot satisfy the no-slip boundary condition; in the present approach,
the eigenvalues are found by requiring the satisfaction of this condition. The sidewall no-slip
condition is satisfied only in the mean sense in Nicolás’ approach thus making it unsuitable
for an infinitely deep container. Though this is not a practical difficulty, it is a theoretical
one which the present method does not face. Finally, Nicolás (2002) presented the method
for the no-meniscus case and it is not clear how it generalises when a meniscus is present.
This is because one of the eigenfunction sets used by Nicolás is defined on [0, H] where H is
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Figure 1: Geometry for oscillations of a free surface in a circular cylinder. The liquid is of
depth h and the contact line is pinned.

the static liquid depth; in the presence of a meniscus, the static depth is variable and it is
not clear how to proceed. The method presented in this paper does not suffer this limitation
as the eigenfunctions are derived only from the satisfaction of the sidewall no-slip condition.
A similar approach (Kidambi 2007) was used to calculate the frequency and damping rates
for a two-dimensional rectangular geometry where the existence of a streamfunction simplifies
matters. The present case is more difficult because a streamfunction does not exist and a vector
potential has to be used.

The paper is organised as follows. §2 presents the governing equations and boundary conditions.
§3 presents a solution of the problem which involves a) the computation of the static meniscus
and b) an eigenvalue formulation and solution where the natural viscous complex eigenfunctions
of the problem are used. §4 presents results for a range of Reynolds and Bond numbers; these
include comparisons with published experimental (Cocciaro et al 1993) and computational
(Nicolás 2005, Shankar 2007) results. Results are also presented for some of the experimental
parameters of Howell et al (2000) but with a meniscus for possible comparisons with future
experiments.

2 Governing equations

We consider the small oscillations of viscous liquid filling a circular cylindrical container of
radius R. The static interface is assumed to make an arbitrary contact angle θc with the
wall and the dynamic interface is assumed to have a pinned contact line i.e. the free surface
displacement at the sidewall of the cylinder (figure 1) is zero. The liquid depth, H is measured
as the distance between the bottom of the cylinder and the pinned contact line; we include the
case when H = ∞. Scaling lengths by R and time by

√

R/g, and linearising around the rest
state, we have (Johnson 1997)

∂ûr

∂r
+
ûr

r
+

1

r

∂ûθ

∂θ
+
∂ûz

∂z
= 0, (1a)

ût = −∇p̂+
1

Re
∇2û, (1b)

ûr(r = 1, θ, z, t) = ûθ(r = 1, θ, z, t) = ûz(r = 1, θ, z, t) = 0, (1c)
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ûr(r, θ, z = −h, t) = ûθ(r, θ, z = −h, t) = ûz(r, θ, z = −h, t) = 0 for the case of finite depth,
(1d)

ûr, ûθ, ûz → 0 as z → −∞, for the case of infinite depth, (1e)

η̂t + η
′

sûr = ûz, on z = ηs(r), (1f)
[

∂ûr

∂z
+
∂ûz

∂r

][

η
′2
s − 1

]

+ 2η
′

s

[

∂ûr

∂r
− ∂ûz

∂z

]

= 0, on z = ηs(r), (1g)

∂ûθ

∂z
+

1

r

∂ûz

∂θ
− η

′

s

(

1

r

∂ûr

∂θ
− ûθ

r
+
∂ûθ

∂r

)

= 0, on z = ηs(r), (1h)

p̂− 2

Re

1

(1 + η′2
s )

[

∂ûz

∂z
+ η

′2
s

∂ûr

∂r
− η

′

s

(

∂ûr

∂z
+
∂ûz

∂r

)]

− η̂

+
1

Bo

[

1

(1 + η′2
s )3/2

∂2η̂

∂r2
+
∂η̂

∂r

(

1 + 3η
′2
s

r(1 + η′2
s )3/2

− 3η
′

sκs

1 + η′2
s

)

+
1

r2(1 + η′2
s )1/2

∂2η̂

∂θ2

]

= 0 on z = ηs(r),

(1i)

η̂(r = 1, θ, t) = 0 and

∫ 2π

0

∫ 1

0

rη̂(r, θ, t)dr dθ = 0. (1j,k)

Here ûr, ûθ and ûz are the r, θ and z components of velocity, p̂ is the reduced pressure (with

gravity incorporated), Re =
√

gR3/ν is the gravitational Reynolds number and Bo = ρgR2/σ
is the Bond number. ρ, σ and ν are the density, surface tension and kinematic viscosity of
the fluid and g is the acceleration due to gravity. The continuity equation is given by 1(a),
the momentum equations by 1(b), the zero-velocity boundary conditions on the side wall by
1(c), the boundary condition on the bottom wall in the finite depth case by 1(d), the far-
field condition in the infinite depth case by 1(e) and the kinematic, shear and normal stress
conditions on the free surface z = ηs(r) + η̂(r, θ, t) by 1(f,g,h,i). The static meniscus z = ηs(r)
satisfies the differential equation

ηs(r) =
1

Bo
κs(r) + λs, with κs(r) =

η
′′

s + η
′

s(1 + η
′2
s )/r

(1 + η′2
s )3/2

(2a,b)

and η
′

s(r = 1) = cot θc; the primes indicate differentiation with respect to r. Note that, under
linearisation, 1(f,g,h,i) are applied on z = ηs(r). The pinned contact line condition is given by
1(j) and the volume conservation condition by 1(k).

Anticipating the existence of axisymmetric modes, it may be noted that similar equations hold
with the obvious change that there is no azimuthal dependence and that the velocity field is
two-dimensional.

3 Solution

Since we are interested in oscillatory solutions to the system 1(a-k), we seek

ûr(r, θ, z, t) = eΩtur(r, θ, z), ûθ(r, θ, z, t) = eΩtuθ(r, θ, z), (3a,b)

ûz(r, θ, z, t) = eΩtuz(r, θ, z), p̂(r, θ, z, t) = eΩtp(r, θ, z), and η̂(r, θ, t) = eΩtη(r, θ). (3c,d,e)
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where Ω is (the possibly complex) oscillatory frequency to be determined. Using 3(a-e) in
system (1), we have

∂ur

∂r
+
ur

r
+

1

r

∂uθ

∂θ
+
∂uz

∂z
= 0, (4a)

Ωu = −∇p+
1

Re
∇2u, (4b)

ur(r = 1, θ, z) = uθ(r = 1, θ, z) = uz(r = 1, θ, z) = 0, (4c)

ur(r, θ, z = −h) = uθ(r, θ, z = −h) = uz(r, θ, z = −h) = 0 for the case of finite depth, (4d)

ur, uθ, uz → 0 as z → −∞, for the case of infinite depth, (4e)

Ωη = uz − urη
′

s, on z = ηs(r), (4f)
[

∂ur

∂z
+
∂uz

∂r

][

η
′2
s − 1

]

+ 2η
′

s

[

∂ur

∂r
− ∂uz

∂z

]

= 0, on z = ηs(r), (4g)

∂uθ

∂z
+

1

r

∂uz

∂θ
− η

′

s

(

1

r

∂ur

∂θ
− uθ

r
+
∂uθ

∂r

)

= 0, on z = ηs(r), (4h)

p− 2

Re

1

(1 + η′2
s )

[

∂uz

∂z
+
∂ur

∂r
η

′2
s − η

′

s

(

∂ur

∂z
+
∂uz

∂r

)]

− η

+
1

Bo

[

1

(1 + η′2
s )3/2

∂2η

∂r2
+
∂η

∂r

(

1 + 3η
′2
s

r(1 + η′2
s )3/2

− 3η
′

sκs

1 + η′2
s

)

+
1

r2(1 + η′2
s )1/2

∂2η

∂θ2

]

= 0 on z = ηs(r),

(4i)

η(r = 1, θ) = 0 and

∫ 2π

0

∫ 1

0

rη(r, θ)dr dtheta = 0. (4j,k)

Following Kidambi(2006), we seek

u = ∇φ+ ∇× A, p = −Ωφ (5a,b)

where B = ∇ × A satisfies the vector Helmholtz equation, ∇2B = ΩReB, while φ satisfies
∇2φ = 0. It is easily checked that the above velocity and pressure fields, with B and φ as
defined satisfy the continuity and the linearised Navier-Stokes equations 4(a,b).

Using the results in Morse & Feshbach (1953), two independent solenoidal vector fields B1 and
B2 satisfying the vector Helmholtz equation can be written as

B1 = ekz

[

er

(

cosmθ
− sinmθ

)

{Jm−1(αr) + Jm+1(αr)} − eθ

(

sinmθ
cosmθ

)

{Jm−1(αr) − Jm+1(αr)}
]

,

(6a)

B2 = ekz

[

erk

(

cosmθ
− sinmθ

)

{Jm−1(αr) − Jm+1(αr)} − eθk

(

sinmθ
cosmθ

)

{Jm−1(αr) + Jm+1(αr)}

+ez2α

(

cosmθ
sinmθ

)

Jm(αr)

]

. (6b)

Here, (er, eθ, ez) are the unit vectors in the cylindrical coordinate system, Jm is the Bessel
function of the first kind of order m, and α =

√
k2 − ΩRe. m and k are the azimuthal and axial

wavenumbers. Note that out of the four possible vector fields given above, two generate radial
and axial velocity fields that are symmetric about θ = 0 and the other two antisymmetric.
We shall call these ‘symmetric’ and ‘antisymmetric’ modes respectively as these correspond to
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symmetric and antisymmetric free surface oscillations. However, the frequency of the mode with
azimuthal wave number m is the same irrespective of whether it is symmetric or antisymmetric.
From now on, we consider only symmetric modes, for definiteness. The scalar field φ can be
immediately written down as

φ(r, θ, z) = ekz

(

cosmθ
sinmθ

)

Jm(kr).

We now write down the velocity fields for the symmetric modes, with obvious changes for the
antisymmetric ones. Anticipating imaginary eigenvalues, we scale the Bessel functions by an
exponential factor exp(ki), ki = Im(k) to avoid the large numbers that result for Bessel functions
of arguments with large imaginary parts. To avoid clutter in what follows, we suppress the
scale with the understanding that Jm(kr) actually means Jm(kr)/exp(ki). By combining the
fields ∇φ,B1 and B2 in the ratio 1:a:b, a candidate velocity field can be written as

vr(r, θ, z) = ekz cosmθ

[

d

dr
Jm(kr) + a{Jm−1(αr) + Jm+1(αr)} + bk{Jm−1(αr) − Jm+1(αr)}

]

,

(7a)

vθ(r, θ, z) = −ekz sinmθ

[

m

r
Jm(kr) + a{Jm−1(αr) − Jm+1(αr)} + bk{Jm−1(αr) + Jm+1(αr)}

]

,

(7b)

vz(r, θ, z) = ekz cosmθ

[

kJm(kr) + b2αJm(αr)

]

. (7c)

The vanishing of the velocity on the sidewall r = 1 leads to the system of linear equations,

k

2
{Jm−1(k) − Jm+1(k)} + a{Jm−1(α) + Jm+1(α)} + bk{Jm−1(α) − Jm+1(α)} = 0, (8a)

mJm(k) + a{Jm−1(α) − Jm+1(α)} + bk{Jm−1(α) + Jm+1(α)} = 0, (8b)

kJm(k) + b2αJm(α) = 0. (8c)

For (8) to have a non-trivial solution, we need

∣

∣

∣

∣

∣

∣

k
2
{Jm−1(k) − Jm+1(k)} Jm−1(α) + Jm+1(α) k{Jm−1(α) − Jm+1(α)}

mJm(k) Jm−1(α) − Jm+1(α) k{Jm−1(α) + Jm+1(α)}
kJm(k) 0 2αJm(α)

∣

∣

∣

∣

∣

∣

= 0,

which, on simplification, leads to an eigenvalue relation for k which reads

4k2Jm−1(α)Jm(k)Jm+1(α) + kαJm(α)[Jm−1(k) − Jm+1(k)][Jm−1(α) − Jm+1(α)]

−4m2Jm(k)J2
m(α) = 0. (9)

For k⋆ and α⋆ satisfying (9), Eqs. (7) will yield vector eigenfunctions provided the constants a
and b are given by

a =
mJm(k⋆)(1 − k⋆2/α⋆2)

Jm+1(α⋆) − Jm−1(α⋆)
, b = − k⋆

2α⋆

Jm(k⋆)

Jm(α⋆)
.

For m 6= 0, it is known from Kidambi (2006) that (9) has three sets of complex eigenvalues
which we denote {λn}, {µn} and {νn}. However, the equation in Kidambi (2006) is simpler than
the present one because (9) involves the unknown Ω which has to be determined so as to satisfy
an eigenvalue problem that we will derive in the next section.
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We now sketch the solution for the axisymmetric modes(m = 0), which is slightly different. For
these modes, B2 (6(b)) is the only non-zero velocity field and is given by

B2 = ekz[−erkJ1(αr) + ezαJ0(αr)].

A candidate velocity field can be written as

vr(r, z) = −kekz[J1(kr) + 2bJ1(αr)],

vz(r, z) = ekz[kJ0(kr) + b2αJ0(αr)]

where the wave number k is a solution of the eigenvalue relation

αJ1(k)J0(α) − kJ0(k)J1(α) = 0, and b = − k

2α

J0(k)

J0(α)
.

This eigenvalue equation has only two sets of complex eigenvalues {λn} and {µn}.
Before we go on to formulate an eigenvalue problem for Ω, we first briefly describe the calculation
of the static meniscus in §3.1.

3.1 Computation of the static meniscus

The static meniscus z = ηs(r) is computed by solving equation (2a), which is a two-point
boundary-eigenvalue problem. The two boundary conditions are η

′

s(1) = cot θc and η
′

s(0) = 0.
With the coordinates fixed such that η(1) = 0 (pinned contact line), (2a) has solutions only for
particular values of λ which is the eigenvalue. A convenient way to solve (2a) is to write ηs as

ηs(r) =
N

∑

n=1

um[cos kmr + (−1)mkm

2
(1 − r2)] − cot θc

2
(1 − r2)

where km = (2m − 1)π/2 and the coefficients um are obtained by a least squares error min-
imisation procedure. Note that the boundary conditions are satisfied by the assumed form for
ηs(r).

The minimisation procedure consists of the following steps -

1. First write 2(a) as

ηs(r) −
1

Bo
[η

′′

s +
η

′

s

r
] − λs =

1

Bo

[

η
′′

s

(

1

(1 + η′2
s )3/2

− 1

)

+
η

′

s

r

(

1

(1 + η′2
s )1/2

− 1

)]

and consider N equally spaced points ri = i/(N − 1), i = 0, 1, · · ·N over which the error
in the above equation will be minimised.

2. Define the error at the ith point ei as

ei = ηs(i) −
1

Bo
[η

′′

s (i) +
η

′

s(i)

ri

] − λs − rhs(i)

where rhs(i) is the right hand side of the equation in step (1) evaluated at the ith point.
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3. Consider the total squared error Et defined as

Et =
N

∑

i=1

e2i .

The coefficients um are obtained by minimising Et with respect to um i.e. by setting
∂Et/∂um = 0,m = 1, · · ·N and solving the resulting system of linear equations. Finally,
the eigenvalue λ is obtained from

λ =
1

Bo

[

(
N

∑

n=1

unkn(−1)n − cot θc) sin3 θc − cos θc

]

.

3.2 The case of infinite depth

We will first sketch the solution for the simpler case of an infinitely deep container. We write
the three components of the velocity field ur, uθ and uz as linear combinations of the vector
eigenfunctions given in (7). Denoting

p1
n(r) =

[

d

dr
Jm(λnr) + a{Jm−1(α

1
nr) + Jm+1(α

1
nr)} + bλn{Jm−1(α

1
nr) − Jm+1(α

1
nr)}

]

, (10a)

p2
n(r) =

[

m

r
Jm(λnr) + a{Jm−1(α

1
nr) − Jm+1(α

1
nr)} + bλn{Jm−1(α

1
nr) + Jm+1(α

1
nr)}

]

, (10b)

p3
n(r) =

[

λnJm(λnr) + 2bα1
nJm(α1

nr)

]

, (10c)

q1
n(r) =

[

d

dr
Jm(µnr) + a{Jm−1(α

2
nr) + Jm+1(α

2
nr)} + bµn{Jm−1(α

2
nr) − Jm+1(α

2
nr)}

]

, (10d)

q2
n(r) =

[

m

r
Jm(µnr) + a{Jm−1(α

2
nr) − Jm+1(α

2
nr)} + bµn{Jm−1(α

2
nr) + Jm+1(α

2
nr)}

]

, (10e)

q3
n(r) =

[

µnJm(µnr) + 2bα2
nJm(α2

nr)

]

, (10f)

s1
n(r) =

[

d

dr
Jm(νnr) + a{Jm−1(α

3
nr) + Jm+1(α

3
nr)} + bνn{Jm−1(α

3
nr) − Jm+1(α

3
nr)}

]

, (10g)

s2
n(r) =

[

m

r
Jm(νnr) + a{Jm−1(α

3
nr) − Jm+1(α

3
nr)} + bνn{Jm−1(α

3
nr) + Jm+1(α

3
nr)}

]

, (10h)

s3
n(r) =

[

νnJm(νnr) + 2bα3
nJm(α3

nr)

]

, (10i)

we can write the three components of the velocity field for the mth azimuthal mode as

ur(r, θ, z) = cosmθ
N

∑

n=1

[

anp
1
n(r)eλnz + bnq

1
n(r)eµnz + cns

1
n(r)eνnz

]

, (11a)

uθ(r, θ, z) = − sinmθ
N

∑

n=1

[

anp
2
n(r)eλnz + bnq

2
n(r)eµnz + cns

2
n(r)eνnz

]

, (11b)

uz(r, θ, z) = cosmθ
N

∑

n=1

[

anp
3
n(r)eλnz + bnq

3
n(r)eµnz + cns

3
n(r)eνnz

]

, (11c)
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where only the eigenvalues with positive real part are included as the field has to decay at
infinity. In the above, α1

n =
√

λ2
n − ΩRe, α2

n =
√

µ2
n − ΩRe, α3

n =
√

ν2
n − ΩRe (these appear in

pj
n, q

j
n and sj

n, j = 1, 2, 3); an, bn, cn are the unknown complex coefficients that have to be deter-
mined such that the remaining boundary conditions 4(f,g,h,i), which also contain the unknown
frequency Ω, are satisfied. We now obtain an eigenvalue problem for Ω; the eigenvectors will
give the an, bn and cn. We follow a weighted residual method approach and require the inner
product of equations 4(g,h,i) with the first N members of a complete set of test functions to
vanish. We choose the test functions as the set {Jm(δlr), l = 1, 2, · · · }, where the δl are the
roots of Jm. First we project the shear stress conditions on the interface 4(g,h) onto this set of
functions {Jm(δlr), l = 1, 2, · · · } to obtain the system of equations

N
∑

n=1

(anβ
1
nl + bnξ

1
nl + cnχ

1
nl) = 0, and (12a)

N
∑

n=1

(anβ
2
nl + bnξ

2
nl + cnχ

2
nl) = 0. (12b)

The expressions for the integrals appearing in (12) are given in Appendix A. (12) can be written
in matrix form as

X1a + Y1b + Z1c = 0,

X2a + Y2b + Z2c = 0

from which b and c can be expressed in terms of a as

b = −U2
−1U1a, c = −Z1

−1(X1a + Y1b) (13a,b)

where U1 = X2 − Z2Z1
−1X1, and U2 = Y2 − Z2Z1

−1Y1.

Equations 4(f) and 4(i) involve η(r, θ) which we seek as

η(r, θ) = cosmθ
N

∑

n=1

gnJm(δnr) (14)

where the gn are coefficients to be determined by satisfying 4(f,i). Note that (14) satisfies
the pinned contact line condition 4(j) and the volume conservation condition 4(k) for non-
axisymmetric (m 6= 0) modes. Using this representation, expressing the pressure in terms of
the potential by 5(b) and projecting 4(f) and 4(i) onto the set {Jm(δlr)}, we get the pair of
equations

N
∑

n=1

(anβ
3
nl + bnξ

3
nl + cnχ

3
nl) = Ω

N
∑

n=1

gnγ
3
nl, (15a)

N
∑

n=1

(anβ
4
nl + bnξ

4
nl + cnχ

4
nl + gnγ

4
nl) = −Ω

N
∑

n=1

(anβ
5
nl + bnξ

5
nl + cnχ

5
nl). (15b)

The integrals appearing in (15) are also given in Appendix A. Using (13a,b), (15) can be written
as the nonlinear eigenvalue problem

C(Ω;Re,Bo)v = ΩD(Ω;Re,Bo)v (16)

where C and D are 2N×2N matrices and v is a column vector with components an, n = 1, · · ·N
and gn, n = 1, · · ·N . Note that though (16) has the formal appearance of a generalised linear
eigenvalue problem, its solution requires iteration as the matrices C and D are functions of Ω.
The numerical procedure consists of the following steps -
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1. Start with an initial guess for Ω,Ωi.

2. For this value of Ω and the given Re, determine the eigenvalues λn, µn and νn.

3. Compute the matrices C and D.

4. Solve the eigenvalue problem (16) and obtain Ωf .

5. If Re{Ωf − Ωi} and Im{Ωf − Ωi} < ǫ for a chosen tolerance, the calculation is done. If
not, repeat (1)-(5) with Ωi = α0Ωi +(1−αo)Ωf , with αo ∈ (0, 1). We have used αo = 0.5.

(16) has been solved by the LAPACK routine ZGEEV. The pinned contact line frequencies for
infinite depth and a flat interface (Kidambi 2007) have been used as starting values; these are
then continued in the h− θc −Re−Bo space to the required parameter values. In general the
procedure works well and convergence is achieved under ten iterations. Note that this procedure
has to be repeated for the different modes i.e. even though N Ω are obtained by solving (16),
all these will not be the correct values as the iteration was performed with respect to only one
of those temporal eigenvalues. In other words, each modal frequency has corresponding to it
a different set of spatial eigenvalues. The axisymmetric case m = 0 is more subtle. Now mass
conservation is not automatic unlike in the non-axisymmetric case; this defines a constraint on
the gn appearing in η given by (14). However, using this and the fact that a constant term has
to be included in the expansion for φ (Shankar 2007) leads to a similar eigenvalue problem as
for the non-axisymmetric modes.

3.3 The case of finite depth

When the cylinder is of finite depth, there are three additional conditions to be satisfied on the
bottom wall; this fact is reflected in an increase in the number of unknown coefficients to be
determined. The velocity field in this case can be written

ur(r, θ, z) = cosmθ
∞

∑

n=1

[

p1
n(r)(an

coshλn(z + h/2)

coshλn
h
2

+ dn
sinhλn(z + h/2)

sinhλn
h
2

)

+q1
n(r)(bn

coshµn(z + h/2)

coshµn
h
2

+ en
sinhµn(z + h/2)

sinhµn
h
2

) + s1
n(r)(cn

cosh νn(z + h/2)

cosh νn
h
2

+ fn
sinh νn(z + h/2)

sinh νn
h
2

]

,

(17a)

uθ(r, θ, z) = − sinmθ
∞

∑

n=1

[

p2
n(r)(an

coshλn(z + h/2)

coshλn
h
2

+ dn
sinhλn(z + h/2)

sinhλn
h
2

)

+q2
n(r)(bn

coshµn(z + h/2)

coshµn
h
2

+ en
sinhµn(z + h/2)

sinhµn
h
2

) + s2
n(r)(cn

cosh νn(z + h/2)

cosh νn
h
2

+ fn
sinh νn(z + h/2)

sinh νn
h
2

]

,

(17b)

uz(r, θ, z) = cosmθ
∞

∑

n=1

[

p3
n(r)(an

sinhλn(z + h/2)

coshλn
h
2

+ dn
coshλn(z + h/2)

sinhλn
h
2

)

+q3
n(r)(bn

sinhµn(z + h/2)

coshµn
h
2

+ en
coshµn(z + h/2)

sinhµn
h
2

) + s3
n(r)(cn

sinh νn(z + h/2)

cosh νn
h
2

+ fn
cosh νn(z + h/2)

sinh νn
h
2

)

]

.

(17c)
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Note that the coefficients of an, bn, cn, dn, en and fn are divided by the hyperbolic functions
to keep them O(1) at z = 0 and z = −h where the boundary conditions will be applied.
Projecting the shear stress condition on the interface 4(g,h) onto the complete set of functions
{Jm(δlr), l = 1, 2, · · · }, we obtain the system of equations

N
∑

n=1

(anβ
1
nl + bnξ

1
nl + cnχ

1
nl + dnγ

1
nl + enρ

1
nl + fnψ

1
nl) = 0, (18a)

N
∑

n=1

(anβ
2
nl + bnξ

2
nl + cnχ

2
nl + dnγ

2
nl + enρ

2
nl + fnψ

2
nl) = 0 (18b)

with the various integrals given in Appendix B. The projection of the bottom boundary condi-
tions 4(d) leads to the triple

N
∑

n=1

(anβ
6
nl + bnξ

6
nl + cnχ

6
nl + dnγ

6
nl + enρ

6
nl + fnψ

6
nl) = 0, (19a)

N
∑

n=1

(anβ
7
nl + bnξ

7
nl + cnχ

7
nl + dnγ

7
nl + enρ

7
nl + fnψ

7
nl) = 0, (19b)

N
∑

n=1

(anβ
8
nl + bnξ

8
nl + cnχ

8
nl + dnγ

8
nl + enρ

8
nl + fnψ

8
nl) = 0 (19c)

where

β6,7
nl =

∫ 1

0

rp1,2
n (r)Jm(δlr)dr, β

8
nl = − tanh

λnh

2

∫ 1

0

rp3
n(r)Jm(δlr)dr,

ξ6,7
nl =

∫ 1

0

rq1,2
n (r)Jm(δlr)dr, ξ

8
nl = − tanh

µnh

2

∫ 1

0

rq3
n(r)Jm(δlr)dr,

χ6,7
nl =

∫ 1

0

rs1,2
n (r)Jm(δlr)dr, χ

8
nl = − tanh

νnh

2

∫ 1

0

rs3
n(r)Jm(δlr)dr,

γ6,7
nl = −β6,7

nl , ρ
6,7
nl = −ξ6,7

nl , ψ
6,7
nl = −χ6,7

nl

and γ8
nl = −(coth2 λnh/2)β8

nl, ρ
8
nl = −(coth2 µnh/2)ξ8

nl andψ8
nl = −(coth2 νnh/2)χ8

nl.

Writing (19) in matrix form as

X1a + Y1b + Z1c + X1d + Y1e + Z1f = 0,

X2a + Y2b + Z2c + X2d + Y2e + Z2f = 0,

X6a + Y6b + Z6c + X6d + Y6e + Z6f = 0,

X7a + Y7b + Z7c + X7d + Y7e + Z7f = 0,

X8a + Y8b + Z8c + X8d + Y8e + Z8f = 0

and defining U and V by

U =













Y1 Z1 X1 Y1 Z1

Y2 Z2 X2 Y2 Z2

Y6 Z6 X6 Y6 Z6

Y7 Z7 X7 Y7 Z7

Y8 Z8 X8 Y8 Z8













and V =













X1

X2

X6

X7

X8













,
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θc λ

Bo = 100 Bo = 365 Bo = 1250
30 -0.104999 −5.36708 × 10−2 −2.86714 × 10−2

45 −8.04986 × 10−2 −4.11092 × 10−2 −2.19503 × 10−2

60 −5.45120 × 10−2 −2.78196 × 10−2 −1.48495 × 10−2

75 −2.75126 × 10−2 −1.40349 × 10−2 −7.49016 × 10−2

Table 1: The eigenvalue λ for Bo = 100, 365 and 1250 and a variety of static contact angles θc.
λ = 0 for θc = 900.

the above set of equations can be written

U













b
c
d
e
f













= −Va

from which an inversion of U gives b, c,d, e and f in terms of a. Note that U and V have
dimensions 5N × 5N and 5N ×N .

Finally, the projection of (4f,i) leads to a similar matrix eigenvalue problem as (16) which is
then solved in the same way as described there. The starting values are taken as the h = ∞
values and the calculation proceeds by parametric continuation to lower depths (decreasing h).
The axisymmetric case is very similar and will not be discussed.

4 Results & Discussion

The frequency and damping rate of a given mode depends on the four parameters Bo,Re, h
and θc. Since the parameter space is large, we will content ourselves with calculating for a few
representative cases. The static meniscus is a function of the Bond number and the contact
angle and has to be first computed. We present results of the meniscus computation in §4.1.
We consider the case of infinite depth in §4.2 and finally the finite depth case in §4.3.

4.1 Results for the static meniscus

The static menisci for the three Bond numbers and a variety of contact angles, for which
computations will be presented, have been calculated as the first step in the calculation of Ω.
2000 eigenfunctions and 4800 minimisation points were used in the meniscus calculations. The
maximum error in the satisfaction of 2(a) was of O(10−5). The values of the eigenvalue λ for
the three values of Bo and for a variety of static contact angles θc are presented in Table 1.
Note that the λ for θ > 900 readily follow from the fact that λ(θc) = −λ(180 − θc).
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4.2 The case of infinite depth

We present results for the case of an infinitely deep container in this section. This case is not
only interesting in itself, but also provides starting values for the finite depth calculations. The
results presented in this section are for Bo = 365 and a contact angle θc = 450.

The calculations have been performed with N = 20 and 40 modes and with a number of
different integration step sizes (used in the projection of the boundary conditions). It is found
that a step size of ∆r = 0.01 suffices to give convergence to five significant digits for N = 10, 20
whereas ∆r = 0.005 is required for N = 40. The computations for arbitrary contact angle
are continued from the computations for θc = 900 (flat interface). The bottom wall boundary
conditions are satisfied to O(10−10) and the convergence criterion for the iterative procedure of
§3.2, ǫ has been fixed at 10−6.

Table 2 shows the frequency and damping rates for calculations with N = 20 and 40 modes
for Bo = 365 and θc = 450 for the (1, 0), (2, 0), (3, 0) and (4, 0) modes. The damping rates
and frequencies have converged to two and three significant figures respectively in most cases.
Since the modes under consideration are the ‘viscous modes’, the complex modal frequencies
should approach the inviscid values as Re→ ∞. The inviscid values for the same Bond number
and contact angle are 1.438, 1.887, 2.257 and 2.592 respectively. These have been obtained by
a procedure outlined in Shankar (2007).

4.3 The case of finite depth

In this section, we present results which show the effect of the static contact angle on the
frequency and damping rates. Since the parameter space is four dimensional for each mode,
it will not be possible to cover even a substantial portion of the space. The flat interface
case, for which extensive experimental results (Howell et al 2000) and computational results
(Martel et al 1998, Nicolás 2002) exist, was considered in Kidambi (2007). In §4.3.1, we present
results for some of the cases in Howell et al (2000), but with curved static menisci, for possible
comparison with future experiments. For the case of a meniscus (non - 90 contact angle), the
only experimental result that we are aware of is due to Cocciaro et al (1993) who measure the
frequency and damping rate of the first non-axisymmetric mode on a free surface which when
static makes a contact angle θc = 620. We compare the values from the present computation
with the experimental values from Cocciaro et al (1993) in §4.3.2. Where appropriate, we make
contact with the numerical results of Shankar (2007) and Nicolás (2005) which however only
give the frequencies, being inviscid calculations.

4.3.1 Some results for possible comparison with future experiments

In this section, we present results of calculations using some of the parameters in the exper-
iments of Howell et al (2000), but with curved static menisci. 70 different experiments were
performed by Howell et al; since we have to consider each of these cases for a variety of contact
angles, we will only present results for a few representative values of the Reynolds number for
each mode. In particular, we present results for the highest and lowest experimetal Re for each
of the six modes at the two depths of h = 1.379 and h = 0.231.

Before we go ahead and discuss the results, we review a few well-known facts about the frequency
and damping rate in the cases of a free-end and pinned-end contact line. This will provide a
framework for understanding the present results. The restoring force in a surface wave results
from (i) the action of gravity on the displaced fluid and (ii) stretching of the free surface, the

13



C −Ωr Ωi

N = 20 N = 40 N = 20 N = 40

(1,0) mode

5 × 10−5 0.0057 0.0053 1.436 1.434
1 × 10−4 0.0078 0.0075 1.434 1.432
5 × 10−4 0.0192 0.0195 1.426 1.424
1 × 10−3 0.0306 0.0313 1.421 1.423
5 × 10−3 0.0943 0.0952 1.395 1.393
1 × 10−2 0.1588 0.1607 1.378 1.376

(2,0) mode

5 × 10−5 0.0091 0.0083 1.883 1.881
1 × 10−4 0.0126 0.0123 1.881 1.878
5 × 10−4 0.0335 0.0336 1.867 1.867
1 × 10−3 0.0542 0.0585 1.860 1.859
5 × 10−3 0.1804 0.1815 1.816 1.813
1 × 10−2 0.3074 0.3079 1.778 1.776

(3,0) mode

5 × 10−5 0.0125 0.0111 2.252 2.249
1 × 10−4 0.0175 0.0169 2.248 2.245
5 × 10−4 0.0506 0.0486 2.231 2.229
1 × 10−3 0.0811 0.0812 2.221 2.219
5 × 10−3 0.2811 0.2821 2.152 2.150
1 × 10−2 0.4765 0.4766 2.080 2.078

(4,0) mode

5 × 10−5 0.0159 0.0141 2.587 2.583
1 × 10−4 0.0227 0.0219 2.582 2.578
5 × 10−4 0.0695 0.0665 2.561 2.559
1 × 10−3 0.1116 0.1122 2.547 2.543
5 × 10−3 0.3946 0.3974 2.446 2.442
1 × 10−2 0.6614 0.6654 2.327 2.325

Table 2: The frequencies and damping rates of the (1, 0), (2, 0), (3, 0), (4, 0) modes by using
N = 20 and 40 spatial modes. The static contact angle θc = 450.
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kn 3.832 7.016 10.173 13.324 16.471
ln 1.841 5.331 8.536 11.706 14.864

Table 3: The first few permissible wavenumbers for pinned contact line (kn) and free contact
line (ln). Inviscid flow is assumed.

two forces coming into play being gravity and surface tension. The gravitational contribution
is directly proportional to the free surface displacement η which in turn is directly proportional
to the vertical component of velocity on the free surface uz − η

′

sur. The capillary contribution
is directly proportional to the free surface curvature and inversely proportional to the Bond
number Bo. It is well known that uz is directly proportional to the wavenumber k which in
turn is related to the edge conditions and also to the depth. Thus we have the following -

1. Higher modes, which by definition have higher wave number, have higher frequencies.

2. For a fixed mode, the frequency decreases with decreasing depth.

3. Pinned contact lines result in higher frequencies than free end ones. This is directly related
to the magnitudes of the wavenumbers that are allowed in the two cases. Considering
the inviscid situation for simplicity, η satisfies η(r = 1) = 0 and η

′

(r = 1) = 0 in the two
cases respectively. 1For a fixed mode with mode number m, this leads to the eigenvalue
relations Jm(kn) = 0 and J

′

m(ln) = 0 respectively. Again, it is well known that kn > ln for
given n. The first few kn and ln for m = 1 are given in Table 3. It is clear that ωpc > ωfc

where the subscripts refer to the pinned and free contact lines.

4. The frequency increases with the contact angle θc for θc ∈ [0, π] in the free end case
(Kidambi & Shankar 2004, Nicolás 2005). If the contact line is pinned, the frequency
increases with increasing θc only for θc < θo

c
2; beyond this, it decreases. This behaviour

is different from the free end case.

5. The frequency increases with decreasing Bo. This is because of an increased capillary
contribution to the springiness of the free surface.

The effects of viscosity on the frequency are felt through the no-slip boundary condition on the
walls and through the Re term in the dynamic boundary condition on the free surface. The
viscous effect is the classical one that obtains in the damped spring-mass system; the frequency
reduces with increasing viscosity ( or decreasing Re ), slowly for high Re and more rapidly for
lower values till at Re = Recr it goes to zero. For Re < Recr, the critical Reynolds number,
the frequency remains zero resulting in an overdamped system (Nicolás 2002, Kidambi 2007).

The factors contributing to the damping rate are more subtle. One straightforward correlation
is with the velocity gradients; the steeper the gradients, the higher the damping. Thus, we
have

1In the free end case, the boundary condition can only be prescribed for the velocity potential φ. However,
if the contact angle θc = 900, this condition translates to the one given above for η. For θc 6= 900, this condition
is still valid if η is taken as the departure from the static meniscus (Kidambi & Shankar 2004).

2Nicolás (2005) and Shankar (2007) differ in the value of θo

c
; for Nicolás θo

c
= 900 with attendant symmetry

about this value whereas Shankar’s results show no symmetry and the peak is at θo

c
≈ 950 for the paricular

parameter values considered. Note that Nicolás (2005) is an asymptotic result valid for Bo → ∞ whereas
Shankar (2007) solves an inviscid eigenvalue problem valid for all Bond numbers.
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θc −Ωr Ωi

(1,0) (2,0) (0,1) (3,0) (1,1) (4,0) (1,0) (2,0) (0,1) (3,0) (1,1) (4,0)

150 0.0030 0.0037 0.0046 0.0055 0.0049 0.0079 1.414 1.858 2.063 2.215 2.479 2.538
135 0.0039 0.0056 0.0046 0.0079 0.0062 0.0106 1.427 1.878 2.075 2.242 2.494 2.571
120 0.0047 0.0074 0.0046 0.0101 0.0072 0.0129 1.437 1.895 2.084 2.266 2.507 2.601
105 0.0056 0.0090 0.0047 0.0118 0.0077 0.0143 1.444 1.907 2.089 2.282 2.515 2.621
90 0.0063 0.0098 0.0047 0.0124 0.0079 0.0150 1.446 1.912 2.090 2.289 2.516 2.629
75 0.0067 0.0099 0.0049 0.0127 0.0080 0.0157 1.444 1.909 2.086 2.285 2.511 2.626
60 0.0066 0.0100 0.0051 0.0133 0.0083 0.0168 1.436 1.898 2.078 2.271 2.499 2.609
45 0.0066 0.0105 0.0053 0.0144 0.0087 0.0184 1.423 1.879 2.064 2.247 2.481 2.580
30 0.0069 0.0114 0.0052 0.0160 0.0093 0.0208 1.407 1.855 2.048 2.216 2.459 2.542

Table 4: The damping rate and frequency (Ωt
r,Ω

t
i) of the lowest six modes as a function of the

static contact angle. Re = 13077.02, h = 1.379 and Bo = 365 as in the experiments of Howell
et al (2000) for the θc = 900 case.

1. Higher modes have higher damping. Velocity gradients are proportional to wavenumbers
and higher modes have larger wavenumbers.

2. Damping increases with decreasing depth.

We also briefly recall the primary contributions to viscous damping, from the asymptotic anal-
ysis of Martel et al (1998). In particular, we recall the forms of Ωt∗

r and Ωt∗
i , the theoretical

damping rate and frequency as being

Ωt∗
r = a1C

1/2 + a2C,Ω
t∗
i = a0 − a1C

1/2.

The O(1) inviscid solution gives a0, a1C
1/2 describes the first approximation to viscous dis-

sipation in the Stokes layers near the walls and a2C includes the effects of the bulk viscous
dissipation as well as a higher order correction to the damping in the Stokes layers. To the
level of approximation computed by Martel et al, the effects of the free surface boundary layer
are not included at all, even for a flat interface. The presence of a meniscus may result in the
free surface boundary layer dissipation contributing at lower order.

We also recall a similar (in spirit) asymptotic analysis by Nicolás (2005) which takes into
account the static meniscus but in an inviscid setting. The small parameter in this analysis is
the inverse of the Bond number; the analysis for the pinned contact line condition shows that
the frequency, to first order, is an even function of 900 − θc and that the frequency for the flat
interface is the maximum. Being an inviscid analysis, no direct calculation of the damping rate
is possible.

With this as background, we now look at the present results. Table 4 shows the frequency and
damping rates for all six modes for a Reynolds number of 13077.02 and nine contact angles
ranging from 300 to 1500. The frequency variation follows the trend in Nicolás (2005) and
Shankar (2007), with a peak in the neighbourhood of 900. The damping rates of all modes
except (1, 0) and (0, 1) also vary according to the predictions made in the previous paragraph,
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θc −Ωr Ωi

(1,0) (2,0) (0,1) (3,0) (1,1) (4,0) (1,0) (2,0) (0,1) (3,0) (1,1) (4,0)

150 0.0712 0.1205 0.1208 0.1024 0.1082 0.0728 1.381 1.807 2.036 2.195 2.469 2.533
135 0.0686 0.1223 0.1229 0.1042 0.1094 0.0743 1.394 1.828 2.047 2.214 2.478 2.556
120 0.0672 0.1238 0.1246 0.1066 0.1108 0.0761 1.405 1.845 2.057 2.233 2.487 2.578
105 0.0670 0.1258 0.1263 0.1093 0.1122 0.0781 1.412 1.856 2.062 2.245 2.493 2.594
90 0.0677 0.1283 0.1249 0.1122 0.1133 0.0804 1.414 1.859 2.062 2.249 2.493 2.600
75 0.0691 0.1315 0.1266 0.1154 0.1143 0.0830 1.411 1.856 2.058 2.243 2.487 2.596
60 0.0714 0.1362 0.1291 0.1194 0.1156 0.0861 1.402 1.843 2.050 2.228 2.476 2.579
45 0.0756 0.1423 0.1333 0.1248 0.1175 0.0899 1.389 1.833 2.035 2.206 2.460 2.554
30 0.0809 0.1485 0.1339 0.1315 0.1202 0.0942 1.374 1.822 2.016 2.181 2.444 2.524

Table 5: The damping rate and frequency (Ωt
r,Ω

t
i) of the lowest six modes as a func-

tion of the static contact angle. Re = 272.48, 271.44, 269.91, 568.51, 570.78 and 1323.45 for
the (1, 0), (2, 0), (0, 1), (3, 0), (1, 1) and (4, 0) modes respectively. These values are the low-
est Reynolds numbers in the experiments of Howell et al (2000) for the θc = 900 case.
h = 1.379, Bo = 365.

increasing with decreasing θc i.e. decreasing mean depth. The damping rate of the (1, 0) mode
also follows the expected trend for θc > 750 but for θc below this, it does not vary appreciably.
The damping rate of the (0, 1) mode though following expected trends, shows a variation only
in the fourth decimal for θc > 1200; in general the variation over the whole range of θc is much
less compared to the other modes. Table 5 shows similar values for the lowest experimental
Reynolds numbers; again except for the (1, 0) and (0, 1) modes, the frequency and damping
rates follow the expected trends. For the (1, 0) mode, the damping rate has a minimum around
900 while the damping rate for the (0, 1) mode has a local maximum around 1050. The reason
for these anomalies is not known.

Table 6 shows the frequencies and damping rates for a Bo = 1250, a shallow depth of h = 0.231
and the highest experimental Re = 32819.17. This small liquid depth case shows an interesting
result - the frequency peak in the neighbourhood of 900 that was seen for the larger depth
disappears and the frequency now monotonically increases as the contact angle increases for all
the modes except (4, 0) which shows a peak frequency around 1200. . The damping rates, on the
other hand, follow the predicted trends increasing with decreasing contact angle. The frequency
variation with θc is counter to the predictions in Nicolás (2005) and Shankar (2007), both of
which predict a frequency maximum in the neighbourhood of 900; however, the calculations in
these cases were for h = 1 even though for Nicolás, the size of h would probably not alter the
trend. To be confident of the present results, we have done two calculations -

• Solve the inviscid eigenvalue problem for the same parameters and examine if the inviscid
frequencies also follow this trend.

• Calculate the inviscid frequencies for the parameters considered by Nicolás (2005) (and
plotted in fig 4 of his paper) and compare.

The results of these calculations for the (1, 0) and (4, 0) modes are shown in Table 7. The
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θc −Ωr Ωi

(1,0) (2,0) (0,1) (3,0) (1,1) (4,0) (1,0) (2,0) (0,1) (3,0) (1,1) (4,0)

150 0.0068 0.0081 0.0071 0.0086 0.0054 0.0088 0.922 1.459 1.744 1.896 2.230 2.260
135 0.0076 0.0088 0.0074 0.0094 0.0058 0.0096 0.916 1.457 1.736 1.895 2.225 2.264
120 0.0083 0.0097 0.0077 0.0103 0.0064 0.0106 0.908 1.448 1.726 1.892 2.219 2.267
105 0.0090 0.0105 0.0080 0.0113 0.0070 0.0117 0.899 1.438 1.713 1.885 2.210 2.264
90 0.0093 0.0114 0.0084 0.0124 0.0077 0.0129 0.887 1.423 1.696 1.872 2.196 2.254
75 0.0098 0.0121 0.0088 0.0134 0.0084 0.0142 0.873 1.405 1.677 1.853 2.179 2.236
60 0.0100 0.0127 0.0157 0.0143 0.0092 0.0154 0.858 1.383 1.662 1.828 2.157 2.212
45 0.0102 0.0132 0.0217 0.0153 0.0099 0.0168 0.841 1.358 1.644 1.800 2.133 2.183
30 0.0103 0.0137 0.0364 0.0161 0.0106 0.0181 0.825 1.334 1.569 1.771 2.109 2.151

Table 6: The damping rate and frequency (Ωt
r,Ω

t
i) of the lowest six modes as a function of the

static contact angle. Re = 32819.17, h = 0.231 and Bo = 1250 as in the experiments of Howell
et al (2000) for the θc = 900 case.

θ Bo = 1250 Bo = 100 m = 4
h = 0.231 h = 1

150 0.927 1.359 1.498 2.263
135 0.921 1.365 1.500 2.270
120 0.915 1.370 1.522 2.274
105 0.906 1.374 1.535 2.272
95 0.899 1.375 1.538 2.267
90 0.895 1.375 1.537 2.264
75 0.882 1.374 1.528 2.248
60 0.867 1.369 1.508 2.225
45 0.850 1.363 1.477 2.197
30 0.834 1.356 1.466 2.166

Table 7: The inviscid frequencies of the (1, 0) and (4, 0) modes. Bo = 1250 and 100 for the
m = 1 mode. At h = 0.231, the frequencies increase monotonically with θc unlike at h = 1.
where there is a peak around 900. For Bo = 100 and h = 1. (second last column), the frequency
peak has shifted away from 900. For the m = 4 mode, Bo = 1250 and h = 0.231.
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θc −Ωr Ωi

(1,0) (2,0) (0,1) (3,0) (1,1) (4,0) (1,0) (2,0) (0,1) (3,0) (1,1) (4,0)

150 0.0725 0.1637 0.1554 0.1289 0.2139 0.0936 0.875 1.374 1.688 1.847 2.180 2.231
135 0.0738 0.1678 0.1596 0.1320 0.2182 0.0952 0.868 1.367 1.678 1.839 2.171 2.227
120 0.0754 0.1727 0.1643 0.1357 0.2233 0.0972 0.859 1.358 1.666 1.830 2.161 2.223
105 0.0774 0.1782 0.1699 0.1399 0.2291 0.0996 0.849 1.345 1.651 1.818 2.148 2.215
90 0.0796 0.1843 0.1761 0.1447 0.2357 0.1024 0.836 1.328 1.633 1.801 2.131 2.202
75 0.0819 0.1908 0.1827 0.1498 0.2430 0.1058 0.821 1.307 1.611 1.779 2.111 2.183
60 0.0845 0.1979 0.1901 0.1553 0.2512 0.1094 0.804 1.282 1.586 1.752 2.088 2.159
45 0.0871 0.2057 0.1982 0.1610 0.2601 0.1136 0.788 1.255 1.560 1.724 2.063 2.131
30 0.0898 0.2138 0.2069 0.1665 0.2693 0.1169 0.769 1.228 1.533 1.695 2.038 2.103

Table 8: The damping rate and frequency (Ωt
r,Ω

t
i) of the lowest six modes as a func-

tion of the static contact angle. Re = 676.13, 337.84, 337.84, 673.85, 337.84 and 1433.90 for
the (1, 0), (2, 0), (0, 1), (3, 0), (1, 1) and (4, 0) modes respectively. These values are the low-
est Reynolds numbers in the experiments of Howell et al (2000) for the θc = 900 case.
h = 0.231, Bo = 1250.

numbers in the first column confirm that the inviscid frequencies also are monotonic with
respect to the contact angle. If Shankar (2007) had chosen to calculate for this depth, this is
what he would have obtained. The third column shows the numbers for a case that Nicolás
(2005) has calculated; Bo = 100 and h = 1. Though Nicolás’ result (eq. 56 of his paper)
shows symmetry about 900 with a peak there, the present calculation shows a peak around 950

which is probably a result of the small Bo = 100; to confirm this, results were generated for
Bo = 1250, shown in the second column, which confirms that the peak has substantially shifted
towards 900. We recall that Nicolás’ asymptotic analysis is expected to be increasingly in error
as the Bond number reduces and more terms are required. Thus, it is not surprising that the
results for Bo = 1250 are in closer agreement than the ones for Bo = 100. What is surprising
is that Nicolás’ asymptotic results do not seem to correctly predict the frequency behaviour for
shallow depth (h = 0.231); they continue to predict symmetry with a peak at 900 whereas a
direct calculation shows monotonic behaviour as the values in the first column indicate. The
numbers in the last column for the (4, 0) mode indicate that the small depth is not sufficient
to cause the monotonic behaviour of the frequency with contact angle. Results for the lowest
experimental Reynolds number at this depth and Bond number are shown in Table 8. The
trends are similar to those at the higher Reynolds number (table 6). Note that the damping
rates of the (1, 0) and (0, 1) modes also follow the expected trends for these parameter values.

We now explore the variation of the frequency and the damping rate of the (1, 0) mode with
depth for a variety of θc;Bo = 1250 as before and we choose an Re = 676.13, one of the
experimental values in Howell et al (2000). Table 9 shows these variations for depths ranging
from 0.3 to 0.7. At the lower depths, the damping rate monotonically decreases with contact
angle but develops a minimum whose location shifts towards 900 for increasing depth. On
the other hand, the frequency monotonically increases with increasing θc at lower depths but
develops a maximum whose location again shifts towards 900 for increasing depth. Tables 10 -12
present results for some regions of the parameter space that Howell et al (2000) does not cover.
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θc −Ωr Ωi −Ωr Ωi

h = 0.3 h = 0.4

150 .0615 0.978 .0522 1.092
135 .0619 0.974 .0521 1.091
120 .0627 0.969 .0523 1.089
105 .0639 0.962 .0528 1.085
90 .0652 0.952 .0536 1.078
75 .0667 0.940 .0546 1.070
60 .0683 0.926 .0558 1.059
45 .0702 0.911 .0571 1.048
30 .0720 0.896 .0588 1.034

h = 0.5 h = 0.6

150 .0470 1.173 .0440 1.236
135 .0464 1.174 .0432 1.236
120 .0462 1.175 .0427 1.236
105 .0465 1.173 .0427 1.236
90 .0469 1.169 .0430 1.234
75 .0477 1.163 .0437 1.229
60 .0488 1.154 .0447 1.222
45 .0499 1.146 .0458 1.215
30 .0510 1.138 .0468 1.209

h = 0.7 h = 1.379

150 .0426 1.271 .0416 1.357
135 .0413 1.275 .0396 1.364
120 .0406 1.279 .0385 1.370
105 .0405 1.281 .0381 1.375
90 .0407 1.279 .0382 1.376
75 .0413 1.276 .0387 1.375
60 .0422 1.270 .0397 1.372
45 .0434 1.264 .0411 1.366
30 .0443 1.259 .0428 1.360

Table 9: The damping rate and frequency of the (1, 0) mode for various shallow depths and
one large depth. Re = 676.13 and Bo = 1250.
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θc(
0) 150 135 120 105 90 75 60 45 30

−Ωr .0046 .0055 .0061 .0066 .0069 .0071 .0071 .0069 .0066
Ωi 1.382 1.387 1.392 1.395 1.396 1.394 1.391 1.385 1.379

Table 10: Variation of damping rate and frequency with θc for the (1, 0) mode. Re =
13077.02, Bo = 1250, h = 1.379.

θc(
0) 150 135 120 105 90 75 60 45 30

−Ωr .0109 .0118 .0127 .0137 .0147 .0157 .0166 .0176 .0185
Ωi 0.976 0.967 0.955 0.938 0.916 0.889 0.858 0.824 0.789

Table 11: Variation of damping rate and frequency with θc for the (1, 0) mode. Re =
13077.02, Bo = 365, h = 0.231.

The variation of the frequency and damping rate for the high Re = 13077.02, Bo = 1250 and
h = 1.379 is presented in Table 10; the frequency variation is similar as for the lower Bo = 365
(Table 4) but the damping rate shows subtle differences. The results for a high Re = 13077.02
and a low Bo = 365 and h = 0.231 are shown in Table 11; the damping rates (frequencies)
decrease (increase) monotonically with increasing θc. Table 12 shows similar behaviour of these
quantities for the low Re = 272.48, Bo = 365 and h = 0.231.

Asymptotic inviscid calculations (eq. 56) of Nicolás (2005) show that, for a fixed depth, the
frequency increases with a decrease in Bond number. Table 13 shows the frequencies and
damping rates for Bo = 1250 and Bo = 365 at a fixed depth of h = 0.3. Though at θc > 450

the frequency at the lower Bond number is higher, the trend is different at θc < 450. This shows
that the meniscus effect can be dominant for small contact angles even reversing the effects due
to an increased surface tension effect.

For ease of visualisation, some of these results have been graphed in figures 2 - 4. Figure 2
shows the effect of depth with Re = 13077.02, Bo = 365. For the smaller depth (Table 11), the
damping rate decreases monotonically with increasing θc whereas at the larger depth, a local
maximum occurs around 750 (Table 4). Figure 2(b) shows the variation of the frequency with
θc; at the smaller depth, the frequency increases monotonically with θc (free-end behaviour)
while at the larger depth, a maximum occurs around 900 (pinned-end behaviour).

Figure 3 shows the effect of Re with Bo = 365 and h = 1.379. The damping rate at the lower
Re has a minimum around 1050 (Table 5)in contrast to the local maximum around 750 (Table
4) for the higher Re. The frequencies however show similar trends attaining maxima around
900. The effect of the Bond number is shown in figure 4. The damping rate for the higher
Bo (Table 10) has a global maximum around 750 in contrast to the local maximum around
the same θc for the lower Bond number. Re = 13077.02 and h = 1.379. The frequencies show
similar trends though the overall variation is much smaller at the higher Bond number.

θc(
0) 150 135 120 105 90 75 60 45 30

−Ωr .1265 .1286 .1329 .1394 .1476 .1576 .1695 .1837 .2007
Ωi 0.912 0.899 0.885 0.864 0.839 0.809 0.775 0.737 0.698

Table 12: Variation of damping rate and frequency with θc for the (1, 0) mode. Re =
272.48, Bo = 365, h = 0.231.
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Figure 2: Variation of (a) damping rate and (b) frequency of the (1,0) mode for ◦, h = 0.231
and �h = 1.379.Bo = 365, Re = 13077.02.
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Figure 3: Variation of (a) damping rate and (b) frequency of the (1,0) mode for ◦, Re = 272.48
and �h = 13077.02.Bo = 365, h = 1.379.
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Figure 4: Variation of (a) damping rate and (b) frequency of the (1,0) mode for ◦, Bo = 1250
and �Bo = 365.Re = 13077.02, h = 1.379.

θ −Ωr Ωi

Bo = 365 Bo = 1250 Bo = 365 Bo = 1250

150 .0604 .0615 1.035 0.978
135 .0600 .0619 1.030 0.974
120 .0609 .0627 1.022 0.969
105 .0628 .0639 1.008 0.962
90 .0653 .0652 0.989 0.952
75 .0682 .0667 0.967 0.940
60 .0713 .0684 0.939 0.926
45 .0746 .0702 0.908 0.911
30 .0782 .0720 0.875 0.896

Table 13: The frequencies and damping rates of the (1, 0) mode at h = 0.3 for Bo = 365 and
1250. Note that for θ < 450, the frequencies at the higher Bo = 1250 are greater than those at
Bo = 365 contrary to the trend for θ > 450.

23



Re −Ωr Ωi −Ωr Ωi −Ωr Ωi

θc = 1500 θc = 1350 θc = 1200

25 1.438 1.561 1.442 1.564 1.447 1.564
24 1.476 1.514 1.479 1.517 1.484 1.517
23 1.263 1.187 × 10−3 1.271 4.890 × 10−4 1.272 2.705 × 10−3

θc = 1050 θc = 900 θc = 750

25 1.453 1.560 1.461 1.551 1.435 1.586
24 1.489 1.512 1.275 1.662 × 10−3 1.217 6.547 × 10−4

23 1.262 2.582 × 10−4 - - - -

θc = 600 θc = 450 θc = 300

30 (33,35) 1.335 1.719 1.281 1.796 1.251 1.842
29 (32,34) 1.360 1.688 1.301 1.771 0.957 2.229 × 10−4

28 (31) 1.387 1.655 1.068 7.551 × 10−5 - -
27 (30) 1.129 5.084 × 10−5 - − - -

Table 14: The frequencies and damping rates of the (4, 0) mode at h = 1.5 for Bo = 365 and
a few Re near Recrit. The values for Re < Recr are not shown. The bracketed numbers in the
first column correspond to θc = 450 and 300 respectively.

θc(
0) 150 135 120 105 90 75 60 45 30

Recr 23 23 23 23 24 24 27 31 34

Table 15: Variation of Recr with θc for the (4, 0) mode. h = 1.5 and Bo = 365 .

It is known (Nicolás 2002, Kidambi 2007) that there exists a critical Reynolds number, Recrit

below which the frequency vanishes. Recrit increases with increasing mode number, increases
with decreasing depth and increases with decreasing Bond number, with all other parameters
being held constant in each case. We now examine how Recrit depends on the contact angle
for fixed Bo, h and m; calculations are presented for Bo = 365, h = 1.5 and m = 4. Table 14
shows the frequency and damping rate for a variety of θc for a few values near Recr. Table 15
shows the variation of Recr with θc. For θc < 900, Recr increases with decreasing θc while for
θc > 900, Recr ≈ 23 irrespective of θc. The same trends are expected to hold at lower depths;
the Recr values will be higher than the present values as the frequencies are lower.

4.3.2 Comparison with the experiment of Cocciaro et al (1993)

Cocciaro et al (1993) measured the frequency and damping rate of the first non-axisymmetric
mode (1, 0) in a cylindrical container where the free surface makes a static contact angle θc = 620

with the vertical walls. Two regimes of contact line motion were identified; one of these was
found to be a small oscillation amplitudes regime where the contact line remained at rest.
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N −Ωr Ωi

20 3.767 × 10−3 1.452
40 3.659 × 10−3 1.452

Table 16: The non-dimensional damping rate and frequency of the (1, 0) mode using 20 and 40
modes. Re = 35628.103, Bo = 346.363 and h = 2.587. The static contact angle θc = 620. These
values are same as those used in the experiment of Cocciaro et al (1993).

The damping rate and frequency in this regime were measured to be γ = 15 ± 2mHz and
ν = 3.222±0.001Hz. Miles’ theory (1991), which neglects the static meniscus, gives an inviscid
frequency estimate of 3.255 Hz; a viscous correction following Hocking (1987a,b) further refines
this value to 3.249 Hz. Note that Hocking’s results were obtained for a rectangular geometry;
Cocciaro et al (1993) assume that these still hold good for a cylindrical geometry. Cocciaro et al
speculate that meniscus effects could account for the discrepancy of 27mHz; this is borne out by
a recent calculation in Shankar (2007) which includes the meniscus effects and produces a value
of 3.224Hz. The Hocking calculation, which also neglects static meniscus effects, produces a
damping rate of 12mHz which is somewhat lower than the experimental value. Cocciaro et al
consider the possibility that this discrepancy could be due to the presence of a residual surface
contaminating film; however, a calculation with such a film produces a damping rate of 30mHz
which is double the experimental value.

We have calculated the frequency and damping rate for this case by the present method. Using
values of R = 5.025 cm,H = 13 cm, g = 980.5cm/s2, kinematic viscosity νc = 0.0099cm2/s
and capillary length λc = 2.7mm, we have the Reynolds and Bond numbers as 35628.103 and
346.363 respectively. Table 16 shows the damping rate and frequency for these parameters
obtained using 20 and 40 modes.

The dimensional variables ν and γ in Cocciaro et al (1993) are related to the present non-
dimensional variables Ωi and Ωr as

2πν =
√

g/R Ωi, πγ =
√

g/R Ωr.

Using the 40 mode values in the above expressions yields values of 3.228Hz and 16.27mHz
for the frequency and damping rate; these compare very well with the experimental values of
3.222 ± 0.001Hz and 15 ± 2mHz respectively.

Nicolás (2005) has estimated the frequency and damping rate for this case. He represents the
static meniscus as an asymptotic expansion and uses the first two terms, unlike in the present
case where it is numerically evaluated. A first order approximation for the frequency which was
first given by Miles (1991) and higher order corrections given by Martel et al (1998), which do
not include meniscus effects, are used to produce a frequency of 3.222Hz and a damping rate
of 14.65mHz, numbers closer to the experimental values than the present ones. However, the
present calculation is exact unlike Nicolás (2005) which uses various approximations.

5 Conclusion

We have presented a new eigenvalue formulation for the calculation of damping rates and natu-
ral frequencies of surface capillary-gravity waves in a circular cylinder with pinned contact line,
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with meniscus effects considered for the first time. This formulation uses the Helmholtz decom-
position for the velocity field with the complex vector eigenfunctions of the unsteady Stokes
operator in a cylindrical geometry generated from the satisfaction of the no-slip condition on
the sidewall (Kidambi 2007) where extensive comparisons with available experimental (Howell
et al 2000, Cocciaro et al 1993) and computational (Nicolás 2002) results, for the no-meniscus
case, show excellent agreement.

For θc 6= 900 but fixed, the variation of the frequency and the damping rate with Re,Bo, h
and m follow broadly the same patterns as for θc = 900. Thus, for fixed Bo,m and h(Re), the
frequency decreases and the damping rate increases with decreasing Re(h). For fixed Bo,Re
and h, the frequency and damping rate increase with m. For fixed Re, h and m, the frequency
increases with decreasing Bo; the damping rate is only weakly dependent on Bo showing a
slight increase with decreasing Bo. However, for small h and large menisci (small θc), we can
have (table 13) the frequency decreasing with decreasing Bo while the damping rates exhibit a
mixed trend - decreasing for θc > 900 and increasing otherwise, with decreasing Bo. Thus, the
meniscus makes a qualitative difference only for small contact angles and small depths.

A study of the variation of the frequency and damping rate with θc reveals different behaviours
depending on Re,Bo, h and m. The frequency can exhibit, depending on the various parame-
ters, either a monotonic increase or a maximum with increasing θc whereas the damping rate
can exhibit a monotonic decrease, a maximum or a minimum. For shallow depths, the damp-
ing rate and frequency exhibit, in general, behaviour that is similar to that reported for free
contact lines (Henderson et al 1992, Kidambi & Shankar 2004, Nicolás 2005); the former de-
creases and the latter increases monotonically with θc. This seems to be true irrespective of the
values of Re and Bo. However, the frequency of the (4, 0) mode shows a peak around θc = 1200

for Re = 32819.17 and Bo = 1250 (table 6) though it follows the usual trend for the lower
Re = 1433.90 (table 8). The behaviour for large depth is also equally interesting. For large
depths and higher modes, the damping rate monotonically increases for decreasing θc while the
frequency exhibits a maximum in the neighbourhood of 900. The frequency behaviour is similar
to the inviscid behaviours of the pinned contact line reported in Nicolás (2005) and Shankar
(2007) and is different from the behaviour for free contact lines (Henderson et al 1992, Kidambi
& Shankar 2004, Nicolás 2005) where the frequency increases monotonically with increasing
θc. A systematic calculation of the damping rate for the free contact line case is not available,
for comparison. However, the damping rate of the (1, 0) and (0, 1) modes does not decrease
monotonically for any of the parameter values considered. Instead, it can exhibit a maximum
(table 4 - (0, 1) mode, table 10) or minimum ( tables 5 and 9 - (1, 0) mode ) or both a maximum
and a minimum ( table 4 - (1, 0) mode, table 5 - (0, 1) mode ) depending on the values of Re
and Bo. A gradual change from the non-monotonic to the monotonic behaviour can be seen
as the depth decreases. The critical Reynolds number, Recr increases with decreasing θc, all
other parameters being constant. An asymptotic analysis on the lines of Martel et al (1998),
but with a meniscus present, is needed to delineate the different effects especially at high Re
and Bo. The present formulation can be easily adapted to consider the effects of surface con-
tamination, elastic covers, microgravity conditions etc. These problems are being studied and
will be reported elsewhere.
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Appendix A

The integrals appearing in equations (12) and (15) are given below.
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s

[

λnp
3
n(r) − η

′

s(λnp
1
n(r) +

dp3
n(r)

dr
) + η

′2
s p

1
n(r)

]

Jm(δlr)dr,

ξ4
nl =

2

Re

∫ 1

0

reµηs(r)

1 + η′2
s

[

µnq
3
n(r) − η

′

s(µnq
1
n(r) +

dq3
n(r)

dr
) + η

′2
s q

1
n(r)

]

Jm(δlr)dr,

χ4
nl =

2

Re

∫ 1

0

reνηs(r)

1 + η′2
s

[

νns
3
n(r) − η

′

s(νns
1
n(r) +

ds3
n(r)

dr
) + η

′2
s s

1
n(r)

]

Jm(δlr)dr,

γ4
nl =

∫ 1

0

r

[

δ2
nr

2 +m2η
′2
s

r2(1 + η′2
s )3/2

Jm(δnr) −
(

3η
′2
s

r(1 + η′2
s )3/2

− δn
3η

′

sκs

1 + η′2
s

)

Jm−1(δnr) − Jm+1(δnr)

2

]

Jm(δlr)dr,

β5
nl =

∫ 1

0

reλnηs(r)Jm(λnr)Jm(δlr)dr, ξ
5
nl =

∫ 1

0

reµnηs(r)Jm(µnr)Jm(δlr)dr,

χ5
nl =

∫ 1

0

reνnηs(r)Jm(νnr)Jm(δlr)dr.
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Appendix B

We list here the various integrals that appear in §3.3.

β1
nl =

∫ 1

0

r

{

(η
′2
s − 1)

(

λnp
1
n(r) +

dp3
n(r)

dr

)

+ 2η
′

s

(

dp1
n(r)

dr
− λnp

3
n(r)

)}

sinhλn(ηs(r) + h/2)

cosh λnh
2

Jm(δlr)dr,

β2
nl =

∫ 1

0

r

{

λnp
2
n(r) +

m

r
p3

n(r) − η
′

s

(

m

r
p1

n(r) − p2
n(r)

r
+
dp2

n(r)

dr

)}

sinhλn(ηs(r) + h/2)

cosh λnh
2

Jm(δlr)dr,

ξ1
nl =

∫ 1

0

r

{

(η
′2
s − 1)

(

µnq
1
n(r) +

dq3
n(r)

dr

)

+ 2η
′

s

(

dq1
n(r)

dr
− µnq

3
n(r)

)}

sinhµn(ηs(r) + h/2)

cosh µnh
2

Jm(δlr)dr,

ξ2
nl =

∫ 1

0

r

{

µnq
2
n(r) +

m

r
q3
n(r) − η

′

s

(

m

r
q1
n(r) − q2

n(r)

r
+
dq2

n(r)

dr

)}

sinhµn(ηs(r) + h/2)

cosh µnh
2

Jm(δlr)dr,

χ1
nl =

∫ 1

0

r

{

(η
′2
s − 1)

(

νns
1
n(r) +

ds3
n(r)

dr

)

+ 2η
′

s

(

ds1
n(r)

dr
− νns

3
n(r)

)}

sinhµn(ηs(r) + h/2)

cosh µnh
2

Jm(δlr)dr,

χ2
nl =

∫ 1

0

r

{

νns
2
n(r) +

m

r
s3

n(r) − η
′

s

(

m

r
s1

n(r) − s2
n(r)

r
+
ds2

n(r)

dr

)}

sinh νn(ηs(r) + h/2)

cosh νnh
2

Jm(δlr)dr,

γ1
nl =

∫ 1

0

r

{

(η
′2
s − 1)

(

λnp
1
n(r) +

dp3
n(r)

dr

)

+ 2η
′

s

(

dp1
n(r)

dr
− λnp

3
n(r)

)}

coshλn(ηs(r) + h/2)

sinh λnh
2

Jm(δlr)dr,

γ2
nl =

∫ 1

0

r

{

λnp
2
n(r) +

m

r
p3

n(r) − η
′

s

(

m

r
p1

n(r) − p2
n(r)

r
+
dp2

n(r)

dr

)}

coshλn(ηs(r) + h/2)

sinh λnh
2

Jm(δlr)dr,

ρ1
nl =

∫ 1

0

r

{

(η
′2
s − 1)

(

µnq
1
n(r) +

dq3
n(r)

dr

)

+ 2η
′

s

(

dq1
n(r)

dr
− µnq

3
n(r)

)}

coshµn(ηs(r) + h/2)

sinh µnh
2

Jm(δlr)dr,

ρ2
nl =

∫ 1

0

r

{

µnq
2
n(r) +

m

r
q3
n(r) − η

′

s

(

m

r
q1
n(r) − q2

n(r)

r
+
dq2

n(r)

dr

)}

coshµn(ηs(r) + h/2)

sinh µnh
2

Jm(δlr)dr,

ψ1
nl =

∫ 1

0

r

{

(η
′2
s − 1)

(

νns
1
n(r) +

ds3
n(r)

dr

)

+ 2η
′

s

(

ds1
n(r)

dr
− νns

3
n(r)

)}

coshµn(ηs(r) + h/2)

sinh µnh
2

Jm(δlr)dr,

ψ2
nl =

∫ 1

0

r

{

νns
2
n(r) +

m

r
s3

n(r) − η
′

s

(

m

r
s1

n(r) − s2
n(r)

r
+
ds2

n(r)

dr

)}

cosh νn(ηs(r) + h/2)

sinh νnh
2

Jm(δlr)dr.

References

[1] Benjamin, T.B. & Scott, J.C. 1979 Gravity - capillary waves with edge constraints. J.
Fluid Mech. 92, 241 - 267.

[2] Cocciaro, B., Faetti, S. & Festa, C. 1993 Experimental investigation of capillarity effects
on surface gravity waves : non-wetting boundary conditions. J. Fluid Mech. 246, 43 - 66.

[3] Henderson, D.M., Hammack, J., Kumar, P. & Shah, D. 1992 The effects of static contact
angles on standing waves. Phys. Fluids A 4, 2320 - 2322.

[4] Henderson, D.M. & Miles, J.W. 1994 Surface-wave damping in a circular cylinder with a
fixed contact line. J. Fluid Mech. 275, 285 - 299.

28



[5] Hocking, L.M. 1987a The damping of capillary-gravity waves at a rigid boundary. J. Fluid
Mech. 179, 253 - 266.

[6] Hocking, L.M. 1987b Waves produced by a vertically oscillating plate. J. Fluid Mech. 179,
267 - 281.

[7] Howell, D.R., Buhrow. B., Heath, T., McKenna, C., Hwang, W. & Schatz, M.F., 2000
Measurements of surface-wave damping in a container. Phys. Fluids 12(2), 322 - 326.

[8] Johnson, R.S. 1997 A modern introduction to the mathematical theory of water waves.
Camb. Univ. Press

[9] Kidambi, R. & Shankar, P.N. 2004 The effects of the contact angle on sloshing in containers.
Proc. R. Soc. Lond. A 460, 2251 - 2267.

[10] Kidambi, R. 2006 Oscillatory eddy structure in a cylindrical container. Fluid Dyn. Res.
38, 274 - 294.

[11] Kidambi, R. 2007 Oscillations of a viscous free surface with pinned contact line. Fluid Dyn.
Res. 39, 121 - 138.

[12] Kidambi, R. 2007 Damping of capillary - gravity waves in a brimful circular cylinder. PD
CF 0706

[13] Martel, C., Nicolás, J.A. & Vega, J.M. 1998 Surface-wave damping in a brimful circular
cylinder. J. Fluid Mech. 360, 213 - 228.

[14] Miles, J.W. 1991 The capillary boundary layer for standing waves. J. Fluid Mech. 222, 197
- 205.

[15] Miles, J.W. & Henderson, J.M. 1998 A note on interior vs. boundary- layer damping of
surface waves in a circular cylinder. J. Fluid Mech. 364, 319 - 323.

[16] Morse, P.M. & Feshbach, H., 1953 Methods of theoretical physics. Part 2. McGraw-Hill,
New York.

[17] Nicolás, J.A. 2002 The viscous damping of capillary-gravity waves in a brimful circular
cylinder. Phys. Fluids 14, 1910 - 1919.

[18] Nicolás, J.A. 2005 Effects of static contact angles on inviscid gravity-capillary waves. Phys.
Fluids 17, 022101.

[19] Perlin, M., Schultz, W.W. & Liu, Z. 2004 High Reynolds number oscillating contact lines.
Wave Motion 40, 41 - 56.

[20] Shankar, P.N. 2007 Frequencies of gravity - capillary waves on highly curved interfaces
with edge constraints. Fluid Dyn. Res. 39, 457 - 474.

29


