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μ    Poisson’s ratio 

w    Lateral deflection of panel 
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γ    Mass density of panel 

p    Aerodynamic pressure load per unit area 
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2
v 2

airρ
 Dynamic pressure 

airρ     Air density 

v    Velocity of airflow 

sv     Velocity of sound 

φ    Airy stress function 

T    Temperature 

ΔT1    Difference of temperature between center and edges of  

    parabolic temperature distribution 

2TΔ     Difference between ambient and reference temperature 

α    Coefficient of thermal expansion 

Ω    Generalized eigenvalue 



ω    Frequency 

m,n,r,s    integers 

x, y, z    Cartesian coordinates of panel 

R    total no of terms in flow direction 

S    total no of terms in cross-flow direction 

t    time 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction to Aeroelasticity 

Aeroelasticity is the study of the effect of aerodynamic forces on elastic bodies. 
Aeroelasticity includes certain phenomena involving mutual interaction among inertial, 
aerodynamic and elastic forces. 

 
The classical theory of elasticity deals with the stress and deformation of an 

elastic body under prescribed external forces and displacements. The external loading 
acting on the body is, in general, independent of the deformation of the body. It is usually 
assumed that the deformation is small and does not substantially affect the action of 
external forces. In such a case we often neglect the change in dimensions of the body and 
base our calculation on the initial shape. The situation is different, however, in most 
significant problems of aeroelasticity. The aerodynamic forces depend critically on the 
attitude of the body relative to the flow. The elastic deformation plays an important role 
in determining the external loading itself. The magnitude of the aerodynamic force is not 
known until the elastic deformation is determined.  

 
One of the interesting problems in aeroelasticity is the stability (or rather 

instability) of a structure in wind. For a given configuration of the elastic body, the 
aerodynamic force increases rapidly with the wind speed, while the elastic stiffness is 
independent of the wind, there may exist a critical wind speed at which the structure 
becomes unstable. Such instability may cause excessive deformations, and may lead to 
the destruction of the structure. 

 

1.2.  Aeroelastic Phenomena 

Aeroelastic problems would not exist if airplane structures were perfectly rigid. Modern 
airplane structures are very flexible, and this flexibility is fundamentally responsible for 
the various types of aeroelastic phenomena. There are several aeroelastic phenomena 
involving interaction among aerodynamic, inertial and elastic forces.  
 Fig 1.1 classified the problems in aeroelasticity by means of a triangle of forces. 
Based upon the interaction between the three forces the aeroelastic problems can be 
classified as 

 

i. Dynamic aeroelastic problems 

ii. Static aeroelastic problems 
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Fig 1.1. Aeroelastic phenomena 

 
A-Aerodynamic force       Dynamic Aeroelastic problem:
E-Elastic force      F-Flutter 
I- inertial force      B-Buffeting 
        Z-Dynamic Response 
          Static Aeroelastic problems:
        L-Load Distribution 
        C-Control Effectiveness 
        D-Divergence 
        R-Control System Reversal 
 

 The three types of forces aerodynamic, elastic and inertial represented by symbols 
A, E, I respectively are placed at the vertices of an equilateral triangle. Each aero-elastic 
phenomenon can be located in Fig 1.1 and classified according to its relation to the three 
vertices. Thus the static aero-elastic phenomena from A and E lie outside the triangle on 
the upper left side, whereas dynamic aero-elastic phenomena lie within the triangle, since 
they involve all three kinds of forces. 
 
Flutter (F): 
 A dynamic instability occurring in an aircraft in flight, at a speed called flutter 
speed, where the elasticity of the structure plays an essential part in the instability 
 
Buffeting (B):  
 Transient vibration of aircraft structural components due to aerodynamic impulses 
produced by the wake behind wings, nacelles, fuselage pods, or other components of the 
airplane. 
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Dynamic response (Z): 
 Transient vibration of aircraft structural components produced by rapidly applied 
loads due to gusts, landing, gun reaction, abrupt control motions, moving shock waves, or 
other dynamic loads 
. 
Load distribution (L):  

Influence of elastic deformations of the structure on the distribution of 
aerodynamic pressures over the structure. 

 
Control Effectiveness (C): 

Influence of elastic deformations of the structure on the controllability of an 
airplane. 

 
Divergence (D): 
 A static instability of a lifting surface of an aircraft in flight, at a speed called the 
divergence speed, where the elasticity of the lifting surface plays an essential role in the 
instability. 
 
Control system reversal (R): 
 A condition occurring in flight, at a speed called the control reversal speed, at 
which the intended effects of displacing a given component of the control system are 
completely nullified by elastic deformations of the structure. 
 
1.3. Flutter- An Introduction to Dynamic Aeroelasticity 

 
The most dramatic physical phenomenon in the field of aeroelasticity is flutter; a dynamic 
instability often leads to catastrophic structural failure. Flutter has the most far-reaching 
effects of all aeroelastic phenomena on the design of high-speed aircraft. Flutter can be 
defined as the dynamic instability of an elastic body in an air stream. It is most commonly 
encountered on bodies subjected to large lateral aerodynamic loads of the lift type, such 
as aircraft wings, tails and control surfaces. 

 
To describe the physical phenomenon, consider a cantilever wing mounted in a 

wind tunnel (a chamber in which air is forced at control velocity in order to study the 
effect of aerodynamic flow over the elastic structure) at a small angle of attack and with a 
rigid support at the root. When there is no flow in the wind tunnel, and the model is 
disturbed oscillation sets in, which is damped gradually. The amplitude of oscillations 
decreases with time as shown in Fig.1.2.a When the speed of flow in the wind tunnel 
gradually increases, the rate of damping of the oscillation of the disturbed airfoil first 
increases, with further increase of the speed of flow, however a point is reached at which 
the damping rapidly decreases. At the critical flutter speed, an oscillation can just 
maintain itself with steady amplitude as shown in Fig.1.2 .b. At speeds of flow somewhat 
above the critical, the amplitude of the oscillations will increase with time as shown in 
Fig.1.2.c. In such circumstances the airfoil suffers from oscillatory instability and is said 
to be flutter. 

 
Flutter can be defined as self-sustained oscillation that can maintain itself with 

steady oscillation i.e. without any external oscillator or forcing agency. The flutter 
problem is one of dynamic stability of the structure in an airflow, and reduces to finding 
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the (critical) speed at which small disturbances will take the structure out of dynamic 
stability, or, more precisely, that speed which, when exceeded, will result in small 
disturbances causing increasing self-excited oscillations. The avoidance of flutter is 
always a main requirement in aircraft design. 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.1.2. (a) Stable (v<vcr ) 
 
 

 
 
 
 
 
 
 

 
 
 

Fig.1.2. (b) Flutter boundary (v=vcr  ) 
 

 
 
 
 
 
 
 
 

 
 
 
 
 

Fig.1.2. (c) Unstable, Flutter (v>vcr ) 
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1.4. Supersonic Panel Flutter 
 

The aircraft of today have evolved into complex flying machines that can achieve 
challenging tasks while flying at enormous speeds in the supersonic and hypersonic 
regimes. A typical fighter jet can fly at about Mach 5, while a re-entry vehicle can reach 
speeds of about Mach 12.     
 

At very high speed of flight, the skins of an airframe may exhibit flutter, in which 
the degrees of freedoms are those associated with displacement of the panel in a direction 
normal to its surface. This is called panel flutter and it differs from the more conventional 
lifting surface flutter in at least two important aspects: first, it is entirely a supersonic 
phenomenon, and second, structural non-linearities associated with aerodynamic 
boundary layer effects tend strongly to limit the flutter amplitudes.  
 

Panel flutter is a self-excited oscillation of the external surface skin of a flight 
vehicle, which results from the dynamic instability of the aerodynamic, inertial, and 
elastic forces of the system. 

 
 

 
  

V 

 
Fig 1.3. Deformation of a two-dimensional panel 

 
Consider a flat plate, which spans on two rigidly supported edges, as shown in 

Fig1.3. Let the air flow over one side of the plate and remain stagnant on the other side. 
In supersonic flow, a type of self-excited oscillation may occur in certain ranges of 
critical dynamic pressure, whose value depends on the initial curvature and the stiffness 
of the plate, the ratio of the density of air to that of the plate, the dimensions of the plate, 
and the thrust exerted by the supports at the edges of the plate. This is called panel flutter. 

 
One of the practical causes of panel flutter is the thermal stress induced in the skin 

due to aerodynamic heating in flight at high speeds. If the skin is hotter than the 
supporting structures, compressive stress may be induced in the skin. If the temperature 
difference between the supporting structures and the skin is sufficiently large, the skin 
may become buckled. A buckled skin has a much lower critical dynamic pressure than an 
unbuckled one. 

 
The most practical method of preventing panel flutter is to introduce tension into 

skin, for example, by internally pressurizing the wing or fuselage.  
 
1.5. Literature Review 

 
Excellent treatises on the classical theory of aeroelasticity have been presented by Fung 
[1], Bisplinghoff and Ashley [2]. The physics and computational aspects of various kinds 
of static and dynamic aeroelastic problems have been highlighted.  The earliest study of 
flutter seems to have been made by Lanchester [3], Bairstow and Fage [4] in 1916 in 
connection with the anti symmetrical (fuselage torsion-elevator torsion) flutter of a 
Handleg Page Bomber. Up to 1934, only a few cases of flutter were recorded. In those 
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days only airplane wings showed flutter. Aileron mass unbalance and low torsional 
stiffness of the wing were responsible for most of these accidents. 
 

The aeroelastic instability of aircraft skin panels has been the subject of a number 
of theoretical investigations. During the second world war of 1939-1945, Germany 
launched a number of V2 missiles. Many of these missiles failed during flight, the cause 
of which was later recognized as supersonic flutter of the missile fins [5]. In his analysis 
of supersonic flutter, Ashley developed a simple mathematical formula, based on a theory 
called the “Piston Theory” to estimate the aerodynamic loads for supersonic flow. In the 
early part of world war, most of the flutter cases were due to insufficient aileron mass 
balance and most tail-surface flutter cases were due to control surface tabs. Towards the 
latter part of world war, airplane speed increased towards the transonic range, and 
supersonic missiles appeared. 
 

Early experimental and theoretical studies of the flutter behavior of buckled plates 
were carried out by Fung  [6]. The primary concern was with the prediction of stability 
boundaries, although Fung did derive modal equations of motion for finite amplitude 
motions of the plate. Herman and Sidney [7] have compared experimental results with the 
theoretical predictions of panel flutter, and have concluded that the linearized, quasi-
steady aerodynamic theory is valid only beyond Mach 1.3.   
 

Stability boundaries for buckled two-dimensional plate were calculated by 
Hedgepeth [8] using an approach similar to Fung-Hedgepeth’s application of the two-
dimensional static aerodynamic approximation to the panel flutter problem. It greatly 
simplified the analytical complexities and resulted in a differential equation that can be 
solved exactly for finite panels. It has shown that a system of uniform stresses can greatly 
reduce the flutter speed of an unbuckled panel. During 1950’s, several experimental 
investigations were conducted to verify the existence of panel flutter and to determine 
some of the effect of such parameters as panel length-width ratio, thickness, and 
differential pressure.  
 

The effect of buckling on flutter boundaries of three-dimensional plates was 
investigated by Fralich [9]. He used Von Karman large deflection plate equations and 
Ackeret’s expression for the aerodynamic pressure. The equations were transformed into 
pair of nonlinear ordinary differential equation by Galerkin’s method, using the first two 
modes of a simply supported plate as coordinate function. A stability analysis is carried 
out for each buckling load by linearizing these equations about the buckled configuration, 
and computing the eigenvalues in the usual manner. 
 
 In many problems of panel flutter the most obvious methods of analysis have been 
to apply the Galerkin’s method using the governing equations of the problem. The 
applicability of the Galerkin’s method to the supersonic membrane flutter problem has 
been studied by Ellen [10] and found to give good agreement with exact solutions. Sander 
et al  [11] have employed the finite element method for supersonic flutter analysis using a 
new conforming quadrilateral (CQ) element.  
 
 Using piston theory and analytical methods, Harry and Walter [12] had reported 
the results of their investigation for the flutter behaviour of simply supported, thermally 
stressed square panel subjected to supersonic airflow along one edge of the panel. 
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Erickson [13] has also reported the results of panel flutter investigation for orthotropic 
panels.  
 
  
1.6. Objectives and Summary of the present work 
 
The objective of present work is to investigate the effects on the flutter boundary of 
rectangular panels from both flow directions and aspect ratio, in addition to those from 
thermal conditions (associated with a parabolic temperature profile). The work presented 
in reference [12] for flow along the panel edges have been extended for generating flutter 
boundaries for panels subjected to arbitrary flow directions. Furthermore, the effect of 
edge loading from the in-plane edge constraints to thermal expansion at the supports has 
also been a topic of investigation. The aerodynamic forces from the supersonic airflow 
have been modeled using piston theory aerodynamics [5].  
 
 This investigation has been initiated to provide a theoretical basis for the 
estimation of the flutter boundaries of the various structural panels of the Re-usuable  
Launch Vehicle (RLV).  
  
 The report begins with an introduction to aeroelasticity and aeroelastic problems 
related to launch vehicles.  In Chapter 2, the analytical formulation for supersonic panel 
flutter analysis of the flat simply supported rectangular plate is dealt with. Linearized 
quasi-steady two-dimensional aerodynamic (piston theory) is used in conjunction with 
thin-plate theory to formulate the problem. The panel is subjected to supersonic airflow in 
arbitrary direction and is associated with a parabolic temperature distribution over the 
plate. The solution for the equation is obtained using Galerkin’s procedure.  

 
 In Chapter 3, the supersonic panel flutter analysis of rectangular panels without 
thermal effects is dealt with. The critical dynamic pressure parameter that leads to flutter 
for panels of various aspect ratios and different flow direction is determined. In Chapter 
4, the adverse thermal effect on supersonic flutter boundary due to parabolic temperature 
distribution over the panel and in-plane edge loading from in-plane constraints is 
presented. The results are generated for various aspect ratios and flow direction. 

 
 Numerical studies have been carried out for panels of various aspect ratios and 
results are presented in Chapter 5. The variation of critical parameters (dynamic pressure/ 
velocity) due to the in-plane edge loading from in-plane constraints and parabolic 
temperature distribution over the panel is generated using the analytical method. The 
results are validated with the commercial finite element software NASTRAN wherever 
possible. Good agreement between the results can be observed. 
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CHAPTER  2 
 

MATHEMATICAL FORMULATION FOR SUPERSONIC  

PANEL FLUTTER 

 
2.1 Problem summary: 
 
The problem of panel flutter of a plate, simply supported on all edges, subjected to 
supersonic airflow in arbitrary direction is treated theoretically. The effect of self-
equilibrating stress state associated with a parabolic temperature distribution is also 
included in the flutter analysis. Linearized, quasi-steady, two-dimensional aerodynamics 
is used in conjunction with thin-plate theory to formulate the problem. The solution for 
the equation is obtained using Galerkin’s procedure. 

 
2.2 Formulation: 

2.2.1 Statement of problem 

The configuration to be analyzed herein is shown in Fig 2.1. It consists of a flat 
rectangular panel of length ‘a’, width ‘b’, and uniform thickness ‘h’. The panel is simply 
supported on all edges. It is subjected to a supersonic airflow at Mach number ‘M’ along 
the direction making an angle ‘θ ’ with the edge ‘a’ of the panel. 
 

 
 
 
 
 
 
 Y 

X

 
 

 
 
Fig 2.1 Panel under flow along the direction making an 

  angle ‘θ ’ with the edge ‘a’ of the panel. 
 

 
The panel is subjected to a parabolic temperature distribution in the middle plane 

as in Fig 2.2, with temperature difference of ΔT1 between the center and the edges. The 
parabolic temperature distribution over the panel is given mathematically by the function  
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where the rise in temperature at the panel center with respect to that at the edges is given 
by . edgescenter TTT −=Δ 1
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             Fig 2.2  Parabolic Temperature Distribution over the Panel. 
   
                                               

Uniform edge loading per unit edge lenght Nxo and Nyo, may be applied at the 
boundaries to account for the (i) Movable edge supports and / or (ii) In-plane edge 
constraints to thermal expansion at the immovable supports (instead of simply supported 
ends) due to the difference of ambient temperature from the reference temperature. Panels 
with immovable hinged supports at all edges can develop such in-plane loadings due to 
thermal conditions. A more detailed discussion of this aspect is presented in Article 2.3.  
 
 A schematic view of a panel subjected to airflow along x-direction ( 0=θ ) and 
edge loads Nxo and Nyo at the boundaries is presented in Fig 2.3.  

  
 
 
 
 
 

 
         
 
 
 
 
  
  
 
 Fig 2.3 Panel subjected to airflow along x-direction 

 
 
2.2.2 Basic equations 
 
The equation of motion of the panel under a loading per unit area is given as  
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Here w is the transverse displacement (due to dynamic pressure) which is a function of x, 

y and tine t, ( )2

3

112 μ−
=

EhD  is flexural rigidity of the panel, E is the materials Young’s 

modulus,μ  is the Poisson’s ratio and h is the thickness of the plate. The net in-plane 
loading (assumed positive for compression) per unit width along x- and y-directions of the 
panel are given by  and  respectively. The mass per unit area of the panel is xN yN hmatρ , 
( matρ  = mass density of the panel material). 

 
 The aerodynamic pressure load p  is obtained by use of linearized, quasi-steady, 
two-dimensional aerodynamics (Piston theory). Piston theory is a useful tool for 
calculating the aerodynamic forces on a surface by obtaining a point function relationship 
between the local pressure generated on the surface and the local normal component of 
fluid velocity at the surface, in the same way that these quantities are related at the face of 
a piston moving in a one-dimensional channel. Essentially the forces so calculated are 
static forces. 
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Here q is the dynamic pressure (q=ρair V2/2) and M is the Mach number (M=V/Vsound). 
The net mid-plane force intensity terms in equation (2.2) is written as the sum of those 
induced by applied, uniform, normal forces at the boundary and those resulting from the 
parabolic temperature distribution as follows:  

 
xTxox NNN +=  

yTyoy NNN +=       (2.4) 

xyTxy NN =  
 

We first consider the thermal contributions from the parabolic tempertuare distribution 
only, so that the components 0== yoxo NN .  For the parabolic temperature profile alone, 
the thermally induced stress resultants vanish at the boundaries that do not offer any 
constraints to thermal expansion. These are determined in terms of stress function 

),( yxφφ =  from the following relationships,   

2

2

y
NxT ∂

∂
=

φ  

2

2

x
N yT ∂

∂
=

φ         (2.5) 

yx
NxyT ∂∂

∂
−=

φ2  

Assume a stress function of the form      
 

 
2222

1
2 11 ⎟

⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛Δ=

b
y

b
y

a
x

a
xTEhaCαφ                  (2.6) 

 

 10



  

where α  is the thermal coefficient of linear expansion of the panel material, and C is a 
constant, to be determined from the edge conditions. 
The condition that the panel be free from thermally induced in-plane normal and shear 
stresses on the boundaries (due to parabolic temperature alone) requires that the stress 
function satisfy the following boundary conditions. For the purpose of this analysis the 
panel is considered to be simply supported against the lateral deflections, but unrestrained 
to in-plane displacements at the boundaries. 
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For compatibility of in-plane strains, the stress function must satisfy the following partial 
differential equation. 

 
TEh 24 ∇=∇ αφ        (2.8) 

 
 Applying Galerkin’s technique to equation (2.8), one can express the constant C as 
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Thus the in-plane stress resultants (force per unit length) from the parabolic thermal 
profile are given from equations (2.5) as 
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 2.2.3   Solution of the differential equation 
 
For panels with all edges with simply supported/hinged conditions, the solution of 
equation (2.2) can be represented as follows: 
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Here ω  is the circular frequency and t is the time. This function satisfies the following 
kinematic conditions of the panel boundaries,  
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and also the kinetic conditions of the simply supported edges,  
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After substituting equations (2.3) to (2.6), (2.9) and (2.11) into equation (2.2) and 
applying the Galerkin’s procedure, the following set of equations is obtained for the 
amplitude coefficients : mna
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The parameter k2 is the non-dimensional frequency.  The non-dimensional parameters 

 and  accounts for any additional in-plane loading along the edges of the panel, 
either from mechanical sources or from constraints to in-plane thermal expansion at the 
edges. The parameter λ is the non-dimensional form of the dynamic pressure. The integral 

arising due to aerodynamic loading can be expressed as,  
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The full integral expression of these aerodynamic terms are presented in the Appendix. 
The integrals ( ) , , and rsI1 ( )rsI 2 ( )rsI3  arise due to the non-uniform stress distribution 
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from the parabolic temperature distribution alone, and they vanish at the edges, or 
boundaries of the panel. These are given by, 
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Finally, equation (2.12) can be written as 
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The terms , ,  are defined in the Appendix. In order that nontrivial solutions of 
the system of equation (2.16) exist, it is necessary that the determinant of the coefficients 
vanish. Thus the stability criterion ultimately reduces to an eigenvalue problem of the 
following form: 

rsM rsP rsQ

 
          (2.19) 0)det( 2 =− ijij kA δ

where  is the eigenvalue, and   is the kronecker delta. 2k
⎩
⎨
⎧

≠
=

=
ji
ji

ij 0
1

δ

 Since the problem is of determining the stability of a given form of solution, it is 
advantageous to associate the eigenvalue with the frequency parameter . For flow 
speeds beyond a critical flow velocity V

2k
cr, the system becomes dynamically unstable 

when the 2k−  becomes complex with positive real part. The imaginary part of 
2k− represents the non-dimensional frequency. This indicates that the system motion 

diverges in amplitude in an oscillating fashion. Thus from equation (2,19) it is possible to 
determine the critical values of the non-dimensional dynamic pressure crλ  at which the 
oscillatory motion of the panel changes from a periodic to an unstable diverging 
amplitude type. This critical condition is associated with modal coalescence of two or 
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more modes. For higher ordered modal solutions, the eigenvalues are calculated, and the 
lowest value of crλ for which two of the eigenvalues coalesce is sought.  
 
2.3  Effect of Uniform Edge Loading on Flutter Boundary of the panel with flow 

along x-direction. 
 
In-plane edge loading per unit edge length, Nxo and Nyo on the panel can develop from  
 

(a) Forces from adjacent panels, or movement of the edge supports, 
(b) In-plane edge constraints to thermal expansion. Panels with immovable hinged 

supports can generate such edge loads.  
 
The non-dimensional edge load parameter considered are and , as given by 
expressions in equations (2.14), are  
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The parameter  arises from the uniform compressive in-plane load NxoR xo applied on 
edge b, along the x- direction while  is from the uniform compressive in-plane load 
N

yoR

yo on edge a, applied perpendicular to the  direction. Note that edge loads NxoR xo and 
Nyo are positive for compression, and are given in N/m (in SI units). These edge forces, if 
compressive (positive) in nature, can drastically lead to fall of the critical dynamic 
pressure of the panel.  
 

Uniform edge loads from in-plane edge constraints to thermal expansion (case 
(b)), develops due to the difference of mean temperature  of the panel from the 
reference temperature , at which the edge loading vanishes. One can approximate 
these edge loads (per unit edge length) from edge constraints to thermal expansion as 

meanT

referenceT
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Thus for this case, = . Here the effective panel temperature xoR yoR 2TΔ  for edge loads is 
defined as  

    referencemean TTT −=Δ 2       (2.22) 
 
The mean panel temperature  of the panel with uniform edge temperature  and 
with the parabolic thermal profile T(x,y)  (as in equation (2.1) is given by 

meanT edgeT
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Thus one can finally express the effective temperature as  
 

    referenceedge TTTT −Δ+=Δ 12 9
4    (2.24) 

 
2.4  Chapter Summary 

 
The analytical formulation for the investigation of supersonic panel flutter under high 
thermal conditions and arbitrary flow directions is presented here. A parabolic thermal 
profile over the simply supported panels, without edge constraints is considered. The 
expressions for the compressive in-plane stress resultants associated with such thermal 
profiles have been derived and a differential equation of motion of the panel has been 
presented. It has been shown that the problem reduces to the solution of the eigenvalue 
problem from which the values of the critical flutter speeds and dynamic pressures can be 
determined. Critical dynamic pressure is reduced by these compressive in-plane stress 
resultants from the thermal profiles, even when the edges are free to expand thermally in 
the plane of the panel.  

 
 Edge loading has been shown to arise either from mechanical sources, or from 
in-plane edge constraints to thermal expansion. Such compressive edge loads also 
contribute to further reduction in the critical dynamic pressure of the panels. 
 
 This formulation will now be used to determine the aeroelastic behavior of the 
panel with the prescribed thermal profiles, under supersonic flow in arbitrary direction 
along the plane of the panel. The effects of various flow directions and thermal conditions 
on the values of the critical (lowest) dynamic pressures for modal coalescence will be 
investigated.     
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CHAPTER  3 

 

FLUTTER ANALYSIS WITHOUT THERMAL EFFECTS 

 
3.1 Modal Coalescence in Panel Flutter and Critical Dynamic Pressure   
 
The supersonic panel flutter analysis of rectangular panels simply supported on all edges 
is considered. The panel is subjected to supersonic airflow in arbitrary direction, but 
restricted to a plane parallel to the plane of the panel. In this analysis the panel is not 
subjected to any thermal effects. The values of critical dynamic pressure parameter that 
lead to flutter for panels of various aspect ratios and different flow direction are 
determined here. Fig 3.1 presents a schematic view of a hinged panel subjected to 
supersonic airflow, with flow angle θ with respect to the side a.   
 
 

Y 

X

 
 
 
 
 
 
 
 
 

Fig 3.1  Panel under flow along the direction making an 
             angle ‘θ ’ with the edge ‘a’ of the panel. 

 
 Solution of the characteristic equation (2.13) gives the eigenvalue . In 
particular, as the non-dimensional dynamic pressure parameter

2k
λ  increases from zero, 

two of the free vibration eigenvalues tend to veer towards each other in such a way that 
for sufficiently large λ  (denoted crλ ), they coalesce into a pair of complex–conjugate 
eigenvalues. One of these complex–conjugate eigenvalues gives a positive real part (γr 
>0) for the parameter γ=γr+jγi= 2k− , indicating dynamic instability, characterized by 
indefinite divergence of amplitude with respect to time in exponential fashion. Upon such 
coalescence, one of the corresponding mode amplitude would grow by drawing energy 
from the flow i.e. the panel would become unstable. The lowest value of λ  for which 
two of the eigenvalues coalesce is the critical value of the dynamic-pressure parameter 
( crλ ), which leads to flutter. 

 
 3.2  Supersonic Panel Flutter analysis for panels of different aspect ratios   

subjected to airflow along edge a, i.e. along x-direction 
 
The panel, with hinged end supports, free from temperature effects is considered here.  
The panel is subjected to a supersonic airflow in x-direction. Six normal modes are taken 
along each of the x- and y-directions for modal superposition. The critical dynamic 

 16



 

pressure parameter that leads to flutter for an unstressed unheated panel of various aspect 
ratios is determined. The critical dynamic pressure parameter ( crλ ) is determined for 
different cases. Figures 3.2 and 3.3. show the eigenvalue  variation with 2k λ  for aspect 
ratios of 1 and 2. It shows the evolution of modes for an increase of dynamic pressure 
upto crλ .  
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Fig 3.2 Non dimensional Dynamic Pressure λ Vs Non dimensional frequency 

parameter   for aspect ratio=1 2k
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 Fig 3.3 Non dimensional Dynamic Pressure λ Vs Non dimensional frequency 

parameter  for aspect ratio=2 2k
 

 From Fig 3.2 and 3.3, it is observed that for 0=λ , the eigenvalues are purely real 
and remain so until some higher value of λ  called crλ , where the two eigenvalues 
become equal and then form a complex conjugate pair. For the square panel, (a/b=1) this 
instability occurs at 512=crλ , from the coalescence of the first two bending modes (viz 
(1,1) and (2,1) modes). For a rectangular panel of aspect ratio a/b=2, this instability 
occurs at 9.1099=crλ , from the coalescence of the first two bending modes (viz (1,1) 
and (2,1) modes). 

 17



 

  Higher critical dynamic pressures corresponding to coalescence of the higher 
modes can also be obtained. For the square panel, the higher critical value of the non- 
dimensional dynamic pressure is 1099.9, which occurs from the coalescence of the third 
(1,2) mode and the fourth (2,2) mode. Indeed, for the square plate, the third mode (1,2) 
and the second mode (2,1) are degenerate modes. This is presented in Fig 3.4. 

 
The critical dynamic pressure parameter ( crλ ) is determined for different aspect 

ratios. It is presented in Fig 3.5. Thus for supersonic flow along x-direction, the lowest 
critical dynamic pressure for instability from modal coalescence increases with increase 
of the panel aspect ratio.  
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Fig 3.4 Non dimensional Dynamic Pressure λ Vs Non dimensional frequency 
parameter  for aspect ratio=1 for higher eigenvalues  2k
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Fig 3.5 Critical Dynamic Pressure Parameter for different Aspect ratios. 
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3.3       Influence of flow angularity on critical dynamic pressure: 
 
A hinge supported square plate subjected to airflow in arbitrary direction is considered. 
The flow is along the direction making an angle θ  with edge ‘a’ of panel. From the 
analysis using modal superposition as before the critical dynamic pressure value for 
various flow angels are determined.  

 
 For a square plate, a symmetric variation of the critical dynamic pressure is 
observed, as given is Fig 3.6. The figure shows that for a square panel at  & 

and &  the values of critical dynamic pressures 

o0=θ
o90=θ o30=θ o60=θ crλ  are same.  

The maximum critical dynamic pressure occurs for a flow angle , i.e. for a flow 
equally inclined to both the edges.  

o45=θ
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Fig 3.6 Critical dynamic pressure for a square panel with arbitrary flow direction 
 

 
 The results are generated also for panels of aspect ratios 0.5, 2 and 7.2. with 
different flow angles. Table 3.1 presents the results obtained for rectangular simply 
supported panels of these aspect ratios subjected to various orientations of the flow. These 
results are given graphically in Fig 3.7. It is clear that for panels with aspect ratios other 
than 1,  the variation of the dynamic pressure is no more symmetric with the flow angle. 
For aspect ratios below 1, the critical dynamic pressure crλ  falls with the flow angle, 
while for aspect ratios above 1, it increases with the flow angle. This implies that the flow 
along the longer side is most critical. i.e. the dynamic pressure is lowest for this direction.   
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Table 3.1. Influence of flow angularity on critical dynamic pressure of panels with 
different aspect ratios. 

 
 

 
. 

Critical Dynamic Pressure Parameter crλ   
a/b 

o0=θ  o30=θ  o45=θ  o60=θ  o90=θ  
0.5 383.8 

*382 
215 
*213 

177 
*172 

154 
*151 

138 
*135 

1 512 
*503 

522.08 
*516 

525.95 
*523 

522.08 
*516 

512 
*503 

2 1099.9 
*1081 

1225 
*1206 

1409 
*1388 

1719 
*1703 

3076.18 
*3056 

7.2 9387.5 10830 13241 18631 - 

 
 
 
 
 
 
 

 
*Results obtained by G.Sander, C.Bon and M.Geradin (1973) using finite element 
analysis [11] 
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  Fig 3.7 Critical dynamic pressure for various aspect ratios with 
 arbitrary flow direction 

 
The value of crλ is non-dimensionalized with respect to the third power of the 

edge ‘a’ (factor of a3). Note that the physical dimensional value of the critical dynamic 
pressure q obtained for a/b=0.5 and  is identical to that obtained for a/b =2 and 

. This is also evident from the corresponding critical values of the non-
dimensional dynamic pressures. From Table 3.1, we observe that 383.8 × (2

o0=θ
o90=θ

3)=3076.18. 
Such a relationship is applicable for all aspect ratios.   

 
 

 
 

 20



 

3.4 Chapter Summary and Observations 
 
The effect of flow angularity on the critical dynamic pressure for panels of various aspect 
ratios is studied here.   

 
For supersonic flow along x-direction, the lowest critical dynamic pressure for 

instability from modal coalescence increases with increase of the panel aspect ratio.  
 
  Investigation of the effect of flow direction reveals that for a square plate the 
critical dynamic pressure is symmetric with respect to the flow along , at which 
the maximum critical dynamic pressure occurs.   

o45=θ

 
 For other aspect ratios, dynamic pressure decreases as the flow gets more and 
more aligned to the longest direction. This implies that the flow along the longer side is 
most critical. i.e. the critical dynamic pressure is lowest for this direction.   
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CHAPTER  4 
 
 

EFFECT OF TEMPERATURE ON FLUTTER BOUNDARY 
 
 

4.1. Thermal effect on flutter boundary 
 
Thermal stresses are induced in the panel skin due to aerodynamic heating in flight at 
high speeds. The adverse thermal effect on supersonic flutter boundary due to parabolic 
temperature distribution and additional compressive edge loads are considered in this 
analysis. Simply supported rectangular panels of various aspect ratios subjected to 
supersonic airflow in different direction are treated theoretically. 
 
4.2   Thermal stress distribution due to parabolic temperature distribution 
 
The mid-plane stress resultants , , due to parabolic temperature distribution 
(given by equation (2.10) of Chapter 2) are defined by the following equation: 

xTN yTN xyTN
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The variation of stress resultants  and due to parabolic temperature distribution 
over the panel of aspect ratio (a/b =1) is shown in Figs 4.1.a. & 4.1.b. The variation of 
stress resultant  due to temperature distribution over the panel of aspect ratio a/b =1 
is shown in Fig 4.1.c. Note that these stress resultants vanish at the panel boundaries. 

xTN yTN

xyTN
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Fig 4.1.a Normal stress resultant  for a square panel subjected to parabolic 
temperature distribution. 

xTN
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Fig 4.1.b Normal stress resultant for a square panel subjected to parabolic 
temperature distribution. 

yTN
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Fig 4.1.c Shear stress resultant  for a square panel subjected to parabolic 
temperature distribution 

xyTN
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4.3. Effect of Parabolic Temperature Distribution on Flutter Boundary for a 
square panel subject to airflow along x-direction (edge a)  

 
Fig 4.2 shows the effect of the parabolic temperature distribution on the flutter behavior 
of a square panel free of uniform mid-plane stresses. The results of the analysis are 
generated with superposition of 6 modes along flow (x-direction) and 3 modes along the 
cross-flow direction  (y-direction) are considered for getting the converging solution. i.e. 
R=6; S=3.  (Refer to the Equation 2.14 and Chapter2 / Article 2.2.3). From Fig 4.2, it can 
be observed that there is a significant fall in the critical dynamic pressure with rise in 
temperature value at the panel center.  
 

Thermal Flutter Boundary for square panel with 
no uniform midplane stresses 
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Fig 4.2 Variation of Critical Dynamic Pressure Parameter for flow direction along 
edge a, i.e. x axis, with parabolic temperature distribution amplitude parameter 

(
D

TEha
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π
α

ψ
Δ

=  ) over the square plate. 

 
The three regions shown in Fig 4.2 are characterized by the value of frequency parameter 
squared ( ). 2k
 

Region 2k  ω  
1 Real & positive Real 
2 
 

Complex Complex (one root 
lead to oscillating, 
divergent panel 
motion) 

3 Negative Pure imaginary  
 

In region 1, the panel is flat and there is no flutter. i.e. the panel oscillation is stable.  
In the region 2, the panel is dynamically unstable. In the region 3, the panel is buckled. 
i.e. the panel is statically unstable. In this region, the panel undergoes indefinite 
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exponential increase of displacements, till structural failure, without any oscillatory 
motion (divergence). 

 
These three regions are separated by two boundaries. The first is the buckling loop, 

which is the locus of points for which . The second is the flutter boundary, which 
is the locus of points at which two frequencies coalesce. The point of tangency of the 
flutter boundary with the buckling loop represents the lowest value of 

02 =k

crλ  associated with 
this panel configuration.  

 
 

4.4. Effect of Parabolic Temperature Distribution on Flutter Boundary for a 
square panel with arbitrary flow direction 

 
The flutter boundary of a square simply supported panel subjected to airflow in arbitrary 
direction is determined. The effect of parabolic temperature distribution over the panel is 
considered. Fig 4.3 shows the effect of parabolic temperature distribution over a panel of 
aspect ratio =1 (square panel), when the panel is subjected to airflow in arbitrary 
direction. The results of the analysis are generated with superposition of 6 modes along x-
direction and 6 modes along the y-direction i.e. R=6; S=6. For arbitrary flow direction it 
is required to take same number of modes along both x and y direction to get the 
convergent solution. For a square panel at  and  the value of critical 
dynamic pressure 

o0=θ o90=θ
crλ is same. It is also same at and . This is evident from 

symmetry conditions in the square panel. The variation of critical dynamic pressure 
parameter for a square panel with different temperature distribution amplitude parameter 
for various flow angle is presented in Table 4.1. 

o30=θ o60=θ

 
 
 

Table 4.1. Critical dynamic pressure of a square panel for various temperature 
distribution amplitude parameter (ψ ) and flow angle. 
 

Critical Dynamic Pressure parameter crλ   
o0=θ  o30=θ  045=θ  o60=θ  o90=θ  

0=ψ  512 522.1 526 522.1 512 
10=ψ  421.9 429.4 432.2 429.4 421.9 
20=ψ  337.5 342.6 344.4 342.6 337.5 
30=ψ  261.2 264.3 265.4 264.3 261.2 
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Fig 4.3  Critical dynamic pressure variation with flow angle for different parabolic 

temperature profiles (
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4.5 Effect of Panel Aspect Ratio on Flutter Boundary with Parabolic Temperature 

Profile and air flow along x-direction 
 
Critical dynamic pressure parameter values for supersonic flow along side a of flat 
rectangular panels of various aspect ratios and thermal conditions are computed.  
 
 Flutter boundary variation with parabolic thermal profile parameter ψ for a 
rectangular panel of aspect ratio=2 for flow along the x-direction (side a) is presented in 
Fig 4.4. 
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Fig 4.4 Variation of Critical Dynamic Pressure Parameter with parabolic 
temperature profile over the panel of aspect ratio=2 subjected to supersonic flow 
along x-direction. 
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 Variation of flutter boundary with the thermal profile for three chosen panel 
aspect ratios is shown in Fig 4.5. The various curves drawn are for aspect ratios of 0.5, 1 
and 2. For all cases, the flutter boundary (critical dynamic pressure) falls steeply with rise 
in temperature at the panel center. 
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Fig 4.5 Variation of Critical Dynamic Pressure Parameter due to parabolic 
temperature distribution over the panel for different aspect ratios. 
 

 A particular case of aspect ratio = 7.2 (a typical case of wing panels used in re-
entry vehicles)  is considered and the variation of critical dynamic pressure parameter due 
to the parabolic temperature distribution is presented in Fig 4.6. 
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Fig 4.6 Variation of Critical Dynamic Pressure Parameter due to parabolic 
temperature distribution over the panel of aspect ratio=7.2 and the flow is along x-
direction. 
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4.6 Effect of Flow Direction on Flutter Boundary for panels of various aspect 
ratios with Parabolic Temperature Distribution 

 
The effect of flow direction on the flutter boundary parameter crλ  of rectangular simply 
supported panels under the effect of parabolic temperature distribution profile is 
investigated. The flow is considered to be parallel to the panel plane, and inclined at an 
angle of θ with the edge a (x-axis), (see Fig 2.1). The results are generated for panels of 
different aspect ratios. The variation of critical dynamic pressure parameter values for a 
panels of aspect ratios = 0.5, 2 and 7.2 with different temperature distribution amplitude 
parameter and flow angles are presented in Table 4.2-4.4.  
 
 The graphical representation of the variation of the critical dynamic pressure 
parameter values for these aspect ratios with flow angle and parabolic thermal file profile 
are presented in Figures 4.7-4.9. For all these cases, it can again be observed that for a 
given temperature profile, the critical dynamic pressure falls as the flow tends towards the 
longer direction of the panel.  Also, for a given flow direction and given aspect ratio, the 
value of critical dynamic pressure falls with temperature. Thus one can conclude that both 
thermal conditions and flow direction affect the flutter boundary.  

 
Table 4.2 Critical dynamic pressure of a panel of aspect ratio a/b= 0.5 for various 
temperature distribution amplitude parameter (ψ ) and flow angle θ . 

Critical Dynamic Pressure parameter crλ   
o0=θ  o30=θ  045=θ  o60=θ  o90=θ  

0=ψ  383.8 214.9 176.1 153.2 137.5 
10=ψ  355.7 116.4 88.4 74.1 65.1 
20=ψ  171.3 37.4 26.9 22.1 19.2 

 
Table 4.3 Critical dynamic pressure of a panel of aspect ratio a/b = 2 for various 
temperature distribution amplitude parameter (ψ ) and flow angle θ . 

Critical Dynamic Pressure parameter crλ   
o0=θ  o30=θ  045=θ  o60=θ  o90=θ  

0=ψ  1099.9 1225 1408.2 1718.9 3070.4 
10=ψ  939.4 1053 1222.5 1521.5 3015 
20=ψ  788.5 889 1042.1 1322.4 2959.1 
30=ψ  648.5 734.9 869.2 1124.6 2774 

 
  Table 4.4 Critical dynamic pressure of a panel of aspect ratio a/b=7. 2 for various   

temperature distribution amplitude parameter (ψ ) and flow angle θ . 
Critical Dynamic Pressure parameter crλ   

 o0=θ  o30=θ  045=θ  o60=θ  
0=ψ  9387.5 10830 13241 18631 
100=ψ  9298 10727 13116 18457 
250=ψ  7940 9137 11121 15447 
400=ψ  3550 4095 5003 7025 
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Fig 4.7 Critical dynamic pressure for various flow angles with parabolic     
temperature distribution over panel of aspect ratio a/b=0.5. 
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Fig 4.8 Critical dynamic pressure for various flow angles with parabolic 
temperature distribution over panel of aspect ratio a/b=2. 
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Fig 4.9 Critical dynamic pressure for various flow angle with parabolic temperature 
distribution over panel of aspect ratio = 7.2. 
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4.7   Effect of Uniform Edge Loading on Flutter Boundary of the panel with flow   
along x-direction (edge a) 

 
In-plane edge loading per unit edge length, Nxo and  Nyo on the panel can develop from  
 

(a) Forces from adjacent panels, or movement of the edge supports, 
(b) In-plane edge constraints to thermal expansion. Panels with immovable hinged 

supports can generate such edge loads.  
 
The non-dimensional edge load parameter considered are  and , as given by 
expressions in equations (2.20) of Chapter 2.  

xoR yoR

D

aN
R

D
aN

R yo
yo

xo
xo 2

2

2

2

;
ππ

==              (4.4a,b) 

 
These edge forces, if compressive (positive) in nature, can drastically lead to fall of the 
critical dynamic pressure of the panel.  
 

Thus along with the thermally induced loading NxT, NyT and NxyT due to the 
parabolic thermal profile with no in-plane edge constraints at the simply supported edges, 
the edge forces bring about further fall of the dynamic pressure.  The variation of flutter 
boundary of a square panel subjected to airflow along edge a (along x-direction) due to 
the effect of both the uniform edge loading  and  (with = ) and a 
parabolic temperature profile is investigated. The results for aspect ratios 1,2 and 7.2 are 
presented in Table 4.5-4.7. It must be noted that these results are generated by taking the 
net edge loads (N

xoR yoR xoR yoR

x, Ny, Nxy) as given in equation (2.4), i.e. the contributions of the in-plane 
stress resultants (NxT, NyT, NxyT) from the parabolic profile are superposed with those from 
the edge loads (Nx0, Ny0). 

 
For edge loads from in-plane edge constraints to thermal expansion (case (b)), the 

uniform edge loading develops due to the difference of mean temperature  of the 
panel from the reference temperature , at which the edge loading vanishes. One 
can approximate these edge loads (per unit edge length) from edge constraints to thermal 
expansion as 

meanT

referenceT

     hTENN yoxo )(
)1( 2Δ

−
== α

μ
    (4.5) 

Thus for this case, = . Here the effective panel temperature xoR yoR 2TΔ  for edge loads is 
defined as in equations (2.22) and (2.24), 

     

    referenceedgereferencemean TTTTTT −Δ+=−=Δ 12 9
4    (4.6) 

    
The effects of edge loading from in-plane edge constraints on thermal expansion upon the 
critical dynamic pressure is demonstrated for two specimens of aluminium panels of 
aspect ratios 1 and 7.2.    
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Table 4.5 Critical dynamic pressure values of a panel of aspect ratio a/b = 1 for 
various edge load parameter ( yoxo RR = ) and parabolic temperature distribution 
amplitude parameter (ψ ) with flow along edge a (x-direction). Positive Edge loads 
signify compression. 
 

Critical Dynamic Pressure parameter crλ   
3−=xoR  1−=xoR  0=xoR  2=xoR  

0=ψ  792.18 602.01 512 343.2 
10=ψ  684.75 505.8 421.95 266.6 
20=ψ  580.9 414.4 337.45 197.5 
30=ψ  481.33 329.65 261.05 Divergence 

 
 
 
Table 4.6 Critical dynamic pressure values of a panel of aspect ratio a/b = 2 for 
various edge load parameter ( yoxo RR = ) and parabolic temperature distribution 
amplitude parameter (ψ ) with flow along edge a (x-direction). Positive Edge loads 
signify compression. 
 

Critical Dynamic Pressure parameter crλ   
3−=xoR  0=xoR  2=xoR  4=xoR  

0=ψ  1430 1099.9 892 696 
10=ψ  1254 939.4 745 563 
20=ψ  1084 788.5 608 442 
30=ψ  924 648.5 484 335 

 
 
 
 

Table 4.7 Critical dynamic pressure values of a panel of aspect ratio a/b =7.2 for 
various edge load parameter ( yoxo RR = ) and parabolic temperature distribution 
amplitude parameter (ψ ) with flow along edge a (x-direction). Positive Edge loads 
signify compression. 
 

Critical Dynamic Pressure parameter crλ   
3−=xoR  0=xoR  50=xoR  80=xoR  

0=ψ  9555 9387.5 6402 2948 
100=ψ  9466 9300 4709 1053 
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Fig 4.10 Effect of Uniform Edge Loading on Flutter Boundary and Parabolic 

Temperature profile on critical dynamic pressure for a square panel.  Flow along x-
direction. 
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Fig 4.11 Effect of Uniform Edge Loading on Flutter Boundary and Parabolic 
Temperature profile on critical dynamic pressure for a panel of aspect ratio a/b=2.  

Flow along x-direction. 
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Fig 4.12 Effect of Uniform Edge Loading on Flutter Boundary and Parabolic 
Temperature profile on critical dynamic pressure for a panel of aspect ratio a/b=7.2.  

Flow along x-direction. 
 

 
 

4.8 Effect of Flow Direction on Flutter Boundary for panels of various aspect 
ratios with Edge Loading and Parabolic Temperature Distribution 

 
The variation of flutter boundary of panels of various aspect ratios 1,2 &7.2 subjected to 
airflow in arbitrary direction, due to the effect of both the uniform edge loading and 
parabolic temperature distributions is investigated. The results are presented in Figures 
4.13-4.15.  
 

The critical dynamic pressure value is always more than what it would have been if 
the flow is along the longer edge. Thus for design purposes, the least value of the critical 
dynamic pressure, that occurs only for flow along the longer edge, is to be considered.     
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Fig 4.13  Effect of Edge loading and Parabolic Thermal Profile on Flutter boundary 

of a square panel with flow angle of a) & b)  030=θ 045=θ
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Fig 4.14 Effect of Edge loading and Parabolic Thermal Profile on Flutter boundary 
of a panel of aspect ratio a/b=2with flow angle of a)  & b) c)  030=θ 045=θ 060=θ
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Fig 4.15 Effect of Edge loading and Parabolic Thermal Profile on Flutter boundary 
of a panel of aspect ratio a/b=7.2with flow angle of a)  & b) c)  030=θ 045=θ 060=θ
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4.9     Chapter Summary and Observations 
 
The adverse thermal effect on supersonic flutter boundary of panels with different aspect 
ratios subjected to flow in arbitrary direction due to parabolic temperature distribution 
over the panel and due to edge loads is investigated. These edge loads can arise from in-
plane edge constraints to thermal expansion due to the difference of ambient temperature 
from the reference temperature. Panels with hinged supports at all edges can develop such 
in-plane loadings. 
 
 The critical dynamic pressure crλ  decreases as the parabolic temperature 
distribution amplitude parameter increases. It can be observed that there is a significant 
fall in the critical dynamic pressure with rise in temperature value at the panel center. For 
all cases of different aspect ratios, the flutter boundary (critical dynamic pressure) falls 
steeply with rise in temperature at the panel center. Also the critical dynamic pressure 
parameter crλ decreases as the edge load parameter increases. 
 
 It can be observed that for a given temperature profile the critical dynamic 
pressure falls as the flow tends towards the longer direction of the panel.  Also, for a 
given flow direction and given aspect ratio, the value of critical dynamic pressure falls 
with temperature. Thus one can conclude that both thermal conditions and flow direction 
affect the flutter boundary. Compressive edge loads cause further reduction of the critical 
dynamic pressure.  
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CHAPTER 5 

 

NUMERICAL RESULTS FOR PANELS OF GIVEN 

CONFIGURATION 

 
5.1. Numerical Studies for Supersonic Panel Flutter 
 
A numerical study of the supersonic flutter boundary of panels of given dimensions and 
material properties is made and the results are presented here.  Aluminium panels of 
aspect ratios of 1 and 7.2 are studied. The variation of critical parameters (flutter dynamic 
pressure/ flutter velocity) with parabolic temperature distribution over the panel is 
investigated for different flow directions. The effects of edge loads that arise from in-
plane constraints are also simulated. The results for no thermal condition are validated 
with finite element software, NASTRAN. 
 
5.2. Numerical Results for a square panel of aluminium (Specimen A) using 
theoretical formulation 
 
Consider a simply supported square panel subjected to supersonic airflow over one 
surface with the following dimensions and properties. 
 
 Length of panel, a  = 0.25m 

Width of panel, b  = 0.25m 
Aspect ratio, a/b  = 1 
Thickness of panel, h  = 0.00232m 
Modulus of Elasticity, E = 70x109 N/m2

Poisson’s ratio, μ   = 0.3  
 Coefficient of thermal expansion of Aluminium  
                                α   = 2.3x10-5/oC 
 Density of material, matρ  = 2764 kg/m3

  
Density of air, airρ   = 1.225 kg/m3

 

Bending rigidity, D  = ( )2

3

112 μ−
Eh = 80.046 Nm 

 

Dynamic pressure, q  = 2
airV2

1 ρ                      (V=Flow speed) 

Mach number, M  = 
soundV
V   

Velocity of sound,  = 340m/s  soundV
 

Dynamic pressure parameter  
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5.2.1  Effect of Parabolic Temperature Distribution over the panel when airflow along x-
direction (edge a) 

 
For the given panel (specimen A) on simply supported edges, the critical velocity values 
are calculated for various values of parabolic profile parameter 1TΔ . The non-dimensional 
temperature parameter is used for computing the physical temperature amplitude  (in 
degrees centigrade) for the parabolic profile for the specimen panel A of Article 5.2. 

1TΔ

   ψ  = 
D

TEha
2

1
2

π
α Δ

 = 12958.0 TΔ . 

The variations of critical parameters (critical dynamic pressure, critical velocity, critical 
Mach number) due to the parabolic temperature distribution over the given panel of 
aspect ratio=1 are shown in Fig 5.1.  
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                                                                  (c) 
Fig 5.1 Variation of Critical Parameters due to parabolic temperature distribution 

over the square aluminium panel (specimen A). Flow along edge a. 
Air Density assumed is 1.225 kg/m3. 

a) Critical Dynamic pressure    b) Critical Velocity    c) Critical Mach number 
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5.2.2 Effect of flow direction and thermal profile with arbitrary flow direction 

 
The variation of critical parameters (critical dynamic pressure, critical velocity, critical 
Mach number) for the given square panel is investigated. The results are presented in 
Table 5.1. The graphical representation of the variation of critical parameters for the 
panel with flow angle is presented in Fig 5.2. 
 
 
Table 5.1.a Variation of Critical Dynamic pressure with various parabolic 
temperature profile and flow angle. 
 

Critical Dynamic Pressure  (N/m2)  
o0=θ  o30=θ  045=θ  o60=θ  o90=θ  

01 =ΔT  2421017.88 25188342.96 25567121.59 25188342.96 2421017.88 
524.341 =ΔT  16423184.76 17014836.98 17238392.78 17014836.98 16423184.76
31.861 =ΔT  8163103.168 8385589.371 8464159.93 8385589.371 8163103.168
26.1331 =ΔT  3879313.753 3952387.114 3979477.351 3952387.114 3879313.753

 
 
 
Table 5.1.b Variation of Critical velocity with various parabolic temperature profile 
and flow angle. 
 

Critical Velocity (m/s)  
o0=θ  o30=θ  045=θ  o60=θ  o90=θ  

01 =ΔT  6287.145 6412.786 6460.82 6412.786 6287.145 
524.341 =ΔT  5178.162 5270.61 5305.121 5270.61 5178.162 
31.861 =ΔT  3650.69 3700.102 3717.396 3700.102 3650.69 
26.1331 =ΔT  2516.66 2540.25 2548.94 2540.25 2516.66 

 
 
 
Table 5.1.c Variation of Critical Mach number with various parabolic temperature 
profile and flow angle. 
 

Critical Mach number  
o0=θ  o30=θ  045=θ  o60=θ  o90=θ  

01 =ΔT  18.492 18.86 19.002 18.86 18.492 
524.341 =ΔT  15.23 15.5 15.6 15.5 15.23 
31.861 =ΔT  10.74 10.88 10.93 10.88 10.74 
26.1331 =ΔT  7.41 7.47 7.5 7.47 7.41 
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(c) 

Fig 5.2 Variation of Critical Parameters for various flow angle with parabolic 
temperature distribution over square panel a) Critical Dynamic pressure b) 
Critical Velocity c) Critical Mach number.  Air Density assumed is 1.225 kg/m3. 
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5.2.3  Effect of Uniform Edge Loading due to edge constraint on thermal expansion on 
the flutter boundary of the panel with flow along x-direction. 
 
In-plane edge loading per unit edge length, Nxo and Nyo on the panel can develop from the 
in-plane edge constraints to thermal expansion. Panels with immovable hinged supports 
can generate such edge loads. For specimen A, these edge loads (per unit edge length) 
from edge constraints to thermal expansion, as given in equation (2.21) can be expressed 
as 
 
 

   hTENN yoxo )(
)1( 2Δ

−
== α

μ
   = 25336 TΔ  

 
 
Here the effective panel temperature 2TΔ  for edge loads is defined as in equations (2.22) 
and (2.24) 
 

  referenceedgereferencemean TTTTTT −Δ+=−=Δ 12 9
4   

 
These edge loads vanish at the reference temperature. 
 
 
 The effects of edge loading from in-plane edge constraints on thermal expansion 
upon the critical dynamic pressure is demonstrated for the given square panel. Variation 
of critical parameters (critical dynamic pressure, critical velocity, critical Mach number) 
due to the effects of edge loading from in-plane edge constraints on thermal expansion 
associated with a parabolic temperature distribution over the given square panel is shown 
in Fig.5.3.  The results are plotted for different temperatures 2TΔ  that generate the edge 
loads. It must be noted that these results are generated by taking the net in-plane loads 
(Nx, Ny, Nxy) as given in equation (2.4), i.e. the contributions of the in-plane stress 
resultants (NxT, NyT, NxyT) from the parabolic profile are superposed with those from the 
edge loads (Nx0, Ny0). 
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(c) 

Fig 5.3 Variation of Critical parameters for Specimen A with the effects of edge 
loading from in-plane edge constraints on thermal expansion. Flow along x-
direction (edge a). Air Density assumed is 1.225 kg/m3. 

         a) Critical dynamic pressure    b) Critical velocity   c) Critical Mach number. 
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5.2.4 Effect of Uniform Edge Loading due to edge constraint on thermal expansion on 
Flutter Boundary of the panel with arbitrary flow direction 

 
The variation of critical Mach number due to effects of various temperatures  that 
generate edge loading from in-plane edge constraints on thermal expansion over the panel 
when the panel is subjected to arbitrary flow direction are presented in Fig 5.4. Fig 5.4a 
shows the results for flow angle of . For a square panel the results are same for 

 and . Figs 5.4b shows the results for flow angle of . 
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Fig 5.4 Variation of Critical Mach number for Specimen A with the effects of edge 
loading from in-plane edge constraints on thermal expansion for flow angle of 
a) & b) .  Air Density assumed is 1.225 kg/m030=θ 045=θ 3. 
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5.3. Numerical Results for the square panel (Specimen A) using NASTRAN: 
 
For the square plate (specimen A; 0.25m×0.25m) the critical parameters are calculated 
with the finite element package NASTRAN for no thermal condition and flow along x-
direction. The entire square panel is discretized into 10x10=100 elements. The finite 
element mesh of the panel is presented in Fig 5.5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig 5.5 Finite element model for square panel 

 
The free vibration characteristics (natural frequencies) are given in Table 5.2.a. 

The critical parameters (dynamic pressure, velocity and Mach number) are determined 
and compared with the corresponding analytical results. These results are presented in 
Table 5.2 b. 

 
 

Table 5.2.a Natural frequency of the square panel  
 

Natural Frequency (Hz) Mode (m, n) 
 Analytical NASTRAN 

(1,1) 177.5933 175.16 
(2,1) 443.9832 435.14 
(3,1) 887.9664 870.35 
(1,2) 443.9832 435.14 
(2,2) 710.3731 677.95 
(3,2) 1154.356 1089.5 
(1,3) 887.9664 870.35 
(2,3) 1154.356 1089.5 
(3,3) 1509.543 1482.11 
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Table 5.2.b Comparison of analytical results with NASTRAN for the square panel 
(Specimen A) with flow along edge ‘a’. (Air density is 1.225 kg/m3). 
 

 Critical Dynamic 
Pressure  
qcr (Pa) 

Critical Flow  
Speed  

Vcr  (m/s) 

Critical  
Mach number 

 Mcr
Analytical  2421017.88 6287.145 18.492 
NASTRAN 23430712.81 6185 18.19 

 
 
5.4. Numerical Results for a panel of aspect ratio = 7.2 (Specimen B) using 

theoretical formulation 
 
The aluminium panel of aspect ratio  7.2 (which is typical of a wing panel of a supersonic 
re-entry vehicle) is considered here. Assumed air density is 0.715 kg/m3 (corresponding to 
a dynamic pressure of 50 KPa).  
 
The dimensions and properties of the panel are as follows: 

 
 Length of panel, a  = 0.36m 

Width of panel, b  = 0.05m 
Aspect ratio, a/b  = 7.2 
Thickness of panel, h  = 0.0011m 
Material of panel   = Aluminium  
Modulus of Elasticity, E = 70x109 N/m2

Poisson’s ratio, μ   = 0.3  
 Coefficient of thermal expansion of Aluminium  
   α   = 2.3x10-5 /oC 
 Density of material, matρ  = 2764 kg/m3

Density of air, airρ   = 0.715 kg/m3 

Dynamic pressure parameter  
 

    λ   = 
1

2
2

3

−MD
qa =

1
340

00391.0
2

2

−⎟
⎠
⎞

⎜
⎝
⎛ v

v  

    ψ  = 
D

TEha
2

1
2

π
α Δ

 = 14778.2 TΔ  

 

   hTENN yoxo )(
)1( 2Δ

−
== α

μ
   =  22530 TΔ  

 
For the given plate specimen B, critical velocity values are calculated for various  
parabolic temperature profiles ( 1TΔ ). The variation of critical parameters (critical 
dynamic pressure, critical velocity, critical Mach number) for this specimen B with flow 
along x-direction are shown in Fig 5.6. 
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Fig 5.6 Variation of Critical parameters due to parabolic temperature distribution 
for the panel of aspect ratio a/b=7.2 (Specimen B). Flow along x-direction (edge a).  
a) Critical dynamic pressure   b) Critical velocity    c) Critical Mach number. 
Air density assumed 0.715 kg/m3. 
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The effect of flow direction on these critical parameters is also investigated. The results 
are presented in Table 5.3. The results are graphically presented in Fig 5.7.  
 
 
Table 5.3.a Variation of Critical Dynamic Pressure (for specimen B) with various 
parabolic temperature profiles and flow angles. 
 
 

Critical Dynamic pressure (N/m2)  
o0=θ  o30=θ  045=θ  o60=θ  

01 =ΔT  17786384 23686262.99 35426862.34 70180191.91 
65.351 =ΔT  17448063.93 23237078.31 34760355.47 68874679.96 

61.1461 =ΔT  2507478.86 3350547.483 5021926.04 9942181.482 
 
 
 
Table 5.3.b Variation of Critical Velocity (for specimen B) with various parabolic 
temperature profiles and flow angles. 
 
 

Critical velocity (m/s)  
o0=θ  o30=θ  045=θ  o60=θ  

01 =ΔT  7053.519 8139.74 9954.71 14011.004 
65.351 =ΔT  6986.112 8062.18 9860.62 13880.07 
61.1461 =ΔT  2648.38 3061.4 3747.98 5273.55 

 
 
 
Table 5.3.c Variation of Critical Mach number (for specimen B) with various 
parabolic temperature profiles and flow angles. 
 

Critical Mach number  
o0=θ  o30=θ  045=θ  o60=θ  

01 =ΔT  20.75 23.94 29.28 41.21 
65.351 =ΔT  20.55 23.71 29.002 40.82 
61.1461 =ΔT  7.79 9.004 11.023 15.51 
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(c) 

Fig 5.7 Variation of critical parameters for various flow angles with parabolic 
temperature distribution over panel of aspect ratio =7.2 (Specimen B). Air density 
assumed 0.715 kg/m3. 
a) Critical dynamic pressure   b) Critical velocity   c) Critical Mach number 
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Effect of edge loading, in terms of the temperature  from in-plane edge constraints 
on thermal expansion over the given panel (specimen B) is shown in Fig.5.8.  Flow is 
along x-direction (edge a). Air density is assumed to be 0.715 kg/m

2TΔ

3. 
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Fig 5.8 Variation of Critical parameters for Specimen B with the effects of edge 
loading from in-plane edge constraints on thermal expansion. Flow along x-
direction (edge a). Air Density assumed is 0.715 kg/m3. 

a) Critical velocity      b) Critical Mach number. 
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The effect on flow direction on the variation of critical Mach number has been 
investigated also for specimen B. Results with three flow directions and various 
temperatures  that generate edge loading from in-plane edge constraints (for 
specimen B) are presented in Fig 5.9. 
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Fig 5.9 Variation of Critical Mach number for Specimen B with the effects of edge 
loading from in-plane edge constraints on thermal expansion for flow angle of 
a) & b) .  Air Density assumed is 0.715 kg/m030=θ 045=θ 3. 
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5.5 Numerical Results for a panel of aspect ratio=7.2 (specimen B) using 
NASTRAN 
 
For the specimen B (0.36m×0.05m), the critical parameters (critical dynamic pressure, 
critical flow speed, critical Mach number) are calculated with the finite element package 
NASTRAN for no thermal condition and flow along x-direction. The entire panel is 
discretized into 10x10=100 elements. The finite element mesh is displayed in Fig 5.10. 

 
Fig 5.10 Finite element model for panel of aspect ratio = 7.2 

 
The free vibration characteristics (natural frequencies) are given in Table 5.4.a. 

The critical parameters (dynamic pressure, velocity and Mach number) are determined 
and compared with the corresponding analytical results. These results are presented in 
Table 5.4 b. 
 
Table 5.4.a Natural frequency of the Rectangular panel of aspect ratio =7.2 
 

Natural Frequency (Hz) Mode (m, n) 
 Analytical NASTRAN 

(1,1) 1073 1061.52 
(2,1) 1134 1090.95 
(3,1) 1235 1141.41 
(1,2) 4230 4045.73 
(2,2) 4291 4127.29 
(3,2) 4393 4179.79 
(1,3) 9493 8866.82 
(2,3) 9554 9159.17 
(3,3) 9656 9342.3 

 
Table 5.4.b Comparison of analytical results with NASTRAN for a panel of aspect 
ratio a/b = 7.2 with air flow along edge ‘a’. 
 

 Critical Dynamic 
Pressure  
qcr (Pa) 

Critical Flow 
Speed  

Vcr  (m/s) 

Critical  
Mach number  

Mcr
Analytical 17786384.34 7053.52 20.75 

NASTRAN 17035378.72 6903 20.30 
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5.6  Chapter Summary and Observations 
 

A numerical study of the supersonic flutter boundary of panels of given dimension and 
material properties is made. The variation of critical parameters (flutter dynamic pressure/ 
flutter velocity) with parabolic temperature distribution over the panel along with the 
effect of Uniform Edge Loading on Flutter Boundary of the panel is generated. 
 
 The results reveal that there is dramatic reduction in the critical Mach number due 
to the parabolic thermal profile even for panels that are simply supported at the edges 
(without in-plane edge constraints). From Fig 5.1, one can observe that for the given 
simply supported square panel (specimen A) a parabolic temperature profile parameter 

=130.5 1TΔ 0C causes 60.27% reduction in critical Mach number, for flows along x-
direction (edge a). Beyond this thermal condition, divergence sets in. From Fig 5.3, it can 
be observed that further reduction of the critical Mach number occurs from the 
temperature parameter  because of edge constraints to thermal expansion). From Figs 
5.2 and 5.4, it is evident that the least of the critical Mach number occurs at a flow 
parallel to one of the edges, and the maximum occurs for a flow at 45

2TΔ

0 with the edge, for 
any thermal profile or edge constraints to thermal expansion.  
 
 Similar observations have been made with specimen B, of aspect ratio 7.2. From 
Fig 5.6, one can observe that for this given simply supported panel a parabolic 
temperature profile parameter =183.251TΔ 0C causes 85.45% reduction in critical Mach 
number, for flows along x-direction (edge a). Beyond this thermal condition, divergence 
sets in. From Fig 5.8, it can be observed that further reduction of the critical Mach 
number occurs from the temperature parameter 2TΔ  because of edge constraints to 
thermal expansion. From Figs 5.7 and 5.9, it is evident that the least of the critical Mach 
number occurs at a flow parallel to longer of two edges.  
 

The results are validated for no thermal condition with finite element software 
NASTRAN. Good agreement between the results can be observed. 
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CHAPTER  6 

 

CONCLUSION AND SCOPE FOR FUTURE WORK 

 
6.1 Conclusion 
 
The flutter behavior of panel exposed to supersonic airflow in arbitrary direction, in-plane 
load due to thermal expansion and parabolic temperature distribution over the panel has 
been studied theoretically. The theoretical results are validated with the finite element 
software package NASTRAN for no thermal condition and flow along x-direction. From 
the results obtained the following conclusions are made: 

 
 1. The investigation of the effect of flow angularity on the critical dynamic 

pressure for panels of various aspect ratios reveals that the dynamic pressure 
decreases as the flow gets more and more aligned to the longest direction. This 
implies that the flow along the longer side is most critical. i.e. the dynamic 
pressure is lowest for this direction. 

 
2. Investigation reveals adverse thermal effects on supersonic flutter boundary 

through significant fall in critical dynamic pressure/flow velocity, due to  
a) Parabolic temperature profile 
b) Compressive in-plane load arise due to in-plane edge constraints to 
thermal expansion of the plate. 

 
 3. It can be observed that for a given temperature profile the critical dynamic 

pressure falls as the flow tends towards the longer direction of the panel.  Also, 
for a given flow direction and given aspect ratio, the value of critical dynamic 
pressure falls with temperature. Thus one can conclude that both thermal 
conditions and flow direction affect the flutter boundary 

 
4.   Good agreement between NASTRAN result and theoretical results for the flow 

along x-direction with no thermal conditions is observed.  
 
6.2. Scope for future work 

 
 The present work is limited to in-plane compression effects from thermal 

influence, with no temperature gradients. Real panels in the RLV are actually 
subjected to extreme temperature gradients across panel thickness. The present 
method of analysis can be extended to study such cases by incorporating suitable 
terms that represent effects of such harsh temperature gradients. 

 
 In future work the temperature dependant material properties can be considered. 

 
 Presently, the thermal conditions are simulated with analytical tools only. It can be 

extended to simulate thermal conditions also in the NASTRAN models, through 
generation of appropriate in-plane forces and edge forces. 
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APPENDIX A 

 
 

The integral resulting from the aerodynamic loading equation (2.15.a) gives the 
following expression: 

 
  

The integrals ( ,  and )rsI1 ( )rsI 2 ( )rsI3  given by equations (2.15.b),(2.15.c) and (2.15.d) 
are evaluated by making use of the specific definition of the stress function given by equation 
(2.5). 
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