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ABSTRACT

Panels of re-entry vehicles are subjected to a wide range of flow conditions during ascent and
re-entry phases. The flow can vary from subsonic continuum flow to hypersonic rarefied flow
with wide ranging dynamic pressure and associated aerodynamic heating. One of the main
design considerations is the assurance of safety against panel flutter under the flow conditions
characterized by harsh thermal environment. The objectives of this work are to understand
the physical principles behind panel flutter under supersonic flow and to make an estimate of
the lowering of the critical dynamic pressure (flutter boundary) of the panels due to thermal
distributions.

Analytical and Finite element formulation have been developed for supersonic flutter
analysis of rectangular panels subjected various thermal profiles. The piston theory is used
for aerodynamic pressure computations. Panels with simply supported edges (with and
without in-plane edge constraints) have been studied.

The results obtained by NASTRAN for flow along panel edges are in good agreement
with those obtained using the analytical method and the in-house FEM code. From the
analysis of the results for various flow directions it has been observed that the flow along the
longer sides of the panels is most critical. For simply supported panels with no in-plane edge
constraints a thermal gradient can cause a drastic fall in the flutter boundary due to in-plane
thermal stresses that effectively reduce structural stiffness. In-plane edge constraints to
thermal expansion further lower the flutter boundary.

The present study will be useful for the purpose of panel design in re-entry launch
vehicles and supersonic fighter aircrafts.
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Chapter 1

ANALYTICAL AND FINITE ELEMENT FORMULATION OF
SUPERSONIC PANEL FLUTTER UNDER THERMAL
ENVIRONMENT WITH ARBITRARY FLOW DIRECTION

1.1 Introduction

The panels that form the skin of re-entry launch vehicles are subjected to harsh thermal
environment, especially in the supersonic and hypersonic regimes of flight. Usually a
Thermal Protection System (TPS layer) is provided to protect the metallic skin from getting
overheated. Despite this TPS, some temperature rise is anticipated in the metallic skin. The
objective of present work is to investigate, using analytical ,in-house finite element methods
and finite element package NASTRAN, the effects of a parabolic thermal profile on the
flutter boundary of isotropic, simply supported rectangular panels. Piston theory has been
used for calculating aerodynamic forces under supersonic airflow condition. The PK-method
is adopted for flutter analysis in NASTRAN.

1.2. Literature review

Excellent treatises on the classical theory of aeroelasticity have been presented by Fung [1],
Bisplinghoff and Ashley [2]. The physics and computational aspects of various kinds of static
and dynamic aeroelastic problems have been highlighted. The earliest study of flutter seems
to have been made by Lanchester [3], Bairstow and Fage [4] in 1916 in connection with the
anti symmetrical (fuselage torsion-elevator torsion) flutter of a Handleg Page Bomber. Up to
1934, only a few cases of flutter were recorded. In those days only airplane wings showed
flutter. Aileron mass unbalance and low torsional stiffness of the wing were responsible for
most of these accidents.

The aeroelastic instability of aircraft skin panels has been the subject of a number of
theoretical investigations. During the second world war of 1939-1945, Germany launched a
number of V2 missiles. Many of these missiles failed during flight, the cause of which was
later recognized as supersonic flutter of the missile fins [5]. In his analysis of supersonic
flutter, Ashley developed a simple mathematical formula, based on a theory called the
“Piston Theory” to estimate the aerodynamic loads for supersonic flow. In the early part of
world war, most of the flutter cases were due to insufficient aileron mass balance and most
tail-surface flutter cases were due to control surface tabs. Towards the latter part of world
war, airplane speed increased towards the transonic range, and supersonic missiles appeared.

Early experimental and theoretical studies of the flutter behavior of buckled plates
were carried out by Fung [6]. The primary concern was with the prediction of stability
boundaries, although Fung did derive modal equations of motion for finite amplitude motions
of the plate. Herman and Sidney [7] have compared experimental results with the theoretical
predictions of panel flutter, and have concluded that the linearized, quasi-steady aerodynamic
theory is valid only beyond Mach 1.3.

Stability boundaries for buckled two-dimensional plate were calculated by Hedgepeth
[8] using an approach similar to Fung. Hedgepeth’s application of the two-dimensional static
aerodynamic approximation to the panel flutter problem. It greatly simplified the analytical
complexities and resulted in a differential equation that can be solved exactly for finite
panels. It has shown that a system of uniform stresses can greatly reduce the flutter speed of
an unbuckled panel. During 1950’s, several experimental investigations were conducted to
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verify the existence of panel flutter and to determine some of the effect of such parameters as
panel length-width ratio, thickness, and differential pressure.

The effect of buckling on flutter boundaries of three-dimensional plates was
investigated by Fralich [9]. He used Von Karman large deflection plate equations and
Ackeret’s expression for the aerodynamic pressure. The equations were transformed into pair
of nonlinear ordinary differential equation by Galerkin’s method, using the first two modes of
a simply supported plate as coordinate function. A stability analysis is carried out for each
buckling load by linearizing these equations about the buckled configuration, and computing
the eigenvalues in the usual manner.

In many problems of panel flutter the most obvious methods of analysis have been to
apply the Galerkin’s method using the governing equations of the problem. The applicability
of the Galerkin’s method to the supersonic membrane flutter problem has been studied by
Ellen [10] and found to give good agreement with exact solutions.

Using piston theory and analytical methods, Harry and Walter [11] had reported the
results of their investigation for the flutter behaviour of simply supported, thermally stressed
square panel subjected to supersonic airflow along one edge of the panel. Erickson [12] has
also reported the results of panel flutter investigation for orthotropic panels.

Using C' type Rectangular Plate Element for finite element method, Zienkiewicz O. C [13]
has presented shape function for geometry and displacements. Timoshenko S.P. [14] has
presented the elastic equation for plate bending

Sander et al [15] have employed the finite element method for supersonic flutter
analysis using a new conforming quadrilateral (CQ) element.

Thermal Structures for aerospace application by Earl A. Thornton [16] gives an
authoritative source on design and analysis of aerospace structures in thermal environment.

The analytical formulation and non-dimensional results for supersonic panel flutter
under thermal environment with flow in arbitrary direction has been presented by Mukherjee
etal [17, 18]

The combined documentation (NASTRAN) [19] provides the required information
for aero-modeling which is required for flutter analysis
1.3. Analytical Formulation for Supersonic Panel Flutter

The panel configuration and its discretization are shown in Fig 1.1 The rectangular panel of
length ‘a’, width ‘b’, and uniform thickness ‘%’ is simply supported on all edges with no in-
plane constraints. It is subjected to a supersonic airflow at Mach number ‘M’ along the
direction making an angle ‘@’ with the edge ‘a’ of the panel.

o vl
a ! d

A T
L.
X
U] (i)

Fig 1.1 (i) Panel under flow along the direction of angle ‘@’ with the edge ‘a’ and (ii) The
FEM discretization of the rectangular panel into rectangular elements each of size 2a° x
2b°.
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The panel is subjected to a parabolic temperature distribution in the middle plane as in Fig
1.2, with temperature difference of A7, between the center and the edges. The parabolic
temperature distribution over the panel is given mathematically by the function

T(x,y) =16AT, [2)(1 —zj@j(l —Zj (1.1)

where the rise in temperature at the panel center with respect to the edges is given by
AT, =T, —T

center edges *

Fig 1.2 Parabolic temperature distribution over the rectangular panel.
1.4. Basic equations

The equation of motion of the panel under a loading per unit area is given as

0w 0w 0w 0w
2Ny —+ N, —+ P atizzp

ox 2 axay ay

Here w is the transverse displacement (due to dynamic pressure) which is a function of x, y

DV*w+ N, (1.2)

and time ¢, p_ El’ . is flexural rigidity of the panel, £ is the Young’s modulus, u is the
121 -

Poisson’s ratio and /4 is the thickness of the plate. The net in-plane axial stress resultants
(assumed positive for compression) per unit width along x- and y-directions of the panel are
denoted by N, and N, respectively, which is the sum of those induced by uniform, normal
forces at the boundary (Ny, and N,,) and those resulting from the parabolic temperature
distribution (Nyrand N,r ) while the shear loading is denoted by N,,7. The mass per unit area
of the panel is pu.h wWhere pn. is the mass density of the panel material. The unsteady
aerodynamic pressure load p is obtained by use of linearized, quasi-steady, two-dimensional
aerodynamics (Piston theory), originally proposed by Ashley. According to this theory, the
unsteady aerodynamic pressure over the panel is given by

p=- 24 a—Wcosﬁ-ira—wsinH (1.3)
VM? -1\ x oy

Here ¢ is the dynamic pressure (g=pu V°/2), V is the flow speed and M is the supersonic
Mach number.

The thermally induced in-plane stress resultants, from the parabolic temperature
profile alone, vanish at the boundaries that do not offer any constraints to in-plane thermal
expansion. These are determined in terms of stress function ¢g=¢(x,y),given by [11],

¢=CaEha2AT](2T(Z—1)2[2}]2(;—1)2 (1.4a)

The condition that the panel be free from thermally induced in-plane normal and shear
stresses on the boundaries (due to parabolic temperature alone) requires that the stress
function satisfy the following boundary conditions.

$(0,y) = ¢(a,y) = §(x,0) = p(x,0) = 0

% 0.=22 0./ =22 (x.0)= 22 (x.b) =
o 0¥ =2 @) o (x,0) o (x,0)=0 (1.4b)
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For compatibility of in-plane strains, the stress function must satisfy the following partial
differential equation.

V'¢=aEWV’T (1.5)

where « is the coefficient of thermal expansion. Applying Galerkin’s technique to equation
(1.5), the expression for the constant C can be obtained as.

co__oisp) 4 a (1.6)
1+(3jﬂ2+ﬁ4 b

Thus the in-plane stress resultants from the parabolic thermal profile are given as

2 2 2
N, = M—CaEh 2AT( ](x—I] 127 Ly, 2
) oy’ a)\a b b> b

2 3 )
N, =20 cophaar 12 125 2 (y) [y_ j (1.7)
ox” at a a \b) \b
2 2 3 2
x,r=—a¢=—CaEh AT | 22 4x’ 69‘3 +2;2€ 4%_6{ +2%
! Ox0y a* a b b b

The net in-plane force intensity terms in equation (1.2) is written as

Nx = Nxo +NxT
N,=N,+N,, (1.8a)
ny :nyT

Uniform edge loads from in-plane edge constraints to thermal expansion, develops
due to the difference of mean temperature 7, =~ of the panel from the reference temperature

mean
T

reference °

edge length) from edge constraints to thermal expansion as

N =N =L )a(ATz)h (1.8b)

at which the edge loading vanishes. One can approximate these edge loads (per unit

xo yo

Here the effective panel temperature AT, for edge loads is defined as
AT, =T,,.,—T

mean reference

The mean panel temperature 7, of the panel with uniform edge temperature 7,,,, and with

mean

the parabolic thermal profile 7(x,y) (as in equation (1.1)) is given by

TTT x,y dydx
=T

mean — edge ab edge

+3AE

Thus one can finally express the effective temperature as

AT, nge+3AT T, (1.8¢)

rejerence

1.5. Solution of the differential equation

For panels with all edges having simply supported conditions to transverse deflection, the
solution of equation (1.2) can be represented as follows

wx, y,1) = ZZamnsm— sin—=- Zye‘” (1.9)

m=1 n=1
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Here @ 1is the circular frequency and ¢ is the time. This function satisfies the following
kinematic and the kinetic boundaries conditions of the simply supported edges of the panel.
w(0,y,1) = w(a, y,t) = w(x,0,1) = w(x,b,1) = 0

o’w o’w o’w o’w

_(O’y’t)=_8x2 (a,y,t)=—ay2 (x,O,t)z—ay2 (x,b,1)=0 (1.10)
After substituting equations (1.3), (1.8) and (1.9) into equation (1.2) and then applying
Galerkin’s procedure, one obtains the following set of equations for the amplitude

coefficients a,,,.

2 2 2
G el
(1.11)
2 2 2 2
-k’a,+ AL, + {SCZ (%) l:(ﬁj + (ij :lam + g(%) K. _ty=0
Vs s r T

where ‘I/=M :pmmha“a)z’ 1= 2qa’ R :Nwa2’R- _N,a
x°D D) DM2 -1 x’D e z’D
K,=M_ +P ~40, - /40)\¢/s) + (s/r) ]a,

The parameter &° is the non-dimensional frequency. The parameter A is the non-dimensional
form of the dynamic pressure, The non-dimensional parameters R, and R, accounts for any

k2

additional in-plane loading along the edges of the panel, either from mechanical sources or
from constraints to in-plane thermal expansion at the edges and the terms L,,, M,,, P,; and
O, are presented in [17,18]. Here r=1,2..M, and s=1,2...M, where M, and M, are the
number of modes superposed along x and y directions of the panel respectively in equation
(1.9).

Since the problem is of determining the stability of a given form of solution, it is
advantageous to associate the eigenvalue with the frequency parameter &°. For flow speeds

beyond a critical flow velocity V., the system becomes dynamically unstable when k*
becomes complex. The imaginary part of -k represents the non-dimensional frequency.

The real part of x/? , when positive, indicates that the system motion diverges in amplitude
in an oscillating fashion. Thus from equation (1.11) it is possible to determine the critical
values of the non-dimensional dynamic pressure A, at which the oscillatory motion of the
panel changes from a periodic to an unstable diverging amplitude type. This critical condition
is associated with modal coalescence of two or more modes. Using modal superposition
method eigenvalues are calculated, and the lowest value of A, for where two of the

eigenvalues coalesce is sought. Details of the analysis has been presented in an earlier reports
[17,18].

1.6. Finite element formulation for supersonic panel flutter

For the present work a Quad4 C’ continuity element is selected. At each node in an element
there are three displacement components, viz. the transverse displacement w and the slopes
about x and y-axes. The unsteady nodal displacement vector at node i is expressed in the
following equation using the cubic polynomial shape function matrix [N’] and the time
dependent nodal displacement vector {d“}.

@)= tw, o, e}{w (2] (‘Z—W]} (1.12)
w=[Vllacl=ve N2 N2 N L d=la, 4, a4} (13
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where the [N;’] are the C' shape function matrices for any node in terms natural, local co-
ordinates

gz(x-xl.) ’ nz(y—yc) (1.14)
a e b e

where (x. y.) are the global co-ordinates of the center of the element. For the C’
displacement interpolation in equation (1.13), the shape function matrix for node i (i=1,2,3,4),
is given by

&+, +)2+&, +n,-& -7

a‘&, (&, +1)7(&, -1)(n, +1) g, =& n, =nm,
be’]i (é:o + 1)(770 + 1)2 (770 - 1)

[N?]= (1.15)

i

o | —

1.6.1. Strain Energy

The strain component vector {¢} as given in [13] can be expressed in terms of strain-
displacement matrix [B] in terms of normalized co-ordinates,

*w *w *w !

=|- - 2 =[BlW¢{=[B, B, B, B,]id* (1.16)
{8} { o 8y2 6x8y:| [ ]{ } [ 1 2 3 4]{ }

Here the component [B;] of the strain-displacement matrix at node i is given as

2 662 bé,Z 6772 aebe aé:an

[Bi]:{ 1 8°N! 1 &N' 1 262N,b} (1.17)
a

The strain energy expression U can be expressed in terms element bending stiffness matrix

[K] as
U= [V Dl = ] ] (1.18)

Here [D] is the plate flexural rigidity matrix, and [K°] is the element bending stiffness matrix
given by

1 0

(0]- | T ] (1.19)
0 0 (I-u)/2

lk“]=a b [ [[8) [D] [B]z (1.20)

“1-1
The full form of the element bending stiffness matrix [K‘] is presented in the Appendix A
equation (A.3).

1.6.2. Work done due to in-plane stress resultant

The panel is subjected in-plane thermal stresses in its mid-plane. The work done due to the
net in-plane stresses as given in [15] is expressed as

til[aw awly q[ae aw] (1.21)
" zﬂﬂax ay}[N’”]{ax ay} ]dxdy
Here [N,,] is net mid-plane stress intensity matrix, represented as
[N Ny 1.22
[Nm ] - |:ny Ny :| ( )

where N,,, N, and N,,, are the net in-plane stress resultant intensity (force per unit length) as
presented in equation (1.8a). Using the transformation rule for element geometry (equation
(1.14)), one can express [Nm] in terms of the local normalized coordinates £ and 7. Thus

from equation (1.21), we finally have the expression for the work done by in-plane forces as
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= Lo ) (123)
where [Kj] is the element stiffness matrices associated with net in-plane stress resultants.
These are expressed as

1 aN' ! 1 oN*
|- P (1.24)
esl=asn [T e | LT e an
b an b on

The matrices [K f] is evaluated for every element using four point Gaussion quadrature rule
of integration along each of the two direction £ and # (see Appendix A for equation form and
Gauss points).

1.6.3. Expression for Aerodynamic loads

Substituting the expression for p into the virtual work done by aerodynamic forces W, as
given in [15] and expressing w in terms of normalized co-ordinates, we obtain the expression
for virtual work done by aerodynamic forces as

w, = [ pwaxdy =—{a* | ([, Jeos o+ [k, Jsin o)) = ~{a<|" [k ¢ o (1.25)

where

e e
(1.26)

The full form of the element aerodynamic load matrix [K*;] and [K%,,] are presented in the
Appendix A equation (A.4) and (A.5) respectively.

1.6.4. Kinetic Energy

The kinetic energy expression T that defines the consistent mass matrix [M‘] is expressed as
follows

2 dt
Here [M‘] is the element consistent mass matrix expressed in terms of normalized co-
ordinates and is given by

b )=np,., [ V'] [V*]ab® agan (1.28)

T=lfpmm[dw} v = g [ty = f o] ) (127)

The full form of the element consistent mass matrix [M°] is presented in the Appendix A
equation (A.6)

1.6.5. Equation of Motion

The element assembly process implies the following summations

Us=3U, WE=YWS, WE=Y WS, T =3T° (1.29)
The stiffness matrix [K°], initial stress matrix [K%] , aerodynamic load matrix [K°;] and
consistent mass matrix [M¢] for every element are generated and assembled in proper order to
obtain the global stiffness matrix [K*®], initial stress matrix [K%] , acrodynamic load matrix

[K%,] and mass matrix [M*]. The total strain energy U7* of the assembly is the sum of global
strain energy U® and the global work done due to the in-plane membrane stresses W.® ,

v =t ows = Lo (el e Do) (130
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The generalized aerodynamic forces Q; is given by

0 =Kl

(1.31)

The Lagrange’s equation expressed in terms of strain energy, kinetic energy and generalized
aerodynamic forces as.

dfors | oUf _ 3
dt(adig}adig—gi (1.32)
This gives the equation of motion as

([Tl D s 1 fas o+ o= s }=0 (1.33)

A modal superposition method will now be used to solve equation (1.33) using a modal
superposition of any selected #» modes (encapsulated into the modal
matrix [¢] = [{(ﬁl L, 110, )0, }]) The dynamic displacement and accelerations vectors of

the plate are given as
ey =[glvie’", {d*}y =y [glivy e’ (1.34)

The parameter yis complex where j-5+jy. Here j; represents the circular frequency w, and
represents the amplitude increase (%>0) or amplitude decrease (%<0) with time. Substituting
equation (1.34) in equation (1.33) and pre-multiplying by [4], we get

([K % on |+ [ % on |+ [K 5 en |+ 72 [M % | v = (0}

For non-trivial solutions, we now have the following eigenvalue problem with —y? as the
eigenvalue,

=0 (1.35)

[ K] 72 11

where [KTgen]= [K g gen]+ [K £ sgen]"r[K g qgen]. As stated earlier, the generalised stiffness

matrix [K & gen ], the generalised in-plane stress intensity matrix [K g sgen] and the mass matrix
[M g ge,,J are the diagonal matrices due to the orthogonality of the natural modes. The
aerodynamic matrix [Kge,| 1S an anti-symmetric matrix (indicating the non-conservative
nature of the system). Thus [K®7e,] is non-symmetric due to the contribution of the
aerodynamic matrix [Kge.,|. This implies that some of the eigenvalues -y are eventually
complex for a certain range of the dynamic pressure ¢g. In general, the eigenvalue can be
expressed as a complex number, y-y+jy, (7=\-1) where the real part 3 represents the
amplitude increase (%>0) or amplitude decrease (<0) with time, and the imaginary part j; is
the circular frequency w. The lowest value of dynamic pressure for y. is positive (>0) for
any mode is the critical dynamic pressure g,.

1.7. Supersonic Panel Flutter Analysis with NASTRAN

The supersonic flutter analysis module in NASTRAN is also employed here to predict the
flutter boundaries under the assumed thermal profiles. The intension of this exercise is to
establish the validity of the results simulated by various methods through comparison.
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1.7.1. Aerodynamic theory

Piston theory is used for calculating the aerodynamic loads in which the local pressure
generated by the body’s motion is related to the local normal component of fluid velocity in
the same way that these quantities are related at the face of a piston moving in a one-
dimensional channel. It is a point function, used to represent aerodynamic pressures on
surfaces with small-scale geometric characteristics, (i.e., the pressures are only dependent
upon local conditions).

1.7.2. P-K Method for Flutter solution

NASTRAN uses mass and stiffness matrices for dynamic analysis. It pre and post multiplies
these matrices by eigenvectors to get generalized mass [M};] and generalized stiffness [Kx].
The user defines the aerodynamic model and the interpolation function between structural
and aerodynamic grid points. Based on the aerodynamic theory selected, the aerodynamic
influence coefficient Matrix is calculated. It is pre and post multiplied by mode shape to get
generalized aerodynamic influence coefficient matrix [Qy;]. This generalized aerodynamic
coefficient matrix is used in the damping term (for p-k method) of the equation of motion.

The fundamental equation for modal flutter analysis by the p-k method is,

[M,,p* +(B, —%p.EVQ’hh Ikyp+ (K, +%pV2Qth N} =0 (136)

where the new terms are

O, 0/ = modal aerodynamic damping matrices as functions of Mach number (M) and

reduced frequency (k)

p =complex eigen value = @ (y #1)

y = transient decay rate coefficient (Note: the structural damping coefficient g = 2

The matrix terms in above equation are all real. Q', and O"hh are respectively, the real and
imaginary parts of O, (m, k). Circular frequency and the reduced frequency are not
independent since k =(wc/ 2 V), and furthermore, that

k= (c/2V)Im(p) (1.37)

For the PK-method of solution, equation (1.36) is rewritten in the state-space form with twice

the order.

[4- prlfur}=0 (1.38)
where [A4] is the real matrix,

0 /

= _ 1 | -
(] —M,[K,, +=pV?0%] —M B, —=pcVQ'm k]
2 4 (1.39)
and {iz,} now includes both modal displacements and velocities. The eigen values of the real

matrix [A] are either real or complex conjugate pairs.

In PK-method, the eignevalues P are first extracted. Convergence for each mode is
achieved by feeding the imaginary part of P (frequency w) as non dimensional frequency &
for updating the aerodynamic matrix, till input k& equals output & (from P).
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If there are multiple densities and mach numbers, the first Mach number and density
are printed first, followed by the (optional) second Mach number and second density and
finishing with the final Mach number and final density. From the V-g plots (Fig 2.5(b)), the
unstable mode can be easily identified as the one that crosses the zero-line of the damping g
(g=2), indicating that just beyond a certain critical (flutter) flow velocity V,,, the damping
for that mode becomes positive (from negative), which is an indication of dynamic
instability. At the critical velocity, the system is at the flutter boundary.

1.7.3. Supersonic flutter analysis of panels

The panel flutter analysis has been carried out by the PK method. The unsteady air-loads in
the supersonic range were calculated using Piston theory for a set of ‘n’ normal modes in the
generalized coordinates. The CAEROS bulk data entry specifies the strips width in NSPAN.
Each CAEROS entries specify one PAEROS, which provides the mach numbers and angle of
attack values on AEFACT. AERO entry specifies chord length and air density. The
MKAERO1 and MKAERO2 bulk data entries allow the selection of parameters for the
explicit calculations of the aerodynamic matrices. Flutter analysis is performed based on the
parameters specified on the FLUTTER bulk data entry that is selected by the FMETHOD
Case Control command. The parameters LMODES or LFREQ and HFREQ can be used to
select the number of vibration modes to be used in the flutter analysis and can be varied to
determine the accuracy of convergence. The NVALUE field on the FLUTTER entry can be
used to limit flutter summary output. These generalized (modal) aerodynamic force
coefficient matrices are then interpolated to any additional mach numbers and reduced
frequencies required by the flutter analysis. Matrix interpolation is an automatic feature of the
program. The first six modes of the plates are considered for flutter analysis. The pertinent
output of a flutter solution in NASTRAN comprises of the following: Natural frequencies and
Mode shapes, velocity (v) and frequency (f), artificial structural damping and reduced
frequency for all modes considered for analysis. Results are analyzed to get the flutter
velocity and critical modes leading to flutter. The post processing is carried out using
Msc/Patran. From these plots the flutter frequency and critical flutter velocities are calculated
for zero damping. The output velocity corresponding to zero damping indicates the speed at
which the panel may flutter.

Though NASTRAN requires some initial Mach number as an input data, it produces
critical velocities that do not conform to the input Mach number. For agreement with
analytical solutions, it is necessary to have an input Mach number in conformity with the
critical velocity (and the critical dynamic pressure according to the air density). If the critical
velocity determined by NASTRAN does not match input Mach number, then this input Mach
number needs to updated to this critical velocity. This iterative process is continued by
updating the input Mach number till the output and input Mach numbers agree. Converged
NASTRAN results so obtained can then be compared with those from the analytical
solutions. The iterative method for convergence of Mach number is presented in appendix B.

1.7.4. Supersonic panel flutter analysis with Thermal loads

The field of aerothermoelasticity considers the effects of thermally induced stresses on
structural stiffness and their aeroelastic interaction. The structural stiffness is reduced at
higher temperature. The stiffness matrix has been determined as a function of temperature
using the Non-linear Thermal Analysis (Solution Sequencel53). With the temperature-
dependent stiffness matrix, restarts can be made in the Aerodynamic Flutter Analysis
(Solution Sequence 145) and the variation of flutter speed with temperature is determined.
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The uniform temperature distribution over the simply supported panel (with in-plane edge
constraints) and parabolic temperature over the panel (with out in-plane edge constraints) has
been considered here. The temperature data are entered into TEMP and TEMPD cards.
Although no variation of material properties with temperature is considered here, provision is
made for variations with temperature by including the MATTI1 entry with its associated
TABLEMIi entries using the same properties at both ends of the tabulated temperature range.
The nonlinear parameter entry NLPARM specifies data for the post buckling geometric
nonlinear iteration strategy. The KMETHOD is used for controlling the stiffness updates and
KSTEP used for specify the number of iterations between stiffness updates. The convergence
details and the LOOPID number for the stiffness matrix are saved for the restart. In the restart
it is necessary to add the PARAM, NMLOOP to give the value of the LOOPID for the
temperature of interest. The Case Control Section for the restart must include some
information from the initial run. After the title, subtitle, and echo commands, the initial
temperature must be given again. Assign statement has been used to assign the location (with
directory) of “MASTER” file, which is used in COLDRUN (SOL.153). The NASTRAN
results so obtained can then be compared with those from the analytical solutions.
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Chapter 2

NUMERICAL RESULTS FOR PANELS OF GIVEN CONFIGURATION
WITHOUT THERMAL EFFECT

2.1. Introduction

The supersonic panel flutter analysis of rectangular panels simply supported on all edges is
considered. The panel is subjected to supersonic airflow in arbitrary direction, but restricted
to a plane parallel to the plane of the panel. In this analysis the panel is not subjected to any
thermal effects. The values of critical dynamic pressure that lead to flutter for panels of
various aspect ratios and different flow direction are determined here. Fig 2.1 presents a
schematic view of a hinged panel subjected to supersonic airflow, with flow angle € with
respect to the side a.

— A M
b ,/::3/: ,,,,,,,,,,,,,,,,,, :
‘kY
¥ VX a
Fig 2.1 Panel under flow along the direction making an angle ¢ 8’ with the edge ‘a’ of
the panel.

A numerical study is done by analytical, and in-house finite element code to determine the
supersonic flutter boundary of simply supported aluminium panels of aspect ratios 1,2 and
7.2 (see Table 2.1), without thermal effect for different flow angles.

Table 2.1 Dimensions of aluminium panels used as specimens for study of supersonic
panel flutter.

Specimen | Length | Width | Thickness | Aspect | Discretisation | Discretisation
a(m) b(m) h(m) ratio of panel for of panel for
a/b FEA NASTRAN
A 0.25 0.25 0.00232 1.0 100 (10x10) 100 (10x10)
B 1.0 0.5 0.007 2.0 200(20x10) 450(30x15)
C 0.36 0.05 0.0011 7.2 720 (72x10) 720 (20x10)

Young’s Elasticity, £ = 70x10° N/mz, Poisson’s ratio, u = 0.3, Coefficient of thermal
expansion a = 2.3x107 /°C and Material density ppq = 2764 kg/m’.

2.2. Free Vibration Analysis of a Panel of various aspect ratios (without thermal effects)

The free vibration analysis is done by analytical, in-house finite element method, and finite
element package NASTRAN to determine the natural frequencies of simply supported
aluminium panels of aspect ratios 1, 2 and 7.2 (specimens A, B and C respectively).
CQUAD4 elements have been used in NASTRAN. The results of the analysis for the first
few modes are presented in Tables 2.2-2.4. The discretisation schemes used are presented in
Fig2.2-2.4

National Aerospace Laboratories



13

(a) (b)
Fig 2.2 Finite element model for square panel (a) in-house FEM, (b) NASTRAN

Table 2.2.Natural frequencies of the square panel (specimen A) with simply supported
edges.

Mode (m, n) Natural Frequency (Hz)
Analytical* in-house FEM NASTRAN
Formulation
(1,1) 177.5933 176.66 175.16
2,1) 443.9832 440.37 435.14
3,1 887.9664 880.43 870.35
(1,2) 443.9832 440.37 435.14
(2,2) 710.3731 696.22 677.95
(3,2) 1154.356 1123.9 1089.5
(1,3) 887.9664 880.43 870.35
(2,3) 1154.356 1123.9 1089.5
(3,3) 1509.543 1498.3 1482.11

*Expression for analytical frequency for any panel of aspect ratio (a/b), vibrating in the
(m,n) mode is expressed in equation (2.1)

gz [D[(m) (n) on
" 2 pmath a b .
[N S S A S O U N S A
e e i e L
IZZ}IZZZEZZZ'IIZZZEZZZICZZIIZZZEZZZZI'ZZZEZZZ v
I a 1| . i i
(a) (b)

Fig 2.3 Finite element model for panel of aspect ratio (a/b) = 2 (a) in house FEM, (b)
NASTRAN
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Table 2.3.Natural frequencies of the Rectangular panel of aspect ratio (a/b) =2
(specimen B) with simply supported edges.

Natural Frequency (Hz)
Mode (m, n) Analvtical* in-house FEM NASTRAN
Y Formulation (20x10) (30x15)
(1,1 83.72 83.199 83.22 83.47
2,1) 133.96 132.24 132.03 133.01
3,1 217.68 214.44 213.44 215.55
(1,2) 284.66 28247 282.52 283.44
(2,2) 334.90 326.84 327.53 331.05
(3,2) 418.62 402.66 402.85 410.41
(1,3) 619.56 614.89 613.98 616.06
(2,3) 669.80 651.24 651.45 660.64
(3,3) 753.53 714.96 715.02 735.04
* as mentioned equation (2.1)
A
L et et T e e e e e e e e e e O R I
I'I‘I'I'I:I:I:I:I:I:I'I'I'I'I'I'I'I'I'TTTTTT'I'I'I'I‘I'I'I'I'I:I: b
FECCC T I TITTTITTITTrIrrC OOy
L U
oo o o B . . o
l< >l
| a ]
(a) (b)
Fig 2.4 Finite element model for panel of aspect ratio (a/b) = 7.2 (a) in house FEM, (b)

NASTRAN

Table 2.4 Natural frequencies of the Rectangular panel of aspect ratio (a/b) =7.2 with
simply supported edges.

Natural Frequency (Hz)
Mode (m, n)
. in-house FEM NASTRAN
Analytical .

Formulation (72x10)
(1,1) 1073 1072.2 1061.52
2,1) 1134 1131.0 1090.95
3.,1) 1235 12294 1141.41
(1,2) 4230 4228.2 4045.73
2,2) 4291 4280.8 4127.29
3,2) 4393 4368.8 4179.79
(1,3) 9493 9492.1 8866.82
2,3) 9554 9534.6 9159.17
3,3) 9656 9605.8 9342.30

2.3. Modal Coalescence in Panel Flutter and Critical Dynamic Pressure (without
thermal effects) for flow along one of the edges (say side a, 6=0)

Solution of the characteristic equation (1.35) gives the eigenvalue -y°. In particular, as the
dynamic pressure ¢ increases from zero, two of the free vibration eigenvalues tend to veer
towards each other in such a way that for sufficiently large ¢ (denoted g.,), they coalesce into
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a pair of complex—conjugate eigenvalues. One of these complex—conjugate eigenvalues gives
a positive real part (3 >0) for the parameter y=y+jy, (where -7 is the eigenvalue), indicating
dynamic instability, characterized by indefinite divergence of amplitude with respect to time
in exponential fashion. Upon such coalescence, one of the corresponding mode amplitude
would grow by drawing energy from the flow i.e. the panel would become unstable. The
lowest value of ¢ for which two of the eigenvalues coalesce is the critical value of the
dynamic-pressure (g.,), which leads to flutter.

The results for specimen A (square panel) using the in-house FEM code and analytical
formulation are presented in Fig 2.5. It is observed that the eigenvalues, for modes (1,1) and
(2,1), are purely real and remain so until some higher value of the dynamic pressure, called
q.r1s reached. At q.., the two eigenvalues become equal, beyond ¢, and eigenvalues form a
complex conjugate pair, indicating the coalescence of the two modes. For an air density of p
= 1.225 kg/m’ the in-house finite element method predicts the occurrence of instability at V.,
= 6202.08 m/s and q., =23.56 MN/m’ , while the analytical method predicts instability at V., =
6287.145 m/s and g, =24.2 MN/m’

For analysis using NASTRAN, free vibration analysis is first performed. This is
followed by analysis incorporating acrodynamic matrix as the loading (equation (1.36)), to
determine modal frequencies and aerodynamic damping as functions of the flow velocity.
These are determined from the eigenvalues. From the V-g plots (Fig 2.5(b)), the unstable
mode can be easily identified as the one the crosses the zero-line of the damping g (g=2),
indicating that just beyond a certain critical (flutter) flow velocity V.,, the damping for that
mode becomes positive (from negative), which is an indication of dynamic instability. At the
critical velocity, the system is at the flutter boundary. The results using NASTRAN are in
good agreement with both analytical and in-house FEM formulations. Critical velocity and
critical dynamic pressure for specimen A as predicted by NASTRAN are respectively V., =
6185.00 m/s and g.,=23.43 MN/m’. Results obtained by NASTRAN are in good agreement
with those obtained using the analytical method and the in-house FEM code.

£f

Frequency (rad's)

1000 2000 3000 4000 5000 HOOO TO00 8000 HO00 2000 2800 3000 a%00 4000 4500 BO0O B500 GO0 G500 7000
Velocity (m's) Velocity (m/s)

(a) (b)
Fig 2.5 (a) Velocity V (m/s) Vs Frequency o (rad/s) (b) Velocity Vs Damping for a panel
of aspect ratio (a/b) =1 (specimen A) and air density p=1.225 kg/mj.

Supersonic panel flutter analysis has been done even for simply supported panels of
aspect ratio 2 and 7.2, (i.e. specimen B with air density of p = 1.225 kg/m’ and Specimen C
with air density of p = 0.715 kg/m’), both subjected to flow along edge ‘a’. The critical
parameters (critical dynamic pressure, critical velocity and critical Mach number) of all the
specimens A, B and C for supersonic flow along side a are summarized in Table 2.5.
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Table 2.5 Comparison of analytical and finite element method results with NASTRAN
for panels of aspect ratio 1, 2 and 7.2 (specimens A, B and C respectively) with flow
along edge ‘a’, (6=0).

. . Non dimensional . Critica'l Critical Flow | Critical
Dimensions Criti . | Air Dynamic
. ritical Dynamic . Speed Mach
Specimen | (m) and aspect P density Pressure
. ressure 3 Ve, number
ratio (a/b) 1 (kg/m’) qer (m/s) M
cr (MPa) cr
o %242 *6287.145 | *18.492
A h=0 06232 512 1.225 *#23.6 *#6202.08 **18.24
(a/b)-1 "23.43 "6185.00 "18.19
a=10 0.6 *5796.41 *17.048
b=0.50 510 **5593 **16.45
B h=0.007 1099 S e #5797.50 “17.05
(a/b)=2 )
a=0.36 178 *7053.518 *20.74
b=0.05 1 o **6813.055 *%20.03
¢ h=0.0011 93875 071> TS 036580 | *20.40
(a/b)=17.2 '

Young’s Elasticity, £ = 70x10° N/m?, Poisson’s ratio, 1= 0.3, Coefficient of thermal expansion a = 2.3x107 /°C
and Material density p,... = 2764 kg/m’.

*Results obtained by analytical formulation; **Results obtained by in-house finite element method formulation;
#Results obtained by NASTRAN

2.4. Influence of flow angularity on critical flow parameters

A simply supported rectangular panels with different aspect ratios 1, 2 and 0.5 (specimens A,
B and BB which has same thickness as that of specimen B of aspect ratio 2, but the length
and width are interchanged to get the correlation between them) subjected to airflow in
arbitrary direction is considered. The flow is along the direction making an angle & with
edge ‘a’ of the panel.

(a/b)=0.5 (a/b)=2

Critical dynamic Pressure(Pa)
El
1

PO

o (a/b)=1 T

Fig.2.6 Variation of Critical dynamic pressure ¢. (in N/m?®), with arbitrary flow
direction @ for the specimen panels of various aspect ratios (—--FEM, —Analytical). Air
density assumed is 1.225 kg/m3 at sea level. Specimens A, B and BB are of aspect ratios
1, 2 and 0.5 respectively.

The critical dynamic pressures for various flow angles are determined. For a square
plate, a symmetric variation of the critical dynamic pressure with flow angle is observed. The
critical dynamic pressures g, at 0=0" and 6=30" are same as those at 6=90" and 6=60"
respectively. The maximum critical dynamic pressure occurs for a flow angle 0=45’, i.e. for a
flow equally inclined to both the edges. The results are generated also for panels of aspect
ratios 0.5 and aspect ratios 2, with different flow angles. Table 2.6 presents the results
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obtained for rectangular simply supported panels of these aspect ratios subjected to various
orientations of the flow. These results are given graphically in Fig 2.6. It is clear that for
panels with aspect ratios other than 1, the variation of the dynamic pressure is no more
symmetric with the flow angle. For aspect ratios below 1, the critical dynamic pressure ¢,
falls with the flow angle, while for aspect ratios above 1, it increases with the flow angle.
This implies that the flow along the longer side is most critical. i.e. the critical dynamic
pressure is lowest for this direction.

Table 2.6 Influence of flow angularity on flutter boundary of panels with different
aspect ratios.

3
Analytical Values of Non Dimensional Critical Dynamic Pressure ; _ _ 29,9
a/b DyM,> -1
0=0° 6 =30° 0 =45° 6 =60° 6 =90°
0.5 #3838 #215 *177 *154 *138
382 213 172 151 135
1 #512 #522.08 #525.95 #522.08 #512
#3503 #3516 #3523 “516 #3503
2 #1099.9 #1225 #1409 #1719 #3076.18
1081 #1206 #1388 #1703 3056
Dimensions Air Critical Dynamic Pressure ¢, (MN/mz)
Specimen (m) and aspect | density 9 0 0 0 0
ratio (a/b) kgl 6=0 =30 =45 =60 =90
a=0.25 *24.2 #2520 *25.6 #25.2 #24.2
A b=0.25 1225 | **23.6 *424.7 *425.2 **24.7 *%23.6
h=0.00232 "23.4 4.6 53 4.6 "23.4
(a/b)=1
a=10 *20.6 *25.5 *33.8 *50.4 *161
B b=0.50 1225 | **19.2 #4241 *%3 4 #4498 **167
h=0.007 "19.8 "4.8 "32.2 #49.5 159
(a/b)=2
ab: 0i500 *161 #50.4 #33.8 #25.5 #20.6
BB =1 1,225 #%167 #%49 8 #%3) 4 #4241 #%192
h=10.007 159 %495 %322 4.8 *19.8
(a/b)=0.5

* Analytical results (using non-dimensional critical parameter A, ); **Results obtained by in-house finite
element method formulation; # Results presented in Ref [15]

2.5. Chapter Summary and Observations

Supersonic flutter of simply supported rectangular plates of various aspect ratios, subjected to
supersonic flows in arbitray directions in the plane have been studied. No thermal effects are
considered here. Results from the analytical formulation, the in-house finite element code and
NASTRAN are in good agreement.

The effect of flow angularity on the critical dynamic pressure is investigated here. For
a square plate the critical dynamic pressure is symmetric with respect to the flow along
0=45°, at which the maximum critical dynamic pressure occurs. For other aspect ratios,
critical dynamic pressure values decrease as the flow gets more and more aligned to the
longest direction, with the flow along the longer side is being most critical, i.e. of the lowest
critical dynamic pressure. The high critical Mach numbers predicted by the present analysis
based on piston theory aerodynamics only indicate that the specimen panels under the given
conditions are extremely stiff, despite the fact that such high Mach numbers do not fall in the
regime of piston theory aerodynamics.
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Chapter 3

FLUTTER RESULTS FOR PANELS OF GIVEN CONFIGURATION
WITH THERMAL EFFECT

3.1.Numerical Studies for Supersonic Panel Flutter with Thermal Effect

A numerical study is done by analytical formulation, in-house finite element method
formulation and the FEM software NASTRAN, to determine the supersonic flutter boundary
of rectangular panels, with various cases of thermal effects, which are as follows.
1. Parabolic temperature distribution over the panel (without in-plane edge constraints).
2. Uniform temperature distribution over the panel (with edge loads that arise from in-
plane constraints at the panel edges).
3. Combination of parabolic and uniform temperature distribution over the panel (with in-
plane edge constraints).

The variation of critical parameters (critical dynamic pressure/ critical velocity/ critical Mach
number) are investigated for the above cases with different flow directions for some
specimen aluminium panels of aspect ratios 1, 2 and 7.2 (see Table 3.1).

A
M
e
b g P e
e e
YA = s B
y . LIRS o ,:'-'__ =
Yr .'"-\.'.- ._‘ -. s e - .___.:-'-"-
a Rty et
(a) (b)

Fig 3.1 (a) Panel under flow along the direction making an angle ‘¢’ with the edge ‘a’ of
the panel, (b) Parabolic Temperature Distribution over the Panel.

Table 3.1 Dimensions of aluminium panels used as specimens for study of supersonic
panel flutter.

Specimen Length Width Thickness Aspect Discretisation Discretisation
a(m) b(m) h(m) ratio a/b of panel for of panel for
FEA NASTRAN
A 0.25 0.25 0.00232 1.0 100 (10x10) 100 (10x10)
B 1.0 0.5 0.007 2.0 200(20x10) 450(30x15)
Cc* 0.36 0.05 0.0011 7.2 720 (72x10) 720 (20x10)

For aluminium, Young’s Elasticity, £ = 70x10° N/m’, Poisson’s ratio, i = 0.3, Coefficient of thermal expansion
a=2.3x107 /°C and material density p,.., = 2764 kg/m’.
* Typical wing panel.

3.1.1. Thermal buckling analysis of rectangular panels of aspect ratios 1, 2 and 7.2
(specimens A, B and C), simply supported on all edges with in-plane edge constraints.

The static buckling temperatures for rectangular panels (simply supported with in-plane edge
constraints) of different aspect ratios (specimens A, B and C) have been calculated by
analytical, in-house finite element method, and the finite element package NASTRAN. A
constant thermal profile is used for the analysis. The analytical expression of the buckling
temperature for the rectangular panel [16] is given as
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1 1
l-w)Dr?| — +
(1-u) (az bZJ

ATbuckle = Eah

(3.1)

Buckling analysis is done with stiffness, thermal and inertia matrices, but without the
aerodynamic matrices. In the NASTRAN plate model, the edges of the panels are constrained
from in-plane thermal expansion. For analytical and in-house FEM code, in-plane edge loads
Ny, and N,, are computed from the equation (1.8b) for constant temperature rise A7, (with
AT;=0) over the panel. The eigenvalues (and the natural frequencies) computed for various
uniform temperature profiles fall with temperature rise, till the bucking temperature is
reached at which the natural frequency vanishes. A sample variation of natural frequency
with the constant thermal profile for the specimen A (a/b=1) is shown in Fig 3.2. Good
agreement is observed between analytical and NASTRAN results. Buckling temperature
values for the rectangular panels of aspect ratios 1, 2 and 7.2 (specimens A, B and C)
obtained by the different methods are presented in Table 3.2.

180 T
Analytical
MASTHRAN
160 |

140}
120 |
100

B0

Natural Froquency (Hz)

AT, (°C)
Fig 3.2 Natural Frequency Vs Temperature for aspect ratio (a/b) = 1 (specimen A).

Table 3.2 Buckling temperatures for the rectangular panels of aspect ratio 1, 2 and 7.2
(specimens A, B and C), with in-plane edge constraints.

' Dimensions (m) Buckling temperature (°C)
Specimen aspect ?:SO (alb) Analytical “;fg;‘z‘faiﬁf NASTRAN
A h“: 20.00'02555, Ta%z)i . 4.74 4.7 4.64
B h“:()l.(')%{’ ;2)')5:02 6.74 6.655 6.8
C , 13.83161’51’(;]%2;2 13.58 13.55 13.34

3.2. Effect of Parabolic Temperature Distribution (without in-plane edge constraints)
over simply supported rectangular panels of aspect ratio 1, 2 and 7.2 (specimens A, B
and C)

3.2.1 Thermal stress distribution due to parabolic temperature distribution

The mid-plane stress resultants N,r, N,r and N,r due to parabolic temperature
distribution (given by equation (1.7) of Chapter 1) over a panel with simply supported edges
(without in-plane edge constraints) are defined by the following equation
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2 2 2
12y~ 12y 2
N, —C“EhazATl(a] (Z—l) ( T +b—2j (3.2)
NyTzCaEhazATl[lzx —12—" %j (3.3)
B 5 4x 6x 2x | 4y 6y2 2y
nyT =—-CaFEha Aﬂ(a—4—a—3+—2j(b—4—b—3+b—2 (34)

The variation of normal stress resultants N,r and N,r due to parabolic temperature distribution
over the panel of aspect ratio (a/b =1) is shown in Figs 3.3(a) & 3.3(b). The corresponding
variation of shear stress resultant N,z 1s shown in Fig 3.3(c). Note that these stress resultants
vanish accordingly at the panel boundaries, to conform with the condition that no in-plane
edge loads arise at the panel edges. (If in-plane edge constraints are present then additional
edge loads N,, and N,, will result from thermal effects).

3.2.2 Effect of Parabolic Temperature distribution on flutter boundary (without in-plane edge
constraints) of simply supported rectangular panels with airflow along x-direction (edge a, 6
=0)

For rectangular panels of aspect ratios 1, 2 and 7.2 (specimens A, B and C) on simply
supported edges, the critical parameters are calculated for various values of parabolic
temperature profile amplitude A7] (in degrees centigrade). The thermal effects on the critical
parameters (critical dynamic pressure, critical velocity, critical Mach number) due to the

parabolic temperature distribution over the specimen panels are shown in Figs 3.4, 3.5 and
3.6.

The three regions shown in Fig 3.4 are characterized by the value of eigenvalue (-y°).

2

Region -y Type of Motion
1 Real & positive Steady oscillation, w=y;
) Complex roots +(%-+jy), one
Complex root lead to oscillating,
divergent panel motion, %>0
3 Negative Exponential divergence, >0

and y=0

In region 1, there is no flutter. i.e., the panel oscillation is stable. In region 2, the panel
is dynamically unstable. In region 3, the panel is buckled, i.e., the panel is statically unstable.
In this region, the panel undergoes indefinite exponential increase of displacements, till
structural failure, without any oscillatory motion (divergence).

These three regions are separated by two boundaries. The first is the buckling loop,
which is the locus of points for which eigenvalues vanish i.e. -y’=0. The second is the flutter
boundary, which is the locus of points at which two frequencies coalesce. The point of
tangency of the flutter boundary with the buckling loop represents the lowest value of g,
associated with this panel configuration.

The results obtained from analytical and in-house FEM are in good agreement with
each other. The results obtained from NASTRAN are in good agreement with analytical and
in-house FEM code upto the corresponding static buckling temperature (with parabolic
temperature profile and edges free of in-plane constraints). Beyond this temperature it is
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observed that the critical Mach number values obtained by NASTRAN fall more sharply with
temperature than those obtained by analytical and in-house FEM code. Similar results are
generated also for panels of aspect ratios 2 and 7.2 (specimens B and C). These results are
given graphically in Fig 3.5-3.6.

-Nxt/(alp*E*h*dT1)
2. 2RE8%F S

-Nxtalp*E'h dT1)

- w

’
/
N/

¥

xla
Fig 3.3.(a) Normal stress resultant N , for a square panel subjected to parabolic
Temperature distribution.
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Fig 3.3.(b) Normal stress resultant N, for a square panel subjected to parabolic

temperature distribution.
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Fig 3.3.(c) Shear stress resultant N _. for a square panel subjected to parabolic

temperature distribution.
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Fig 3.4 Variation of Critical Parameters (Critical Dynamic pressure ¢. (Pa), Critical
Velocity V. (m/s) and Critical Mach number M,) due to parabolic temperature
distribution (without in-plane edge constraints) over the simply supported square
aluminium panel (specimen A). Flow along edge a. Air Density assumed is 1.225 kg/m’.
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ratio3a/b=2 (specimen B). Flow along x-direction (edge‘a’). Air density assumed 1.225
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Velocity V. (m/s) and Critical Mach number M,.) due to parabolic temperature
distribution (without in-plane edge constraints) for simply supported panel of aspect
ratio a/b=7.2 (specimen C). Flow along x-direction (edge a). Air density assumed 0.715

kg/m’.
3.2.3. Effect of flow direction on the flutter boundary

The variation of critical parameters with flow direction and thermal conditions for the simply
supported rectangular panels (specimens A, B and C) with the parabolic thermal profile and
edges free of in-plane constraints is investigated by analytical and in-house finite element
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method. The results are presented in Tables 3.3-3.5. The graphical representation of the

variation of critical parameters with flow angle is presented in Figs 3.7-3.9.

Table 3.3.a Variation of Critical Dynamic pressure (for specimen A) with various

parabolic temperature profile and flow angles at air density p,;, = 1.225 kg/m3.

Thermal profile parameter

Critical Dynamic Pressure g, (N/m”)

v AT =0’ =30 =45 =60 =90
%
AT —0C *1223222167928 )5188342.9 |*25567121.5 | *25188342.9 | *2421017.8
y=0, AT,= iyaagy o g |FF2ATA226 | 4325213507 | +¥24744226 | 423559692
ES
0 AT =34.52°C *Lél‘;ﬁls%‘;g 17014836.9 |*17238392.7| *17014836.9 | *16423184.7
y=10, AT,=34. o0 4416352457 | #¥16625T61 | *+16352457 | **15645036
*81631032 |,
83855893 | *8464159.9 | *8385580.3 | *8163103.2
_ — 0 sk
V=23, AT, =86.31°C TATINA3 | wgha73] | *%7823754 | *%7727731 | *+7473143
4089697
B ] 38703137 | *3952387.1 | *3979477.3 | *3952387.1 | *3879313.7
y=40, AT)=133.26°C +%3414272 | *%3492808 | **3522122 | **3492808 | **3414272

Table 3.3.b Variation of Critical velocity (for specimen A) with various parabolic

temperature profile and flow angles at air density p ;- = 1.225 kg/m3.

Thermal profile parameter

Critical Velocity V,,(m/s)

w, AT 6=0’ 6=30" 6=45" 6=60" 6=90"
%6287.145
o AT Fr6200 ¥6412.786 |  *6460.82 | *6412.786 | *6287.145
y=0, AT;= #6185 %6356 46416 *46356 %6202
*5178.162 |
. 527061 | *5305.121 | *5270.61 | *5178.162
y=10,AT/=34.52°C *#159%514 %5167 %5210 *%5167 %5054
*3650.69 | ,
3700.102 | *3717.396 | *3700.102 | *3650.69
_ _ 0 Hk
y=25 AT,;=86.31°C 53493 #3552 #3574 ##355) %3493
2584
} ] %2516.66 254025 |  *2548.94 254025 | *2516.66
y=40, AT;=133.26°C £%)36] %388 %308 %5388 £%)36]

Table 3.3.c Variation of Critical Mach number (for specimen A) with various parabolic

temperature profile and flow angles at air density p,;, =1.225 kg/m3.

Thermal profile parameter

Critical Mach number M.,

v, AT, o= 0=30" 0-45 =60 =90
*
y=0, AT;=0°C e £18.86 | *19.002 “1886 | *18.492
, AT e %1869 *#18.87 418,60 %1824
%1523 .
15.5 %15.6 %155 %1523
— — o skk
=10, AT,=34.52°C iffg;m £%15.19706 | **15.32353 | **15.19706 | **14.86
%1074 .
) 10.88 %10.93 %10.88 %10.74
y=25, AT)=86.31°C **#170627 %%10.45 %4105 510,45 %1027
B - 741 747 %75 %747 %741
y=40, AT/=133.26°C %56 04 %7024 %705 7,003 *56 04

*Results obtained by analytical formulation; **Results obtained by in-house FEM code, * Results obtained by
NASTRAN which predicts steeper fall in critical values with temperature beyond buckling point, as shown in

Fig 3.4.
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Table 3.4.a Variation of Critical Dynamic Pressure (for specimen B) with various
parabolic temperature profiles and flow angles at air density p,;. = 1.225 kg/m’.

Thermal profile Critical Dynamic Pressure g, (N/m®)
parameter
w, AT, 6=0’ =30 =45 6=60" 6=90"
*
0 AT =0°C **2109516670705170 *25543582 | *33777887 *50362275 *160847317.0
V=6 Al 20586741 **24079151 | **32416945 | **49833245 | **167015991.01
*
10 AT =19.25°C **1142989027082946 *18855496 | *25439138 *39443799 *155092730.7
V=G AT #14682125 **17531281 | **24033089 | **38332652 | **151283001.80
*
20, AT\ =38.5°C *1(9)247‘;532 *13419027 | *18465686 *29778784 *149392407.1
y=<th A= #10366560 *%12287633 | **17133782 | **28363665 | **147115152.4

Table 3.4.b Variation of Critical Velocity (for specimen B) with various parabolic

temperature profiles and flow angles at air density p,;, = 1.225 kg/m’.

Thermal profile Critical Velocity V,, (m/s)
parameter
w, AT, o=0" =30 =45 6=60" 6=90"
% k
. Y20 | TORTIS | sqa26141 | 9067752 | *16205.18
—U 1~ %k sk K3k
tomor ) 7275 9020 16513.00
4947401 |
5548377 | *6444.632 | *8024.839 | *15912.66
_ _ o sk
w=10, AT;=19.25°C #4‘;79‘28 #5350 #6264 #7911 *£15716.00
4148516 | .
4680.664 | *5490.725 | *6972.691 | *15617.49
_ — 0 sk
W=20, AT;=38.5°C #4319114 #4479 *%5289 46805 | **15498.00

Table 3.4.c Variation of Critical Mach number (for specimen B) with various parabolic

temperature profiles and flow angles at air density p,;, =1.225 kg/m3 .

Thermal profile Critical Mach number M.,
parameter
w, AT, 6=0" 6=30" 6=45" 6=60" 6=90"
%k
AT 0% 11'106“221 %18.99367 2184159 | *26.66986 |  *47.66
y=0. AT,= s £%1844118 | **2139706 | *%26.52041 | **48.57
1455118 .
1631875 £18.9548 | *23.60247 |  *46.80
_ _ 0 o
y=10, AT/=19.25°C 1#31'23471 £%1573520 | **18.42353 | *%2326765 | **46.22
1220152 .
13.76666 £16.14919 | *2050792 | *45.93
_ — 0 e
y=20, AT/=38.5°C 1#11'§i941 £%13.17353 | *%15.55588 | *%20.01471 | **45.58
*Results obtained by analytical formulation;

**Results obtained by in-house FEM code, * Results obtained by
NASTRAN
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Table 3.5.a Variation of Critical Dynamic Pressure (for specimen C) with various

parabolic temperature profiles and flow angles at air density p,; = 0.715 kg/m3.

Thermal profile parameter

Critical Dynamic pressure g, (N/m”)

v, AT o=0 0=30" =45 =60
*
v, AT =0°C **117675896208646 %23686262.99 | *35426862.34 | *70180191.91
—Y 1— Kk *k kK
179015654 22108692 33091502 65657272
. ¥17448063.03 | *2323707831 | *3476035547 | *63874679.96
y=100, AT,=36.65°C *41 6283768 £%)1694566 |  **30468472 *464430448
AT, =40°C #13839999.03
AT,=140°C #3459999.758
B - %2507478.86 | *3350547.483 | *5021926.04 %9942181.482
y=400, AT/=146.61°C 51882961 £%2520026 £%3787721 57544979

Table 3.5.b Variation of Critical Velocity (for specimen C) with various parabolic
temperature profiles and flow angles at air density p,;, = 0.715 kg/m3 .

Thermal profile parameter

Critical velocity V., (m/s)

v, AT, =0’ =30’ =45 =60’
*
w=0, AT,=0°C 1256%'15319 *8139.74 *9954.71 *14011.004
—Y 1~ kK *3k kK
#6936.6 7864 9621 13552
_ . *6986.112 *8062.18 *9860.62 *13880.07
=100, AT;=36.65°C *%6749 *57790 £%053() 513425
AT, =40°C #6222
AT,=140°C 3111
7 . *2648.38 *3061.4 *3747.98 *5273.55

Table 3.5.c Variation of Critical Mach number (for specimen C) with various parabolic
temperature profiles and flow angles at air density p,;, = 0.715 kg/m3 .

Thermal profile parameter

Critical Mach number M.,

v, ATy 6=0" =30 =45 =60’
%2075 )
23.94 %2928 %4121
_ —no o
y=0, AT=0°C 5.20.04 %3 12041 %528 20706 %30 85882
20.40
. %2055 2371 %29.002 *20.82
y=100, AT;=36.65°C %19 85 £%2291176 %528 02041 %39 48529
AT, =40°C “18.3
AT, =140°C 9.15
B - 779 %9.004 *11.023 1551
y=400, AT,=146.61°C x56 75 %7 808824 %40 573529 %13 51176

*Results obtained by analytical formulation; **Results obtained by in-house FEM code, * Results obtained by

NASTRAN
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with parabolic temperature distribution over simply supported square panel (specimen
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3.3. Effect of Uniform Edge Loads due to edge constraints on thermal expansion on the
flutter boundary of rectangular panels

In-plane edge loading per unit edge length, N, and N,, on the panel can develop from the in-
plane edge constraints to thermal expansion. Panels with immovable hinged supports can
generate such edge loads. The effects of such edge loading on the flutter boundary of panels
with various thermal profiles have been studied.

3.3.1. Effect of Uniform Edge Loading due to edge constraint on thermal expansion with flow
along x-direction (edge a, 0= 0)

Variation of critical parameters (critical dynamic pressure, critical velocity, critical Mach
number) due to the effects of edge loading from in-plane edge constraints on thermal
expansion for rectangular panels is shown in Figs 3.10, 3.11 and 3.12. The flow is restricted
to be along edge a. The results are plotted for different temperatures (A7, ) that generate the

edge loads. It must be noted that in analytical and in-house FEM code results are generated
by taking the edge loads (N, N,, Ny,) as given in equation (1.8). For the NASTRAN model,
only constant temperature profiles are simulated over the panel and all the in-plane degrees of
freedom at the panel edges are constrained.

National Aerospace Laboratories



32

70000000 +

= = = =ATI=0
= =E= «ATI=33.807
= =A= =ATI=67.614

60000000 -

50000000 -

Analytical
l\ = = = =In-house FEA
X 40000000 + ——e—— NASTRAN

12000

= = = “ATI=0
= =m= =ATI=33.807
= =A= =ATI=67.614

Analytical
= = = «Jn-house FEA
——&—— NASTRAN

V. (m/s)

= = = SATI=0
= =E= :ATI=33.807
= =A= =ATI=67.614

Analytical
= = = sln-house FEA
——e——NASTRAN

Mer

0 0
AT,('C)

Fig 3.10 Variation of Critical parameters (Critical Dynamic pressure ¢. (Pa), Critical
Velocity V., (m/s) and Critical Mach number M,) for specimen A with the effects of
edge loading from in-plane edge constraints on thermal expansion. Flow along x-
direction (edge a). Air Density assumed is 1.225 kg/m’.
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Fig 3.11 Variation of Critical parameters for specimen B with the effects of edge loading
from in-plane edge constraints on thermal expansion. Flow along x-direction (edge a).
Air Density assumed is 1.225 kg/m3 . a) Critical velocity b) Critical Mach number.
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Fig 3.12 Variation of Critical parameters for specimen C with the effects of edge loading
from in-plane edge constraints on thermal expansion. Flow along x-direction (edge a).
Air Density assumed is 0.715 kg/m’. a) Critical velocity b) Critical Mach number.

3.3.2. Effect of flow direction on the flutter boundary of panels with various thermal profiles
and in-plane edge constraints

The effect of flow direction on the flutter boundary of panels with various thermal profiles
and in-plane edge constraints are studied. Results for the various specimen panels for two
different flow angles for each of them are presented in Figs 3.13 to 3.15 For a square panel

(specimen A) the results are same for @ =30° and @ = 60", showing symmetry about the
direction of 6 =45° . For rectangular panel, flow along the longer direction is most critical.
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Fig 3.13 Variation of Critical Velocity for specimen A with the effects of edge loading
0
from in-plane edge constraints on thermal expansion for flow angle of a)g =30"& b)

6 = 45" . Air Density assumed is 1.225 kg/m3 .
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Fig 3.14 Variation of Critical Velocity for specimen B with the effects of edge loading

from in-plane edge constraints on thermal expansion for flow angle of 2)0=30"&
b) 0 =45°. Air Density assumed is 1.225 kg/m’.
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Fig 3.15 Variation of Critical Velocity for specimen C with the effects of edge loading
from in-plane edge constraints on thermal expansion for flow angle of a)0 =30"&
b) 6 = 45°. Air Density assumed is 0.715 kg/m’.
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3.4. Variation of Critical boundary (Mach number) with altitude.

Flutter analysis has been carried out at various altitudes with corresponding air density values
for an panel of aspect ratio 7.2 (specimen C, with the dimensions, that forms the typical wing
panel). The air density variation with altitude is presented in Fig 3.16. Due to fall in the air
density with altitude, an increase in the flutter boundary (and therefore its margin of safety) is
expected. The results with parabolic thermal profile (edges free of in-plane constraints) and
with uniform thermal profile (with edges constrained against in-plane expansion) are
presented respectively in Figs 3.17 and 3.18. Flow is taken along the longer edge a.
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™
S
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2
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Fig 3.16 Variation of Air density at different Altitude.
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Fig 3.17 The variation of critical Mach number with altitude for simply supported panel
of aspect ratio 7.2 (specimen C) under parabolic thermal profile (without in-plane
constraints).
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Fig 3.18 The variation of critical Mach number with altitude for panel of aspect ratio
7.2 (specimen C) under uniform temperature. Edges are simply supported with in-plane
constraints.

3.5. Effect on mass loading due to Thermal Protection System (TPS) mass

The panels that form the skin of the vehicle will be subjected to harsh aerodynamic
environment, especially in the supersonic and hypersonic regimes of flight. The skin will be
exposed to high temperatures due to friction with the airflow and also due to solar radiation.
There will be a Thermal Protection System (TPS layer), which protects the metallic skin from
getting overheated. As TPS material, ceramic is the material is used generally, since it can
withstand high temperature gradients. However, it contributes negligible structural stiffness
to the panel. Thus the TPS acts as a non-structural mass.

For the flutter analysis the TPS mass is smeared into the panel surface, which is
exposed to the flow. For analytical calculation the overall density of the panel is calculated
using the equation.

Pma"t + Presh
P overall = : h AR (35)

where p,.; and is & are respectively the material density and the thickness of the aluminium
panel and p;pg and hzps are respectively the material density and thickness of the TPS. For

the wing panel (specimen C of a/b=7.2) the values are P =2800 kg/m’, h=0.0011m, Prps=
300kg/m3, and /7ps =0.015m. The effective density thus given as pyyerar =6891 kg/m3 )

Analysis for specimen C with TPS mass simulated is done for the flow along x-
direction (edge a, 8 = 0). A constant thermal profile with in-plane edge constraints is
assumed. Results are generated by NASTRAN only. The results are presented in Fig.3.19. It
can be observed that the non-structural TPS mass, uniformly distributed over the panels, does
not have any effect on the flutter boundary. However, the natural frequencies and flutter
frequencies are lowered.
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Fig 3.19 (a) Variation of Critical Mach number (b) flutter frequency for specimen C
with effects of edge loading from in-plane edge constraints on thermal expansion for
flow along x-direction (edge a) with and without TPS mass. Air Density assumed is
0.715 kg/m’.

3.6. Chapter Summary and Observations

A numerical study is made to estimate the effects of various thermal profiles and flow
directions on the supersonic flutter boundary of panels with simply supported edges. Three
different panels specimens with various aspect ratios have been used. Parabolic thermal
profiles have been used for edges without in-plane constraints and constant thermal profiles
for edges with in-plane edge constraints. A combined thermal profile case with in-plane edge
constraints has also been studied. Finally, the effects of altitudes and TPS mass have also
been investigated.

This study predicts a sharp fall of the flutter boundary parameters for rectangular
panels with temperature rise. Furthermore, for all the cases, the flow along the longer side is
most critical (with lowest critical dynamic pressure). The non-structural TPS mass,
distributed uniformly, only effects the frequencies, but does not change the flutter boundary.

The results obtained by the analytical method and in-house finite element codes are in
good agreement. Results from the analytical formulation, in-house FEM code are in good
agreement with those from NASTRAN software till the buckling point, beyond which
NASTRAN results indicate a sharper fall of critical values with thermal parameters. Beyond
buckling point, NASTRAN considers the analysis as a post buckling geometrical nonlinear
problem, whereas the analytical and in-house FEM code continues as a linear analysis.

The high critical Mach numbers predicted by the present analysis based on piston
theory aerodynamics only indicate that the specimen panels under the given conditions are
extremely stiff, despite the fact that such high Mach numbers do not fall in the regime of
piston theory aerodynamics.
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Chapter 4
CONCLUSION

4.1 Summary and Observations

The analytical and in-house finite element formulation for supersonic panel flutter analysis of
the simply supported rectangular plates is dealt with. The linearized quasi-steady two-
dimensional aerodynamic theory (piston theory) is used in conjunction with thin-plate theory
to formulate the problem. The panel is subjected to supersonic airflow in arbitrary direction
and is associated with a parabolic (with free edges) and uniform temperature distribution
(with in-plane edge constraints) over the plate.

The analytical solutions for supersonic panel flutter analysis are obtained by solving
the governing differential equation using model superposition method. Piston theory is used
for aerodynamic pressure computations. For the in-house finite element formulation a four
noded Quadrilateral C’ continuity plate bending element with three displacement components
(transverse displacement w and the slopes about x and y-axes) at each node is used.

The results for different flow direction indicate that the critical dynamic pressure
decreases as the flow gets more and more aligned to the longest direction. This implies that
the flow along the longer side is most critical. Furthermore the studies on rectangular panels
with thermal effects predict a sharp fall of the flutter boundary parameters with temperature
rise for various cases of thermal effects, which are as follows.

1. Parabolic temperature distribution over the panel (without in-plane edge
constraints).
2. Uniform temperature distribution over the panel (with edge loads that arise
from in-plane constraints at the panel edges).
3. Combination of parabolic and uniform temperature distribution over the panel
(with in-plane edge constraints).
The variation of critical parameters (critical dynamic pressure/ critical velocity/
critical Mach number) are investigated for the above cases with different flow directions for
some specimen aluminium panels of various aspect ratios.

The results obtained by the analytical method and in-house finite element codes are in
good agreement. Results from the analytical formulation, in-house FEM code are in good
agreement with those from NASTRAN software till the buckling point, beyond which
NASTRAN results indicate a sharper fall of critical values with thermal parameters. Beyond
buckling point, NASTRAN considers the analysis as a post buckling geometrical nonlinear
problem, whereas the analytical and in-house FEM code continues as a linear analysis.

The non-structural TPS mass, distributed uniformly, only affects the frequencies, but
does not change the flutter boundary.

The high critical Mach numbers predicted by the present analysis based on piston
theory aerodynamics only indicate that the specimen panels under the given conditions are
extremely stiff, despite the fact that such high Mach numbers do not fall in the regime of
piston theory aerodynamics.
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4.2 Scope for future work

The present work is limited to only for the rectangular panels with simply supported edges,
with assumed thermal profile. In the actual panels of any supersonic vehicle, in-plane loading
can be induced from arbitrary thermal profiles as well as from elastic constraints at the edges
connecting to stiffness. Furthermore thermally induced bending effects from thermal
gradients across the panel thickness can also be considered for analysis.

Further studies on supersonic flutter analysis including such effects are necessary to
arrive at a more reliable and realistic design of panels.
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APPENDIX A
oN'] [Ton?| [an2] [an?| [on:T] (A1)
o | |Leg] Lo [oc] [o¢ ]
on®] [[en?] [on?] [en?] [an:]] (A2)
on | Lon] Lon] Lon] [on]]
where | V; | and | oN/ | are given as
o on
b _(‘fi + l)(77771 + 1)(2 + §§l +nm; - SZZ - 772)+ (égfz + 1)(77771' + 1)(51 - 2‘5) '
N’ 1 .
Dal T ebles -)les X e 1))
I bn (& +1)n, +1) (97, 1)
ON? 1 _(551' + 1)(77;' + 1)(2 + Sgé:z + 77, _52 _772>+ (é:é:z + 1)(77771 +1)(77i - 277) '
2 el + 17 (e 1)l +1)
b, (2, + 1), = 1)+ (g, + 1)o7, = 1)), +1)& +1)
Gaussian quadrature rule for two-dimensional integration.
11
1= [[p(&n)dédn =% w,w,0(&,.m,)
—1-1 m n
where &, , 7, , Wy and w, are given as
Order Location &, ,7, Weight w,, and w,
1 0 2
2 +0.577350269189626 1
3 +0.774596669241483 0.555555555555556
0 0.888888888888889
4 +0.861136311594053 0.347854845137454
+0.339981043584856 0.652145154862546
+0.906179845938664 0.236926885056189
5 +0.538469310105683 0.478628670499366
0 0.568888888888889
+0.932469514203152 0.171324492379179
6 +0.661209386466265 0.360761573048139
+0.238619186083197 0.467913934572691
The expression for [K°] in equation (1.20), is
e el e 1_
k- Dot [k Jea b+ 2 [k ) (A3)

where [K/], [K:] and [K3] are expressed in equation (A.3a), (A.3b) and (A.3c) respectively
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The aerodynamic load matrices /K*,./ and /K*,,] given in equation (1.26) are

€volx8¥ [ CTvo9xCEL- Evodx9¢€- CvoQxo8%8C" Cvo9%8L" Evodx 81~ CvolsoBx CvolxCEl [ZSET4! €vodx9¢ CvoQo8%8C
o8l 0 oQoBxSL 1= CvoQx.B8C" 0 QB L L™ CvaQoBu L™ 295 CvoB%9S QB SLL o8 SLI CvoQo8%8C 295 CvB%8C
Cvo9xCEl- oQaa®SLT 29x89% CTvol+8L QoL L 2% 091 [ ET4! oQxoBxSL 1~ 29x89%- 24x89%- Cvo9x8L" oQoBx L L™
Evadx9¢- Cva8x8C CTva48L Evox8Y CvolBu Y Tvo9%CE €vox9¢ Cva9x.B48C" Tvo9%8L~ Tvo9%8L~ Evolx81~ CvoQsxox -
Cva8x8C 0 oueoBuel L™ vl Bl 0 oQxoBxSL1- Cva9x.B48C- 29 CvaBx8C QB LL ouoBieLL vl Bu Y 295 CvoB%9S
Cvo9x8L~ QB LL 4% 91 25 EY4! oAxoBxSLI 29x891 Cvadx8L QB L L™ AxC91- 2AxC91- CvodxCEL- oAsaBxSLT-
EvoQx8Y CvoQso®xll CvadxCET- Evodx9€- Cvo9:8%8C Tvod48L- Evalx 8~ CvaQuoBuChm 25 EY4! CvadxCElL Evodx9€ CvalxBx 8T
[ o9 Cvolx 98- Qo SLIT Cvol#o8%8T o4 CvoB48C- oQoBxLL CvolsoBx 0 oQsoBxSLT- oQakoBxSLI- CvoQoBx8C" 0
CTvo9xCEl- oDl SLT- 29x89% Cvo9%8L oo LL™ 4% 91 CvolCEl oQoBxSLI1 29x89%- 29x89- Cvo9x8L" oo LL
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X ((9)so2 ) x (0921/1) = [**¥]
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is given as

The consistent mass matrix [M°] of equation (1.28)

Tvo9%091 B4 9C1 A% 191~ Cvo9x0C1- B8 AxVLT- Tv9%08 B8~ 24661~ Tv9%09- oBaol% 95~ %911~
Bxo4x9C1 TvoBx091 Bx 97~ 8ot 8- Tva®x08 2Bx661- o8 TvBx0C1- BxVLT B0 96- TvoBx09- 911~
A 197~ x99~ LTLI AxPLT 8x661- €19 24661~ xVLT €19 24911 8911 L6l
Cvo9%0C1- B8~ MAx¥LT Tvodx091 Bao4x9C 1~ A« 197 Tv9%09- BaoU%9S %911 CTvo9%08 Baox 8 29x661
o8 Tvo®x08 28661~ B 4x9C 1~ TvoBx091 Bk 97~ 8496 CTvo®x09- 911~ 8ot 8- CTvBx0C1- BxVLT
AxYLT 2Bx661- €19 9«19 x99~ LTLT 24911~ 911 L61 29x661 BxVLT €19
Tv908 o8 24661~ Tvo9%09- 282496 4911~ Tvo9%091 28xo9%9C1- A 197~ Tv.9x0C1- o8- Asx¥LT
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24661~ BxVLT €19 24911 911~ L61 A 19%- 197 LTLT AxPLT 8661 €19
2909~ Bao0x96- 24911 Tv9x08 Baoa 8- 24661 Tv9+0C1- o8 AxPLT Tvo9%091 802 9C1 %197
2Bol% 95~ CTvo®x09- 911 o8 CTvBx0C1- BxVLT 8ot 8- Tva®x08 8661 B:Qx9C1 TvoBx091 191
24911~ 911~ L61 24x661 BxVLT €19 As¥LT 8661 €19 A% 197 Lx 19y LTLI

X 4,7 49)x(0s1€ /D= [

National Aerospace Laboratories



The critical Mach number corresponding to the critical velocity determined by NASTRAN
does not match input Mach number, then this input Mach number needs to be updated to this
critical velocity. This iterative process is continued by updating the input Mach number till
the output and input Mach numbers agree. The converged NASTRAN results so obtained can
then be compared with those from the analytical solutions. The convergence study for a panel

APPENDIX B

Method of Convergence of Critical Mach number

of aspect ratio (a/b) = 1 has been presented in the above table.

Output Critical Mach Mo

25

[N]
o
T

m
T

=]
T

Mach No
— —— 45 degree line

. . .
1o 15 20
Input Mach No

25

Input Mach | Output Mach Input Mach | Output Mach
No. No. No. No.
1.5 4.63 11.0 14.18
2.0 5.70 11.5 14.50
2.5 6.50 12.0 14.78
3.0 7.24 12.5 15.00
3.5 7.85 13.0 15.50
4.0 8.45 13.5 15.80
4.5 9.00 14.0 16.20
5.0 9.50 14.5 16.50
55 9.92 15.0 16.54
6.0 10.51 15.5 16.83
6.5 10.80 16.0 17.20
7.0 11.25 16.5 17.50
7.5 11.69 17.0 17.72
8.0 12.10 17.5 17.86
8.5 12.42 18.0 18.16
9.0 12.87 18.5 18.45
9.5 13.16 19.0 18.75
10.0 13.60 19.5 18.90
10.5 13.90 20.0 19.18
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Abstract:

Panels of re-entry vehicles are subjected to a wide range of flow conditions during ascent and re-entry
phases. The flow can vary from subsonic continuum flow to hypersonic rarefied flow with wide ranging
dynamic pressure and associated aerodynamic heating. One of the main design considerations is the
assurance of safety against panel flutter under the flow conditions characterized by harsh thermal
environment. The objectives of this work are to understand the physical principles behind panel flutter
under supersonic flow and to make an estimate of the lowering of the critical dynamic pressure (flutter
boundary) of the panels due to thermal distributions.

Analytical and Finite element formulation have been developed for supersonic flutter analysis
of rectangular panels subjected various thermal profiles. The piston theory is used for aerodynamic
pressure computations. Panels with simply supported edges (with and without in-plane edge
constraints) have been studied.

The results obtained by NASTRAN for flow along panel edges are in good agreement with
those obtained using the analytical method and the in-house FEM code. From the analysis of the
results for various flow directions it has been observed that the flow along the longer sides of the
panels is most critical. For simply supported panels with no in-plane edge constraints a thermal
gradient can cause a drastic fall in the flutter boundary due to in-plane thermal stresses that effectively
reduce structural stiffness. In-plane edge constraints to thermal expansion further lower the flutter
boundary.

The present study will be useful for the purpose of panel design in re-entry launch vehicles
and supersonic fighter aircrafts.
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