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ABSTRACT 
 

Panels of re-entry vehicles are subjected to a wide range of flow conditions during ascent and 
re-entry phases. The flow can vary from subsonic continuum flow to hypersonic rarefied flow 
with wide ranging dynamic pressure and associated aerodynamic heating. One of the main 
design considerations is the assurance of safety against panel flutter under the flow conditions 
characterized by harsh thermal environment. The objectives of this work are to understand 
the physical principles behind panel flutter under supersonic flow and to make an estimate of 
the lowering of the critical dynamic pressure (flutter boundary) of the panels due to thermal 
distributions.  
 
 Analytical and Finite element formulation have been developed for supersonic flutter 
analysis of rectangular panels subjected various thermal profiles. The piston theory is used 
for aerodynamic pressure computations. Panels with simply supported edges (with and 
without in-plane edge constraints) have been studied. 
 

The results obtained by NASTRAN for flow along panel edges are in good agreement 
with those obtained using the analytical method and the in-house FEM code. From the 
analysis of the results for various flow directions it has been observed that the flow along the 
longer sides of the panels is most critical. For simply supported panels with no in-plane edge 
constraints a thermal gradient can cause a drastic fall in the flutter boundary due to in-plane 
thermal stresses that effectively reduce structural stiffness. In-plane edge constraints to 
thermal expansion further lower the flutter boundary. 

 
The present study will be useful for the purpose of panel design in re-entry launch 

vehicles and supersonic fighter aircrafts.     
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Chapter 1 

ANALYTICAL AND FINITE ELEMENT FORMULATION OF 
SUPERSONIC PANEL FLUTTER UNDER THERMAL 

ENVIRONMENT WITH ARBITRARY FLOW DIRECTION 

1.1 Introduction 

The panels that form the skin of re-entry launch vehicles are subjected to harsh thermal 
environment, especially in the supersonic and hypersonic regimes of flight. Usually a 
Thermal Protection System (TPS layer) is provided to protect the metallic skin from getting 
overheated. Despite this TPS, some temperature rise is anticipated in the metallic skin. The 
objective of present work is to investigate, using analytical ,in-house finite element methods 
and finite element package NASTRAN, the effects of a parabolic thermal profile on the 
flutter boundary of isotropic, simply supported rectangular panels. Piston theory has been 
used for calculating aerodynamic forces under supersonic airflow condition. The PK-method 
is adopted for flutter analysis in NASTRAN. 
 
1.2. Literature review                                                                        

Excellent treatises on the classical theory of aeroelasticity have been presented by Fung [1], 
Bisplinghoff and Ashley [2]. The physics and computational aspects of various kinds of static 
and dynamic aeroelastic problems have been highlighted.  The earliest study of flutter seems 
to have been made by Lanchester [3], Bairstow and Fage [4] in 1916 in connection with the 
anti symmetrical (fuselage torsion-elevator torsion) flutter of a Handleg Page Bomber. Up to 
1934, only a few cases of flutter were recorded. In those days only airplane wings showed 
flutter. Aileron mass unbalance and low torsional stiffness of the wing were responsible for 
most of these accidents. 

The aeroelastic instability of aircraft skin panels has been the subject of a number of 
theoretical investigations. During the second world war of 1939-1945, Germany launched a 
number of V2 missiles. Many of these missiles failed during flight, the cause of which was 
later recognized as supersonic flutter of the missile fins [5]. In his analysis of supersonic 
flutter, Ashley developed a simple mathematical formula, based on a theory called the 
“Piston Theory” to estimate the aerodynamic loads for supersonic flow. In the early part of 
world war, most of the flutter cases were due to insufficient aileron mass balance and most 
tail-surface flutter cases were due to control surface tabs. Towards the latter part of world 
war, airplane speed increased towards the transonic range, and supersonic missiles appeared. 

Early experimental and theoretical studies of the flutter behavior of buckled plates 
were carried out by Fung [6]. The primary concern was with the prediction of stability 
boundaries, although Fung did derive modal equations of motion for finite amplitude motions 
of the plate. Herman and Sidney [7] have compared experimental results with the theoretical 
predictions of panel flutter, and have concluded that the linearized, quasi-steady aerodynamic 
theory is valid only beyond Mach 1.3.   

Stability boundaries for buckled two-dimensional plate were calculated by Hedgepeth 
[8] using an approach similar to Fung. Hedgepeth’s application of the two-dimensional static 
aerodynamic approximation to the panel flutter problem. It greatly simplified the analytical 
complexities and resulted in a differential equation that can be solved exactly for finite 
panels. It has shown that a system of uniform stresses can greatly reduce the flutter speed of 
an unbuckled panel. During 1950’s, several experimental investigations were conducted to 
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verify the existence of panel flutter and to determine some of the effect of such parameters as 
panel length-width ratio, thickness, and differential pressure.  

The effect of buckling on flutter boundaries of three-dimensional plates was 
investigated by Fralich [9]. He used Von Karman large deflection plate equations and 
Ackeret’s expression for the aerodynamic pressure. The equations were transformed into pair 
of nonlinear ordinary differential equation by Galerkin’s method, using the first two modes of 
a simply supported plate as coordinate function. A stability analysis is carried out for each 
buckling load by linearizing these equations about the buckled configuration, and computing 
the eigenvalues in the usual manner. 

 In many problems of panel flutter the most obvious methods of analysis have been to 
apply the Galerkin’s method using the governing equations of the problem. The applicability 
of the Galerkin’s method to the supersonic membrane flutter problem has been studied by 
Ellen [10] and found to give good agreement with exact solutions.  

 Using piston theory and analytical methods, Harry and Walter [11] had reported the 
results of their investigation for the flutter behaviour of simply supported, thermally stressed 
square panel subjected to supersonic airflow along one edge of the panel. Erickson [12] has 
also reported the results of panel flutter investigation for orthotropic panels.  

Using C1 type Rectangular Plate Element for finite element method, Zienkiewicz O. C [13] 
has presented shape function for geometry and displacements. Timoshenko S.P.  [14] has 
presented the elastic equation for plate bending  

 Sander et al [15] have employed the finite element method for supersonic flutter 
analysis using a new conforming quadrilateral (CQ) element.  

 Thermal Structures for aerospace application by Earl A. Thornton [16] gives an 
authoritative source on design and analysis of aerospace structures in thermal environment. 

The analytical formulation and non-dimensional results for supersonic panel flutter 
under thermal environment with flow in arbitrary direction has been presented by Mukherjee 
et al [17, 18]    

The combined documentation (NASTRAN) [19] provides the required information 
for aero-modeling which is required for flutter analysis      

1.3. Analytical Formulation for Supersonic Panel Flutter 
The panel configuration and its discretization are shown in Fig 1.1 The rectangular panel of 
length ‘a’, width ‘b’, and uniform thickness ‘h’ is simply supported on all edges with no in-
plane constraints. It is subjected to a supersonic airflow at Mach number ‘M’ along the 
direction making an angle ‘θ ’ with the edge ‘a’ of the panel. 

 (i)                                                                                   (ii)   
Fig 1.1 (i) Panel under flow along the direction of angle ‘θ’ with the edge ‘a’ and (ii) The 
FEM discretization of the rectangular panel into rectangular elements each of size 2ae  × 

2be. 
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The panel is subjected to a parabolic temperature distribution in the middle plane as in Fig 
1.2, with temperature difference of ΔT1 between the center and the edges. The parabolic 
temperature distribution over the panel is given mathematically by the function  
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where the rise in temperature at the panel center with respect to the edges is given by 
. edgescenter TTT −=Δ 1

 

Fig 1.2 Parabolic temperature distribution over the rectangular panel. 
1.4. Basic equations 
The equation of motion of the panel under a loading per unit area is given as  
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Here w is the transverse displacement (due to dynamic pressure) which is a function of x, y 
and time t, 
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EhD  is flexural rigidity of the panel, E is the Young’s modulus, μ is the 

Poisson’s ratio and h is the thickness of the plate. The net in-plane axial stress resultants 
(assumed positive for compression) per unit width along x- and y-directions of the panel are 
denoted by Nx and Ny respectively, which is the sum of those induced by uniform, normal 
forces at the boundary (Nxo and Nyo) and those resulting from the parabolic temperature 
distribution (NxT and NyT ) while the shear loading is denoted by NxyT. The mass per unit area 
of the panel is ρmath where ρmat is the mass density of the panel material. The unsteady 
aerodynamic pressure load p is obtained by use of linearized, quasi-steady, two-dimensional 
aerodynamics (Piston theory), originally proposed by Ashley. According to this theory, the 
unsteady aerodynamic pressure over the panel is given by  
  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

−
−= θθ sincos

1

2
2 y

w
x
w

M

qp                           (1.3) 

Here q is the dynamic pressure (q=ρair V2/2), V is the flow speed and M is the supersonic 
Mach number.  

The thermally induced in-plane stress resultants, from the parabolic temperature 
profile alone, vanish at the boundaries that do not offer any constraints to in-plane thermal 
expansion. These are determined in terms of stress function φ=φ(x,y),given by [11], 
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The condition that the panel be free from thermally induced in-plane normal and shear 
stresses on the boundaries (due to parabolic temperature alone) requires that the stress 
function satisfy the following boundary conditions.  
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For compatibility of in-plane strains, the stress function must satisfy the following partial 
differential equation. 
                                                                            (1.5) TEh 24 ∇=∇ αφ

where α is the coefficient of thermal expansion. Applying Galerkin’s technique to equation 
(1.5), the expression for the constant C can be obtained as.   
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Thus the in-plane stress resultants from the parabolic thermal profile are given as 
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The net in-plane force intensity terms in equation (1.2) is written as 

xTxox NNN +=  

yTyoy NNN +=               (1.8a) 

xyTxy NN =  
Uniform edge loads from in-plane edge constraints to thermal expansion, develops 

due to the difference of mean temperature  of the panel from the reference temperature 
, at which the edge loading vanishes. One can approximate these edge loads (per unit 

edge length) from edge constraints to thermal expansion as 
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Here the effective panel temperature 2TΔ  for edge loads is defined as  

referencemean TTT −=Δ 2                                      
The mean panel temperature  of the panel with uniform edge temperature  and with 
the parabolic thermal profile T(x,y)  (as in equation (1.1)) is given by 
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Thus one can finally express the effective temperature as  
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4                                    (1.8c)                  

1.5. Solution of the differential equation 
For panels with all edges having simply supported conditions to transverse deflection, the 
solution of equation (1.2) can be represented as follows 
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Here ω  is the circular frequency and t is the time. This function satisfies the following 
kinematic and the kinetic boundaries conditions of the simply supported edges of the panel.  
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After substituting equations (1.3), (1.8) and (1.9) into equation (1.2) and then applying 
Galerkin’s procedure, one obtains the following set of equations for the amplitude 
coefficients amn. 
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The parameter k2 is the non-dimensional frequency. The parameter λ is the non-dimensional 
form of the dynamic pressure, The non-dimensional parameters  and  accounts for any 
additional in-plane loading along the edges of the panel, either from mechanical sources or 
from constraints to in-plane thermal expansion at the edges and the terms L

xoR yoR

rs, Mrs, Prs  and 
Qrs are presented in [17,18]. Here r=1,2…Mx and s=1,2…My where Mx and My are the 
number of modes superposed along x and y directions of the panel respectively in equation 
(1.9). 
 Since the problem is of determining the stability of a given form of solution, it is 
advantageous to associate the eigenvalue with the frequency parameter k2. For flow speeds 
beyond a critical flow velocity Vcr, the system becomes dynamically unstable when  
becomes complex. The imaginary part of 

2k
2k− represents the non-dimensional frequency. 

The real part of 2k− , when positive, indicates that the system motion diverges in amplitude 
in an oscillating fashion. Thus from equation (1.11) it is possible to determine the critical 
values of the non-dimensional dynamic pressure crλ  at which the oscillatory motion of the 
panel changes from a periodic to an unstable diverging amplitude type. This critical condition 
is associated with modal coalescence of two or more modes. Using modal superposition 
method eigenvalues are calculated, and the lowest value of λcr for where two of the    
eigenvalues coalesce is sought. Details of the analysis has been presented in an earlier reports 
[17,18].        

1.6. Finite element formulation for supersonic panel flutter 
For the present work a Quad4 C1 continuity element is selected. At each node in an element 
there are three displacement components, viz. the transverse displacement w and the slopes 
about x and y-axes. The unsteady nodal displacement vector at node i is expressed in the 
following equation using the cubic polynomial shape function matrix [Nb] and the time 
dependent nodal displacement vector {de}. 
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where the [Ni
b] are the C1 shape function matrices for any node in terms natural, local co-

ordinates   
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where (xc, yc) are the global co-ordinates of the center of the element.  For the C1 

displacement interpolation in equation (1.13), the shape function matrix for node i (i=1,2,3,4), 
is given by  
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1.6.1. Strain Energy  
The strain component vector {ε} as given in [13] can be expressed in terms of strain-
displacement matrix [B] in terms of normalized co-ordinates, 
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Here the component [BBi] of the strain-displacement matrix at node i is given as  
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The strain energy expression U can be expressed in terms element bending stiffness matrix 
[Ke] as 
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Here [D] is the plate flexural rigidity matrix, and [Ke] is the element bending stiffness matrix 
given by  
  [ ]                                                                       (1.19) 
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The full form of the element bending stiffness matrix [Ke] is presented in the Appendix A 
equation (A.3). 

1.6.2. Work done due to in-plane stress resultant 
The panel is subjected in-plane thermal stresses in its mid-plane. The work done due to the 
net in-plane stresses as given in [15] is expressed as 
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Here [Nm] is net mid-plane stress intensity matrix, represented as 
                                                       (1.22) [ ] ⎥
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where Nx,, Ny and Nxy, are the net in-plane stress resultant intensity (force per unit length) as 
presented in equation (1.8a). Using the transformation rule for element geometry (equation 
(1.14)), one can express [  in terms of the local normalized coordinates ξ and η. Thus 
from equation (1.21), we finally have the expression for the work done by in-plane forces as 

]mN
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where [ ]e
sK  is the element stiffness matrices associated with net in-plane stress resultants. 

These are expressed as 
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                                            (1.24)  

The matrices [ ]e
sK  is evaluated for every element using four point Gaussion quadrature rule 

of integration along each of the two direction ξ and η (see Appendix A for equation form and 
Gauss points). 

1.6.3. Expression for Aerodynamic loads 
Substituting the expression for p into the virtual work done by aerodynamic forces Wa as 
given in [15] and expressing w in terms of normalized co-ordinates, we obtain the expression 
for virtual work done by aerodynamic forces as 
 { } [ ] [ ]( )( ){ } { } [ ]{ }ee

q
Teee

qy
e
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Te
a dKddKKdpwdxdyW −=+−== ∫ θθ sincos                               (1.25)   

where  

[ ] [ ] [ ] [ ]∫ ∫∫ ∫
− −− −

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

−
=⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡

∂
∂

−
=

1

1

1

1
2

1

1

1

1
2

1

1

2
,1

1

2
ηξ

η
ηξ

ξ
ddbaNN

bM

q
KddbaNN

aM

q
K eeb

Tb

e
e
qy

eeb
Tb

e
e
qx

     

                                         (1.26) 
The full form of the element aerodynamic load matrix [Ke

qx] and [Ke
qy] are presented in the 

Appendix A equation (A.4) and (A.5) respectively. 

1.6.4. Kinetic Energy 
The kinetic energy expression T that defines the consistent mass matrix [Me] is expressed as 
follows 
  { } [ ]{ }eeTeT

matmat dMddydxwwhdv
dt
dwT &&&&

2
1

2
1

2
1 2

==⎥⎦
⎤

⎢⎣
⎡= ∫∫ ρρ               (1.27) 

Here [Me] is the element consistent mass matrix expressed in terms of normalized co-
ordinates and is given by 
                  (1.28) [ ] [ ] [ ] ηξρ ddbaNNhM eebb

mat
e T

∫ ∫=

The full form of the element consistent mass matrix [Me] is presented in the Appendix A 
equation (A.6) 

1.6.5. Equation of Motion  
The element assembly process implies the following summations 
  ∑∑∑∑ ====

e

eg

e

e
a

g
a

e

e
s

g
s

e

eg TTWWWWUU ,,,            (1.29)      

The stiffness matrix [Ke], initial stress matrix [Ke
s] , aerodynamic load matrix [Ke

q]  and 
consistent mass matrix [Me] for every element are generated and assembled in proper order to 
obtain the global stiffness matrix [Kg], initial stress matrix [Kg

s] , aerodynamic load matrix 
[Kg

q] and mass matrix [Mg]. The total strain energy UT
g of the assembly is the sum of global 

strain energy Ug and the global work done due to the in-plane membrane stresses Ws
g , 

  { } [ ] [ ]( ){ }gg
s

gTgg
s

gg dKKdWUU
T

+=+=
2
1                (1.30) 
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The generalized aerodynamic forces  Qi is given by 
  

{ } [ ]{ gg
qg

a
i dK

d
W

Q −=
∂
∂

= }                                                     (1.31) 

 
The Lagrange’s equation expressed in terms of strain energy, kinetic energy and generalized 
aerodynamic forces as.  

  ig
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               (1.32) 

This gives the equation of motion as 

  [ ] [ ] [ ]( ){ } [ ]{ } 0=+++ gggg
q

g
s

g dMdKKK &&                         (1.33) 

A modal superposition method will now be used to solve equation (1.33) using a modal 
superposition of any selected n modes (encapsulated into the modal 
matrix [ ] { } { } { } { }[ n ]φφφφφ ,....,, 321= ). The dynamic displacement and accelerations vectors of 
the plate are given as  

                    (1.34) tgtg eded γγ νφγνφ }]{[}{,}]{[}{ 2== &&

The parameter γ is complex where γ=γr+jγI. Here γI represents the circular frequency ω, and γr 
represents the amplitude increase (γr>0) or amplitude decrease (γr<0) with time. Substituting 
equation (1.34) in equation (1.33) and pre-multiplying by [φ]T, we get  

[ ] [ ] [ ] [ ]( ) }0{}{2 =+++ νγ gen
g

qgen
g

sgen
g

gen
g MKKK  

For non-trivial solutions, we now have the following eigenvalue problem with  as the 
eigenvalue, 

2γ−

[ ] ( )[ ] 02 =−− gen
g

Tgen MK γ                                              (1.35) 

where [ ] [ ] [ ] [ ]qgen
g

sgen
g

gen
g

Tgen KKKK ++= . As stated earlier, the generalised stiffness 

matrix [ ]gen
gK , the generalised in-plane stress intensity matrix [ ]sgen

gK  and the mass matrix 
[ ]gen

gM  are the diagonal matrices due to the orthogonality of the natural modes. The 
aerodynamic matrix [Kqgen] is an anti-symmetric matrix (indicating the non-conservative 
nature of the system). Thus [Kg

Tgen] is non-symmetric due to the contribution of the 
aerodynamic matrix [Kqgen]. This implies that some of the eigenvalues -γ2 are eventually 
complex for a certain range of the dynamic pressure q. In general, the eigenvalue can be 
expressed as a complex number, γ=γr+jγI, (j=√-1) where the real part γr represents the 
amplitude increase (γr>0) or amplitude decrease (γr<0) with time, and the imaginary part γI is 
the circular frequency ω. The lowest value of dynamic pressure for γr is positive (γr>0) for 
any mode is the critical dynamic pressure qcr.  
 
1.7. Supersonic Panel Flutter Analysis with NASTRAN 
The supersonic flutter analysis module in NASTRAN is also employed here to predict the 
flutter boundaries under the assumed thermal profiles. The intension of this exercise is to 
establish the validity of the results simulated by various methods through comparison.  
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1.7.1. Aerodynamic theory 

Piston theory is used for calculating the aerodynamic loads in which the local pressure 
generated by the body’s motion is related to the local normal component of fluid velocity in 
the same way that these quantities are related at the face of a piston moving in a one-
dimensional channel. It is a point function, used to represent aerodynamic pressures on 
surfaces with small-scale geometric characteristics, (i.e., the pressures are only dependent 
upon local conditions). 

1.7.2. P-K Method for Flutter solution 

NASTRAN uses mass and stiffness matrices for dynamic analysis. It pre and post multiplies 
these matrices by eigenvectors to get generalized mass [Mhh] and generalized stiffness [Khh]. 
The user defines the aerodynamic model and the interpolation function between structural 
and aerodynamic grid points. Based on the aerodynamic theory selected, the aerodynamic 
influence coefficient Matrix is calculated. It is pre and post multiplied by mode shape to get 
generalized aerodynamic influence coefficient matrix [Qhh]. This generalized aerodynamic 
coefficient matrix is used in the damping term (for p-k method) of the equation of motion. 
 

The fundamental equation for modal flutter analysis by the p-k method is, 

0})]{
2
1()/.

4
1([ 22 =++−+ hhh

R
hhhh

I
hhhh uQVKpkVQcBpM ρρ            (1.36) 

where the new terms are 
I
hh

RR
hh QQ , = modal aerodynamic damping matrices as functions of Mach number (M) and 

reduced frequency (k) 
p =complex eigen value = ω (γ ± i) 
γ = transient decay rate coefficient (Note:  the structural damping coefficient g = 2γ) 
The matrix terms in above equation are all real. QI

hh and QRhh are respectively, the real and 
imaginary parts of Qhh (m, k).  Circular frequency and the reduced frequency are not 
independent since k =(ωc/ 2 V), and furthermore, that 
k = (c/2V)Im( p )                          (1.37) 
For the PK-method of solution, equation (1.36) is rewritten in the state-space form with twice 

the order. 

[ ]{ } 0=− hupIA                                                                                           (1.38)  

where [A] is the real matrix, 

⎥
⎥
⎦

⎤

⎢
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⎡
−−+−= −− ]/.

4
1[].

2
1[

0
][ 121 kVQcBMQVKM

I
A

hh
I

hhhhhh
R

hhhh ρρ
       (1.39) 

and {ūh} now includes both modal displacements and velocities. The eigen values of the real 
matrix [A] are either real or complex conjugate pairs.  
 

In PK-method, the eignevalues P are first extracted. Convergence for each mode is 
achieved by feeding the imaginary part of P (frequency ω) as non dimensional frequency k 
for updating the aerodynamic matrix, till input k equals output k (from P). 
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If there are multiple densities and mach numbers, the first Mach number and density 
are printed first, followed by the (optional) second Mach number and second density and 
finishing with the final Mach number and final density. From the V-g plots (Fig 2.5(b)), the 
unstable mode can be easily identified as the one that crosses the zero-line of the damping g 
(g=2γr), indicating that just beyond a certain critical (flutter) flow velocity Vcr, the damping 
for that mode becomes positive (from negative), which is an indication of dynamic 
instability. At the critical velocity, the system is at the flutter boundary. 

1.7.3. Supersonic flutter analysis of panels 

The panel flutter analysis has been carried out by the PK method. The unsteady air-loads in 
the supersonic range were calculated using Piston theory for a set of ‘n’ normal modes in the 
generalized coordinates. The CAERO5 bulk data entry specifies the strips width in NSPAN. 
Each CAERO5 entries specify one PAERO5, which provides the mach numbers and angle of 
attack values on AEFACT. AERO entry specifies chord length and air density. The 
MKAERO1 and MKAERO2 bulk data entries allow the selection of parameters for the 
explicit calculations of the aerodynamic matrices. Flutter analysis is performed based on the 
parameters specified on the FLUTTER bulk data entry that is selected by the FMETHOD 
Case Control command. The parameters LMODES or LFREQ and HFREQ can be used to 
select the number of vibration modes to be used in the flutter analysis and can be varied to 
determine the accuracy of convergence. The NVALUE field on the FLUTTER entry can be 
used to limit flutter summary output. These generalized (modal) aerodynamic force 
coefficient matrices are then interpolated to any additional mach numbers and reduced 
frequencies required by the flutter analysis. Matrix interpolation is an automatic feature of the 
program. The first six modes of the plates are considered for flutter analysis. The pertinent 
output of a flutter solution in NASTRAN comprises of the following: Natural frequencies and 
Mode shapes, velocity (v) and frequency (f), artificial structural damping and reduced 
frequency for all modes considered for analysis. Results are analyzed to get the flutter 
velocity and critical modes leading to flutter. The post processing is carried out using 
Msc/Patran. From these plots the flutter frequency and critical flutter velocities are calculated 
for zero damping. The output velocity corresponding to zero damping indicates the speed at 
which the panel may flutter.  
 

Though NASTRAN requires some initial Mach number as an input data, it produces 
critical velocities that do not conform to the input Mach number. For agreement with 
analytical solutions, it is necessary to have an input Mach number in conformity with the 
critical velocity (and the critical dynamic pressure according to the air density).  If the critical 
velocity determined by NASTRAN does not match input Mach number, then this input Mach 
number needs to updated to this critical velocity. This iterative process is continued by 
updating the input Mach number till the output and input Mach numbers agree.  Converged 
NASTRAN results so obtained can then be compared with those from the analytical 
solutions. The iterative method for convergence of Mach number is presented in appendix B.  

 
1.7.4. Supersonic panel flutter analysis with Thermal loads  

The field of aerothermoelasticity considers the effects of thermally induced stresses on 
structural stiffness and their aeroelastic interaction. The structural stiffness is reduced at 
higher temperature. The stiffness matrix has been determined as a function of temperature 
using the Non-linear Thermal Analysis (Solution Sequence153). With the temperature-
dependent stiffness matrix, restarts can be made in the Aerodynamic Flutter Analysis 
(Solution Sequence 145) and the variation of flutter speed with temperature is determined. 
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The uniform temperature distribution over the simply supported panel (with in-plane edge 
constraints) and parabolic temperature over the panel (with out in-plane edge constraints) has 
been considered here. The temperature data are entered into TEMP and TEMPD cards. 
Although no variation of material properties with temperature is considered here, provision is 
made for variations with temperature by including the MATT1 entry with its associated 
TABLEMi entries using the same properties at both ends of the tabulated temperature range. 
The nonlinear parameter entry NLPARM specifies data for the post buckling geometric 
nonlinear iteration strategy. The KMETHOD is used for controlling the stiffness updates and 
KSTEP used for specify the number of iterations between stiffness updates. The convergence 
details and the LOOPID number for the stiffness matrix are saved for the restart. In the restart 
it is necessary to add the PARAM, NMLOOP to give the value of the LOOPID for the 
temperature of interest. The Case Control Section for the restart must include some 
information from the initial run. After the title, subtitle, and echo commands, the initial 
temperature must be given again. Assign statement has been used to assign the location (with 
directory) of “MASTER” file, which is used in COLDRUN (SOL.153). The NASTRAN 
results so obtained can then be compared with those from the analytical solutions. 
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Chapter 2 

NUMERICAL RESULTS FOR PANELS OF GIVEN CONFIGURATION 
WITHOUT THERMAL EFFECT  

2.1. Introduction 
The supersonic panel flutter analysis of rectangular panels simply supported on all edges is 
considered. The panel is subjected to supersonic airflow in arbitrary direction, but restricted 
to a plane parallel to the plane of the panel. In this analysis the panel is not subjected to any 
thermal effects. The values of critical dynamic pressure that lead to flutter for panels of 
various aspect ratios and different flow direction are determined here. Fig 2.1 presents a 
schematic view of a hinged panel subjected to supersonic airflow, with flow angle θ with 
respect to the side a.   
 

Y 

X 

 

 

 

 

Fig 2.1 Panel under flow along the direction making an angle ‘θ ’ with the edge ‘a’ of 
the panel. 

A numerical study is done by analytical, and in-house finite element code to determine the 
supersonic flutter boundary of simply supported aluminium panels of aspect ratios 1,2 and 
7.2 (see Table 2.1), without thermal effect for different flow angles. 

Table 2.1 Dimensions of aluminium panels used as specimens for study of supersonic 
panel flutter. 

Specimen Length 
a(m) 

Width 
b(m) 

Thickness 
h(m) 

Aspect 
ratio 
a/b 

Discretisation  
of panel for 
FEA 

Discretisation 
of panel for 
NASTRAN 

A 0.25 0.25 0.00232 1.0 100 (10x10) 100 (10x10)
B 1.0 0.5 0.007 2.0 200(20x10) 450(30x15)
C 0.36 0.05 0.0011 7.2 720 (72x10) 720 (20x10)

Young’s Elasticity, E = 70x109 N/m2, Poisson’s ratio, μ = 0.3, Coefficient of thermal 
expansion α = 2.3x10-5 /oC and Material density ρmat = 2764 kg/m3.   

2.2. Free Vibration Analysis of a Panel of various aspect ratios (without thermal effects)   

The free vibration analysis is done by analytical, in-house finite element method, and finite 
element package NASTRAN to determine the natural frequencies of simply supported 
aluminium panels of aspect ratios 1, 2 and 7.2 (specimens A, B and C respectively). 
CQUAD4 elements have been used in NASTRAN. The results of the analysis for the first 
few modes are presented in Tables 2.2-2.4. The discretisation schemes used are presented in 
Fig 2.2-2.4  
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                       a 

b

                                (a)                    (b) 
Fig 2.2 Finite element model for square panel (a) in-house FEM, (b) NASTRAN 

Table 2.2.Natural frequencies of the square panel (specimen A) with simply supported 
edges. 

Natural Frequency (Hz) Mode (m, n) 
 Analytical* in-house FEM 

Formulation NASTRAN 

(1,1) 177.5933 176.66 175.16 

(2,1) 443.9832 440.37 435.14 

(3,1) 887.9664 880.43 870.35 

(1,2) 443.9832 440.37 435.14 

(2,2) 710.3731 696.22 677.95 

(3,2) 1154.356 1123.9 1089.5 

(1,3) 887.9664 880.43 870.35 

(2,3) 1154.356 1123.9 1089.5 

(3,3) 1509.543 1498.3 1482.11 

*Expression for analytical frequency for any panel of aspect ratio (a/b), vibrating in the 
(m,n) mode is expressed in equation (2.1) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

22

2 b
n

a
m

h
Df
mat

mn ρ
π

                                          (2.1)                                                

(a)                                                                (b) 
a 

b 

Fig 2.3 Finite element model for panel of aspect ratio (a/b) = 2 (a) in house FEM, (b) 
NASTRAN 
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Table 2.3.Natural frequencies of the Rectangular panel of aspect ratio (a/b) =2 
(specimen B) with simply supported edges. 

Natural Frequency (Hz) 
NASTRAN Mode (m, n) Analytical* in-house FEM 

Formulation (20x10) (30x15) 
(1,1) 83.72 83.199 83.22 83.47 
(2,1) 133.96 132.24 132.03 133.01 
(3,1) 217.68 214.44 213.44 215.55 
(1,2) 284.66 282.47 282.52 283.44 
(2,2) 334.90 326.84 327.53 331.05 
(3,2) 418.62 402.66 402.85 410.41 
(1,3) 619.56 614.89 613.98 616.06 
(2,3) 669.80 651.24 651.45 660.64 
(3,3) 753.53 714.96 715.02 735.04 

* as mentioned equation (2.1) 
                           
 
 
 
 
 
                                     
 

)                                                                (b) 
g 2.4 t model for panel of aspect ratio (a/b) = 7.2 (a) in house FEM, (b) 
ASTRAN 

able 2.4 Natural frequencies of the Rectangular panel of aspect ratio (a/b) =7.2 with 
mply supported edges. 

Natural Frequency (Hz) 

a

b

                                   (a
i  Finite elemenF

N

T
si

Mode (m, n) 
 Analytical in-house FEM NASTRAN 

(72x10) Formulation 
(1,1) 1073 1072.2 1061.52 
(2,1) 1134 1131.0 1090.95 
(3,1) 1235 1229.4 1141.41 
(1,2) 4230 4045.73 4228.2 
(2,2) 4291 4127.29 4280.8 
(3,2) 4393 4179.79 4368.8 
(1 ) ,3 9493 9492.1 8866.82 
(2,3) 9554 9534.6 9159.17 
(3,3) 9656 9605.8 9342.30 

2.3. Modal Coa nce in Panel r and Critical Dynamic Pressure (without 
thermal effects) for flow along on he edges (sa a, θ=0) 
Solution of the acteristic equa 1.35) gives envalue -γ rticular, as the 
dynamic pressure , two of the
towards each other in such a way that for sufficiently large q (denoted y coalesce into 

lesce Flutte
e of t y side 

 char
q

tion (  the eig 2. In pa
 increases from zero  free vibration eigenvalues tend to veer 

q ), thecr
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a pair of complex–conjugate eigenvalues. One of these complex–conjugate eigenvalues gives 
a positive real part (γ  >0) for the parameter γ=γ +jγ , (where -γ2 is the eigenvalue), indicating 

to time 
onding mode amplitude 

 analytical method predicts instability at cr

e), which is an indication of dynamic instability. At the 
critical

n C 

 the 
specim

r r I
dynamic instability, characterized by indefinite divergence of amplitude with respect 
in exponential fashion. Upon such coalescence, one of the corresp
would grow by drawing energy from the flow i.e. the panel would become unstable. The 
lowest value of q for which two of the eigenvalues coalesce is the critical value of the 
dynamic-pressure (qcr), which leads to flutter. 
          The results for specimen A (square panel) using the in-house FEM code and analytical 
formulation are presented in Fig 2.5. It is observed that the eigenvalues, for modes (1,1) and 
(2,1), are purely real and remain so until some higher value of the dynamic pressure, called 
qcr is reached. At qcr, the two eigenvalues become equal, beyond qcr, and eigenvalues form a 
complex conjugate pair, indicating the coalescence of the two modes. For an air density of ρ 
= 1.225 kg/m3 the in-house finite element method predicts the occurrence of instability at Vcr 
= 6202.08 m/s and qcr =23.56MN/m2, while the V  = 

26287.145 m/s and   qcr  =24.2 MN/m
For analysis using NASTRAN, free vibration analysis is first performed. This is 

followed by analysis incorporating aerodynamic matrix as the loading (equation (1.36)), to 
determine modal frequencies and aerodynamic damping as functions of the flow velocity. 
These are determined from the eigenvalues. From the V-g plots (Fig 2.5(b)), the unstable 
mode can be easily identified as the one the crosses the zero-line of the damping g (g=2γr), 
indicating that just beyond a certain critical (flutter) flow velocity Vcr, the damping for that 
mode becomes positive (from negativ

 velocity, the system is at the flutter boundary. The results using NASTRAN are in 
good agreement with both analytical and in-house FEM formulations. Critical velocity and 
critical dynamic pressure for specimen A as predicted by NASTRAN are respectively Vcr = 
6185.00 m/s and qcr =23.43 MN/m2.  Results obtained by NASTRAN are in good agreement 
with those obtained using the analytical method and the in-house FEM code. 

15

                       (a)                                                                    (b)                               
Fig 2.5  (a) Velocity V (m/s) Vs Frequency ω (rad/s)  (b) Velocity Vs Damping for a panel 
of aspect ratio (a/b) =1 (specimen A) and air density ρ = 1.225 kg/m3. 

 Supersonic panel flutter analysis has been done even for simply supported panels of 
aspect ratio 2 and 7.2, (i.e. specimen B with air density of ρ = 1.225 kg/m3 and Specime
with air density of ρ = 0.715 kg/m3), both subjected to flow along edge ‘a’. The critical 
parameters (critical dynamic pressure, critical velocity and critical Mach number) of all

ens A, B and C for supersonic flow along side a are summarized in Table 2.5. 
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Table 2.5 Comparison of analytical and finite element method results with NASTRAN 
for panels of aspect ratio 1, 2 and 7.2 (specimens A, B and C respectively) with flow 
along edge ‘a’, (θ=0).  

Specimen 
Dimensions 

 (m) and aspect 
ratio (a/b) 

Non dimensional 
Critical Dynamic 

Pressure 
λcr

Air 
density 
(kg/m3) 

Critical 
Dynamic 
Pressure 

qcr  
(MPa) 

Critical Flow 
Speed 

Vcr   
(m/s) 

Critical 
Mach 

number 
Mcr

A b = 0.25  
h = 0.00232 

(a/b)=1 

512 1.225 
*24.2 

**23.6 

a = 0.25  

#23.43 

*6287.145 
**6202.08 

#6185.00 

*18.492 
**18.24 

#18.19 

B  b = 0.50 25 

*5796.41 *17.048 a = 1.0 

h = 0.007 
(a/b)=2 

1099 1.2
*20.6 

**19.2 
#20.6 

**5593 
#5797.50 

**16.45 
#17.05 

C b = 0.05  
h 9387.5 0.715 

*7 8 
**6 5 

#
**

#

a = 0.36  

 = 0.0011 
(a/b)=7.2 

*17.8 
**16.6 

#17.2 

053.51
813.05

6936.589 

* 74 20.
20.03 

20.40 

Young’ lasticity N/m2, Poisson’s ratio, μ = effic erma α = C 
and Material density 64 kg/m3.   
*Results obtained by al formulation; **Results obtained by in- finite e n; 
#Results obtained by NASTRAN 

2.4. Influence of gularity on critical flow paramet
A simply supported rectangular panels with different aspect ratios 1, pe , 
B and BB which has same thickness as that of en spect ut t th 
and width are ed to get the correlation betwee em) subjected to airflow in 

s E , E = 70x109 0.3, Co ient of th l   expansion 2 -5 .3x10 /o

ρmat = 27
 analytic house lement method formulatio

 flow an ers 
2 and 0.5 (s cimens A

specim B a of 
n th

 ratio 2, b he leng
interchang

arbitrary direction is considered. The flow is along the direction making an angle θ  with 
edge ‘a’ of the panel. 
 
 

ig.2.6 Variation o ith arbitrary flow 
irection θ  for the specimen panels of various aspect ratios (---FEM,    Analytical).  Air 
ensity assumed is 1.225 kg/m3 at sea level. Specimens A, B and BB are of aspect ratios 
, 2 and 0.5 respectively. 

The critical dynamic pressures for various flow angles are determined. For a square 
late, a symmetric variation of the critical dynamic pressure with flow angle is observed. The 
ritical dynamic pressures qcr at θ=00 and θ=300 are same as those at θ=900 and θ=600 
spectively. The maximum critical dynamic pressure occurs for a flow angle θ=450, i.e. for a 
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(a/b)=0.5 (a/b)=2 

(a/b)=1  
 
 
F f Critical dynamic pressure qcr (in N/m2), w
d
d
1

p
c
re
flow equally inclined to both the edges. The results are generated also for panels of aspect 
ratios 0.5 and aspect ratios 2, with different flow angles. Table 2.6 presents the results 
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obtained for rectangular simply supported panels of these aspect ratios subjected to various 
orientations of the flow. These results are given graphically in Fig 2.6. It is clear that for 
panels with aspect ratios other than 1, the variation of the dynamic pressure is no more 
symmetric with the flow angle. For aspect ratios below 1, the critical dynamic pressure qcr 
falls with the flow angle, while for aspect ratios above 1, it increases with the flow angle. 
This implies that the flow along the longer side is most critical. i.e. the critical dynamic 
pressure is lowest for this direction.   

Table 2.6 Influence of flow angularity on flutter boundary of panels with different 
aspect ratios.  

Analytical Values of Non Dimensional Critical Dynamic Pressure  
1

2
2

3

−
=

cr

cr
cr

MD

aqλ  
a/b 

o0=θ  o30=θ  o45=θ  o60=θ  o90=θ  
0.5 *383.8 

#382 
*215 
#213 

*177 *154 *138 
#172 #151 #135 

1 *512 
#503 

*522.08 
#516 

*525.95 
#523 

*522.08 
#516 

*512 
#503 

2 *1099.9 *1225 *1409 *1719 *3076.18 
#3056 #1081 #1206 #1388 #1703 

 
Critical Dynamic Pressure qcr (MN/m2) 

Specimen 
Dimensions 

(m) and aspect 
 (a/b) 

Air 
densit

3) θ=00 θ=300 4 0 θ=600 =900
ratio

y
(kg/m θ= 5 θ

A 

a = 0.25 
 0.25 
.00232 

1 

*24.2
**2

#23.

*25.2 
**24.7 

#24.6 

5.6 
.2 

5.3 

*25.2 
**24.7

#24.6 

*24.2 
**23.6 

#23.4 
b =

h = 0
(a/b)=

1.225 
 

3.6 
4 

*2
**25

#2
 

B 

1.0 
 0.50 

h = 0.007 1.225 
*20.

**19.2
#19.8 

*25.5 
**24.1 

#24.8 

8 
.4 

#32.2 

*50.
**49.8 

#49.5 

161 
**167 

#159 

a =
b =

 6 
 

*33.
**32

4 *

(a/b)=2 

BB 
*

** *  *  *  *  
a = 0.50 
b = 1.0 

h = 0.007 
(a/b)=0.5 

1.225 
161 
167 

#159 

*50.4 
*49.8

#49.5 

*33.8 
*32.4

#32.2 

*25.5 
*24.1

#24.8 

*20.6 
*19.2

#19.8 

*Analy al results ensional critical parameter Resul ned by se fin
element method form  Results presented in Ref [15] 

2.5. C pter Sum nd O atio
Supersonic flutter of simply supported rec lar p f var spect s, subjected to 
supersonic flows in arbitray directions in the plane have been studied. No thermal effects are 
considered here. Results from th lyti mula e in  fin ent code and 
NASTRAN are in good agreement.  

e. For 
m

ic pressure occurs. For other aspect ratios, 
s the flow gets more and more aligned to the 

 the fact that such high Mach numbers do not fall in the 
regime of piston theory aerodynamics.  

tic (using non-dim λcr ); ** ts obtai  in-hou ite 
ulation; #

ha mary a bserv ns 
tangu lates o ious a  ratio

e ana cal for tion, th -house ite elem

            The effect of flow angularity on the critical dynamic pressure is investigated her
a square plate the critical dynamic pressure is sy metric with respect to the flow along 

0θ=45 , at which the maximum critical dynam
critical dynamic pressure values decrease a
longest direction, with the flow along the longer side is being most critical, i.e. of the lowest 
critical dynamic pressure. The high critical Mach numbers predicted by the present analysis 
based on piston theory aerodynamics only indicate that the specimen panels under the given 
conditions are extremely stiff, despite
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Chapter 3 

FLUTTER RESULTS FOR PANELS OF GIVEN CONFIGURATION 
WITH THERMAL EFFECT 

3.1.Numerical Studies for Supersonic Panel Flutter with Thermal Effect 
A numerical study is done by analytical formulation, in-house finite element method 
formulation and the FEM software NASTRAN, to determine the supersonic flutter boundary 
of rectangular panels, with various cases of thermal effects, which are as follows. 

lic temperature distribution over the panel (without in-plane edge constraints). 
m temperature distribution over the panel (with edge loads that arise from in-

-
plane edge constraints). 

y/ critical Mach 

                       

1. Parabo
2. Unifor
plane constraints at the panel edges). 
3. Combination of parabolic and uniform temperature distribution over the panel (with in

The variation of critical parameters (critical dynamic pressure/ critical velocit
number) are investigated for the above cases with different flow directions for some 
specimen aluminium panels of aspect ratios 1, 2 and 7.2 (see Table 3.1). 

      
                                 (a)                                                              (b) 
Fig 3.1 (a) Panel under flow along the direction making an angle ‘θ ’ with the edge ‘a’ of 
the panel, (b) Parabolic Temperature Distribution over the Panel. 

Table 3.1 Dimensions of aluminium panels used as specimens for study of supersonic 
panel flutter. 

Specimen Length 
a(m) 

Width 
b(m) 

Thickness 
h(m) 

Aspect 
ratio a/b 

Discretisation  
of panel for 
FEA 

Discretisation  
of panel for 
NASTRAN 

A 0.25 0.25 0.00232 1.0 100 (10x10) 100 (10x10) 
B 1.0 0.5 0.007 2.0 200(20x10) 450(30x15) 
C* 0.36 0.05 0.0011 7.2 720 (72x10) 720 (20x10)  

For aluminium, Young’s Elasticity, E = 70x109 N/m2, Poisson’s ratio, μ = 0.3, Coeff
α = 2.3x10-5 /oC and material density ρ  = 2764 kg/m3.   

icient of thermal expansion 

l buckling analysis of rectangular panels of aspect ratios 1, 2 and 7.2 
(specimens A, B and C), simply supported on all ith  co

The static buckling temperatures for rectangular panels (sim upported w e edge 
co raints) of erent ct ratios (specim A, B a e be ed by 
analytical, in-house finite element d, an e finite ckag N. A 
constant thermal profile is used for the analysis. The analytical expression of the buckling 

mat
* Typical wing panel. 

3.1.1. Therma
 edges w in-plane edge nstraints.  

ply s ith in-plan
nst  diff aspe ens nd C) hav en calculat

 metho d th element pa e NASTRA

temperature for the rectangular panel [16] is given as 

X

Y 

M
θ b 

a 
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hE

Tbuckle α
=Δ                                                (3.1) 

Buckling analysis is done with stiffness, thermal and inertia matrices, but without the 
aerodynamic matrices. In the NASTRAN plate model, the edges of the panels are constrained 
from in-plane thermal expansion. For analytical and in-house FEM code, in-plane edge loads 

ba
Dπμ ⎟

⎠
⎞

⎜
⎝
⎛ +− 22

2 11)1(

Nxo and Nyo are computed from the equation (1.8b) for constant temperature rise ΔT2 (with 
ΔT1=0) over the panel. The eigenvalues (and the natural frequencies) computed for various 

profiles fall with temperature  is 
natural frequency vanishes. A cy 

 (a/b) = 1 (specimen A). 

able 3.2 Buckling temperatures for the rectangular panels of aspect ratio 1, 2 and 7.2 
ith in-plane edge constraints. 

Buckling temperature (oC) 

uniform temperature rise, till the bucking temperature
reached at which the sample variation of natural frequen
with the constant thermal profile for the specimen A (a/b=1) is shown in Fig 3.2. Good 
agreement is observed between analytical and NASTRAN results. Buckling temperature 
values for the rectangular panels of aspect ratios 1, 2 and 7.2 (specimens A, B and C) 
obtained by the different methods are presented in Table 3.2.  

 
 

 

 

 

 

 

 
∆T2 (oC) 

Fig 3.2 Natural Frequency Vs Temperature for aspect ratio

T
(specimens A, B and C), w

Specimen 
Dimensions (m) 

and  
aspect ratio (a/b) Analytical in-house FEM 

Formulation NASTRAN 

A a = 0.25, b = 0.25 
h = 0.00232, (a/b)=1 4.74 4.7 4.64 

B a = 1.0, b = 0.50 
h = 0.007, (a/b)=2 6.74 6.655 6.8 

C a = 0.36, b = 0.05 13.58 h = 0.0011, (a/b)=7.2 13.55 13.34 

3.2. Effect of Parabolic Temperature Distribut ut ge ts) 
over simply supported rectangular panels of as  1, sp , B 
and C) 

3.2.1 Therm tress distribut bolic tem ure distr  

 The mid-plane stres , NyT and NxyT due to parabolic temperature 
distribution (given by equation (1.7) of Chapter 1) ov anel wi ply supported edges 
(without in-plane edge constraints) are defined by the following equation 

ion (witho
pect ratio

 in-plane ed
2 and 7.2 (

 constrain
ecimens A

al s ion due to para perat ibution

s resultants NxT
er a p th sim
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3

23

2

4

3

1
2 264264

b
y

b
y

b
y

a
x

a
x

a
xTEhaCN xyT α    (3.4) 

The variation of normal stress resultants NxT and NyT due to
over the panel of aspect ratio (a/b =1) is shown in Figs 3.3(a) & 3.3(b). The corresponding 
variation of shear stress resultant NxyT is shown in Fig 3.3(c). Note that these stress resultants 

anish accordingly at the panel boundaries, to conform
edge loads arise at the panel edges. (If in-plane edge constraints are present then additional 

ds Nxo and Nyo will result from thermal effects). 

3.2.2 Effect of Parabolic Temperature distribution on flutter boundary (without in-plane edge 

, critical Mach number) due to the 

ree regions shown in Fig 3.4 are characterized by the value of eigenvalue (-γ ). 

 parabolic temperature distribution 

v  with the condition that no in-plane 

edge loa

constraints) of simply supported rectangular panels with airflow along x-direction (edge a, θ 
= 0) 

For rectangular panels of aspect ratios 1, 2 and 7.2 (specimens A, B and C) on simply 
supported edges, the critical parameters are calculated for various values of parabolic 
temperature profile amplitude 1TΔ  (in degrees centigrade). The thermal effects on the critical 
parameters (critical dynamic pressure, critical velocity
parabolic temperature distribution over the specimen panels are shown in Figs 3.4, 3.5 and 
3.6. 

The th 2

Region -γ2 Type of Motion 
1 Real & positive Steady oscillation, ω=γI

2 
 Complex 

Complex roots ±(γr+jγI), one 
root lead to oscillating, 

divergent panel motion, γ >0 r

3 Negative Exponential divergence, γr>0 
and γI=0 

In region  is no flutt i.e., the panel oscil n region 2, the panel 
is dynamically un ble. In el is bu tatically unstable. 
In this region, the panel undergoes indefinite exponential increase of displacements, till 
structural failure, without any  motion 

These three egions are separated by two buckling loop, 
which is the locus of points fo genvalu d is the flutter 
boundary, which is the locus of points at which two frequencies coalesce. The point of 
tangency of

agreement with analytical and 
in-ho

 1, there er. lation is stable.  I
sta  region 3, the pan ckled, i.e., the panel is s

oscillatory (divergence). 

 boundaries. The first is the r
r which ei es vanish i.e. -γ2=0. The secon

 the flutter boundary with the buckling loop represents the lowest value of qcr 
associated with this panel configuration.  

 
The results obtained from analytical and in-house FEM are in good agreement with 

each other. The results obtained from NASTRAN are in good 
use FEM code upto the corresponding static buckling temperature (with parabolic 

temperature profile and edges free of in-plane constraints). Beyond this temperature it is 
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observed that the critical Mach number values obtained by NASTRAN fall more sharply with 
temperature than those obtained by analytical and in-house FEM code. Similar results are 
generated also for panels of aspect ratios 2 and 7.2 (specimens B and C). These result e 
given graphically in Fig 3.5-3.6. 

  

s ar

  
 

 for a square panel subjected to parabolic 
Temperature distribution. 
Fig 3.3.(a) Normal stress resultant xTN

 
Fig 3.3.(b) Normal stress resultant yTN for a square panel subjected to parabolic 
temperature distribution. 
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Fig 3.3.(c) Shear stress resultant  for a square panel subjected to parabolic 
temperature distribution. 

xyTN
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tion of Critical Parameters (Critical Dynamic pressure qcr (Pa), Critical 
cr m/s) and Critical Mach nu to parabolic temperature 

distribution (without in-plane edge const d square 
ed kg/m3.  

 
 
 
 
 
 
 
 
  

  

  

 

 

Fig 3.4 Varia
Velocity V  ( mber Mcr) due 

raints) over the simply supporte
ge a. Air Density assumed is 1.225 aluminium panel (specimen A). Flow along 
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Fig 3.5 Variation of Critical parameters (Critical Dynamic pressure qcr (Pa), Critical 
Velocity Vcr (m/s) and Critical Mach number Mcr) due to parabolic temperature 
distribution (without in-plane edge constra nts) for simply supported panel of aspect 

n (edge‘a’). Air density assumed 1.225 

  
 
 
 
 
 
 
 
 
 
 
 

                                                            

ΔT1 (oC)

                            

  

 
 
 
 
 
 

i
ratio a/b=2 (specimen B). Flow along x-directio

g/m3. k

ΔT (oC)1

ΔT1 (oC) 
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Fig 3.6 Variation of Critical parameters (Critical Dynamic pressure qcr (Pa), Critical 
Velocity Vcr (m/s) and Critical Mach number Mcr) due to parabolic temperature 
distribution (without in-plane edge constraints) for simply supported panel of aspect 
ratio a/b 7.2 (specimen C). Flow along x-direction (edge a). Air density assumed 0.715 
kg/m3. 

3.2.3. Effect of flow direction on the flutter boundary  

The varia ion of critical parameters with flow direction and thermal conditions for the simply 
supported rectangular panels (specimens A, B and C) with the parabolic thermal profile and 

ated by analytical and in-house finite element 
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t

edges free of in-plane constraints is investig
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method. The results are presented in Tables 3.3-3.5. The graphical representation of the 
variation of critical parameters with flow angle is presented in Figs 3.7-3.9. 

Table 3.3.a Variation of Critical Dynamic pressure (for specimen A) with various 
parabolic temperature profile and flow angles at air density ρair  = 1.225 kg/m3. 

Critical Dynamic Pressure qcr (N/m2) Thermal profile parameter 
ψ, ΔT1 θ=00 θ=300 θ=450 θ=600 θ=900

ψ=0, ΔT1=0 oC 
*24211017.8 
**23559692 

#23430712.8 
*25188342.9 
**24744226 

*25567121.5
**25213597

*25188342.9 
**24744226 

*2421017.8 
**23559692 

ψ=10, ΔT1=34.52 oC 
*16423184.7 
**15645036 
#15196346 

*17014836.9 
**16352457 

*17238392.7
**16625761

*17014836.9 
**1635245

*16423184.7 
7 **15645036 

ψ=25, ΔT1=86.31 oC 
*8163103.2 
**7473143 
#

*8385589.3 
**7727731 

*8464159.9 
**7823754 

*8385589.3 
**7727731 

*8163103.2 
**744089697 73143 

ψ=40, Δ 3.26 oC *3879313.7 
**3 72 

*3
**3  **  

1 
**3  

*3879313.7 
**  T1=13 4142

952387.1 *3979477.3 *3952387.
492808 3522122 492808 3414272

Table 3.3.b Variation of e o lic 
temperature profile and t  ρ  k

a m

 Critical v locity (for specimen A) with vari us parabo
flow angles a  air density air  = 1.225 g/m3. 

Critic l Velocity Vcr( /s) Thermal profile parameter 
ψ, ΔT1 θ=00 θ=300 θ=450 θ=600 θ=900

ψ=0, ΔT1=0 oC 
*6287.145 

**6202 
#6185 

*6412.786 
**6356 

*6460.82 
**6416 

*6412.786 
**6356 

*6287.145 
**6202 

ψ=10, ΔT1=34.52 oC 
*5178.162 

**5054 
#4981 

*5270.61 
**5167 

*5305.121 
**5210 

*5270.61 
**5167 

*5178.162
**5054 

 

ψ=25, ΔT1=86.31 oC 
*3650.69 
**3493 *3700.102 

**355
*3717.396 *3700

*35#2584 

.102 
52 

*3650.69 
**3493 2 **3574 *

ψ=40, Δ 1 26 oC *2  *2  
**2388 

*2  
**2398 

*2  
**2388 

*2  
**2361 T =133. 516.66

**2361 
540.25 548.94 540.25 516.66

Table 3 n of Cr ach n  (for n A) with various parabolic 
temperature profile and flow ρair  = 1.225 kg/m . 

ical r Mcr

.3.c Variatio itical M umber specime
 angles at air density 3

Crit M beach numThe r 
ψ, ΔT1 θ=30 θ=45 θ=60 θ=90

rmal profile paramete

θ=00 0 0 0 0

ψ=0, ΔT1=0 oC 
*18.492 
**18.24 

#18.19 

*18.86 
**18.69 

*19.002 
**18.87 

*18.86 
**18.69 

*18.492 
**18.24 

ψ=10, ΔT1=34.52 oC 
*15.23 

* 1*  *  *  *  14.8647
#14.65 

*15.5 
*15.19706

*15.6 
*15.32353

*15.5 
*15.19706

*15.23 
**14.86 

ψ=25, ΔT1=86.31 oC 
*10.74 

**10.27 
#7.6 

*10.88 
**10.45 

*10.93 
**10.51 

*10.88 
**10

*10.74 
.45 **10.27 

*7.41 
**  

*7.4
**

*7.47 
**

*7.41 
**6.94

7 *7.5 
**7.024 7.05 7.023 6.94 ψ=40, ΔT1=133.26 oC 

*Results obtained cal form ; **Resu tained by in-house FEM code,  Results obtained by 
NASTRAN which predicts steepe itical v th tem ond  poin n in 
Fig 3.4. 

by analyti ulation
r fall in cr

lts ob #

alues wi perature bey buckling t, as show
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Table 3.4.a Variation of C  Dyna i  
para e pr lo  a ai g/m

Critical Dynamic Pressure qcr  (N/m2

ritical mic Pressure (for specimen B) w th various
bolic temperatur ofiles and f w angles at ir density ρ r  = 1.225 k 3. 

) Thermal profile 

ψ, ΔT1 θ=0 θ=3 θ=4 θ=6
parameter 

0 00 50 00 θ=900

ψ=0, ΔT =0 oC 
*20567

**191 *2554 33777 *5036 *1608  757 
60010 1

#20586741 **24079151 **32416945 **49833245 **167015991.01 
3582 * 887 2275 47317.0

ψ=10,
*14992024 

 ΔT1=19.25 oC **13807896 
#

*18855496 
**17531281 

*25439138 
**24033089 

*39443799 
**38332652 

*155092730.7 
**151283001.80 14682125 

ψ=20, ΔT1=38.5 oC 
*10541236 
**9575896 
#

*13419027 
**12287633 

*18465686 
**17133782 

*29778784 
**28363665 

*149392407.1 
**1471151510366560 2.4 

 

Table 3.4.b Variation of Critical Velocity (for specimen B) with various parabolic 
tempe les a l n .2

Vcr

rature profi nd flow ang es at air de sity ρair  = 1 25 kg/m3. 
Critical Velocity  (m/s) Thermal profile 

parameter 
ψ, ΔT1 θ=00 θ=300 θ=450 θ=600 θ=900

ψ=  ΔT0,  o
 *6457.848 1 2 

1=0 C 
*5794.826

**5593 
#  5797.50

**6270 
 

*7426.14
**7275 

*9067.75
**9020 

*16205.18 
**16513.00 

ψ=10, ΔT1=19.25 oC 
 

**4748 
#4896 

*5548.377 
**5350 

*6444.632 
**6264 

*8024.839 
**7911 

*15912.66 
**15716.00 

*4947.401

ψ=20, ΔT1=38.5 oC 
*4148.516 

**3954 
#

*4680.664 
**4479 

*5490.725 
**5289 

*6972.691 
**6805

*15617.49 

4114  **15498.00 

 

Table 3.4.c Variation of Critic  B) w
tempe es and les sit 25 

Critical Mach number Mcr

al Mach number (for specimen
 g

ith various parabolic 
rature profil flow an a nt air de y ρair  = 1.2 kg/m3. 

Thermal profile 
parameter 

ψ, ΔT1 θ=00 θ=300 θ=450 θ=600 θ=900

ψ=0,  o
*

 
 

6 
 

1  ΔT1=0 C 
17  
*

.04361
*16.45 

# 7.05 1

*18.99367 
* 8*18.4411

*21.84159
70**21.39

*26.66986
* 4*26.529

*47.66 
**48.57 

ψ=10, ΔT1=19.25 oC 
*14  

**13.96471 
#14.4 

*16.31875 
**15.73529 

*18.9548 
**18.42353 

*23.60247 
**23.26765 

*46.80 
**46.22 

.55118

ψ=20, ΔT1=38.5 oC 
*12.20152 

**11.62941 
#12.1 

*13.76666 
**13.17353 

*16.14919 
**15.55588 

*20.50792 
**20.0147

*45.93 
1 **45.58 

*Resu nalytical formulation; **Results  code, # Results obtained by 
NASTRA

 
 
 
 

lts obtained by a
N 

 obtained by in-house FEM
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Table 3.5.a Variation l D ress spe  wi  
para re d fl t a ρair g/m

of Critica ynamic P ure (for cimen C) th various
bolic temperatu profiles an ow angles a ir density   = 0.715 k 3. 

Critical Dynamic pressure qcr (N/m2) Thermal profile parameter 
ψ, ΔT1 θ=00 θ=300 θ=450 θ=600

ψ=0, ΔT1=0 oC 
*17786384 
**16594066 

#17201565.4 
*23686262.99 
**22108692 

*35426862.34 
**33091502 

*70180191.91 
**65657272 

ψ=100, ΔT =36.65 oC *17448063.93 *23237078.31 *34760355.47 *68874679.
1 **16283768 **21694566 **32468472 **64432448 

96 

ΔT1=40 oC #13839999.03    
#3459999.758    ΔT1=140 oC 

ψ=400, 6.61 oC *250 86 
**18 61 

*335
**25 26 

*50 04 
**37 21 

*994 482 
**75 79  ΔT1=14 7478.

829
0547.483 

200
21926.

877
2181.

449
 
Table 3.5.b Variation of loci im  var olic 
temperature profiles and f t air density ρair  = 0.715 kg/m . 

ci

Critical Ve
low angles a

ty (for spec en C) with
3

ious parab

Critical velo ty Vcr (m/s) Thermal profile parameter 
ψ, ΔT1 θ=00 θ=300 θ=450 θ=600

ψ  
* *8139.74 

**7864
*9954.71 
**96  

*14011.004 
**13 52 =0, ΔT1=0 oC

7053.519 
**6813 
#6936.6  21 5

ψ= , ΔT =36.65100 1
*

*
*
**77

 oC 6986.112 
*6749 

8062.18 
90 

*9860.62 
**9530 

*13880.07 
**13425 

ΔT1=40 C 6222     o #

ΔT1=140 oC #3111    
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Fig 3.7 Variation of Critical Parameters (Critical Dynamic pressure qcr (Pa), Critical 
Velocity Vcr (m/s) and Critical Mach number Mcr) for various flow angles (in degrees) 
with parabolic temperature distribution over simply supported square panel (specimen 
A). Air Density assumed is 1.225 kg/m3. 
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 panel of aspect ratio =2 (specimen B). 
Air density assumed is 1.225

 

Fig 3.8 Variation of critical parameters (Critical Dynamic pressu
) and Critical Mach number Mcr) for various flow

temperature distribution over simply supported
 kg/m3.  
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 parameters (Critical Dynamic pressure qcr (Pa), Critical 
cr l Mach n Mcr) for various flow angles with parabolic 

mperature distribution over simply suppo ed panel of aspect ratio =7.2 (specimen C). 
Air density assumed 0.715 kg/m3.  
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3.3. Effect of Uniform Edge Loads due to edge constraints on thermal expansion on the 
flutter boundary of rectangular panels   
In-plane edge loading per unit edge length, Nxo and Nyo on the panel can develop from the in-
plane edge constraints to thermal expansion. Panels with immovable hinged supports can 
generate such edge loads. The effects of such edge loading on the flutter boundary of panels 
with various thermal profiles have been studied.   

3.3.1. Effect of Uniform Edge Loading due to edge constraint on thermal expansion with flow 
along x-direction (edge a, θ = 0) 
Variation of critical parameters (critical dynamic pressure, critical velocity, critical Mach 
number) due to the effects of edge loading from in-plane edge constraints on thermal 
expansion for rectangular panels is shown in Figs 3.10, 3.11 and 3.12. The flow is restricted 
to be along edge a. The results are plotted for different temperatures ( 2TΔ ) that generate the 
edge loads. It must be noted that in analytical and in-house FEM code results are generated 
by taking the edge loads  (Nx, Ny, Nxy) as given in equation (1.8). For the NASTRAN model, 
only constant temperature profiles are simulated over the panel and all the in-plane degrees of 
freedom at the panel edges are constrained.  
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Fig 3.10 Variation of Critical parameters (Critical Dynamic pressure qcr (Pa), Critical 
Velocity Vcr (m/s) and Critical Mach number Mcr) for specimen A with the effects of 
edge loading from in-plane edge constraints on thermal expansion. Flow along x-
direction (edge a). Air Density assumed is 1.225 kg/m3.  
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th the effects of edge loading 
from in-pla direction (edge a). 
Air Density assumed is 1.225 ch number. 

Fig 3.12 Variation of C th the effects of edge loading 
from in-pla  along x-direction (edge a). 
Air Density assumed is 0.715 ch number. 

and in-plane edge constraints  

al profiles 
and in-plane edge constraints en panels for two 
different flow angles for each of them are presented in Figs 3.13 to 3.15  For a square panel 
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Fig 3.11 Variation of Critical parameters for specimen B wi
ne edge constraints on thermal expansion. Flow along x-

kg/m3. a) Critical velocity b) Critical Ma
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ritical parameters for specimen C wi
ne edge constraints on thermal expansion. Flow

kg/m3. a) Critical velocity b) Critical Ma

3.3.2. Effect of flow direction on the flutter boundary of panels with various thermal profiles 

The effect of flow direction on the flutter boundary of panels with various therm
 are studied.  Results for the various specim

(specimen A) the results are same for 030=θ  and 060=θ , showing symmetry about the 
direction of 045=θ . For rectangular panel, flow along the longer direction is most critical. 
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(a)                                                                 (b) 

Fig 3.13 Variation of Critical Velocity for specimen A with the effects of edge loading 

from in-plane edge constraints on thermal expansion for flow angle of a) & b) 

                 (a)                                                                        (b) 

Fig 3.14 Variation of Critical Velocity for specimen B with the effects of edge loading 
from in-plane edge constraints on thermal expansion for flow angle of a) & 

                                  
(a)                                                                       (b) 

Fig 3.15 Variation of Critical Velocity for specimen C with the effects of edge loading 
from in-plane edge constraints on thermal expansion for flow angle of a) & 
b) .  Air Density assumed is 0.715 kg/m3. 
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ltitudes with corresponding air density values 
for an panel of aspect ratio 7.2 (specimen C, with the dimensions, that forms the typical wing 
panel). The air density variation with altitude is presented in Fig 3.16. Due to fall in the air 
density with altitude, an increase in the flutter boundary (and therefore its margin of safety) is 
expected. The results with parabolic thermal ofile (edges free of in-plane constraints) and 
with uniform thermal profile (with edges constrained against in-plane expansion) are 
presented respectively in Figs 3.17 and 3.18. Flow is taken along the longer edge a.   

   

 
 
 
 
 
 
 
 
 
 
 
 

                           Fig 3.16 Variation of Air density at different Altitude. 
 
 
 

 
 
 
 

3.4. Variation of Critical boundary (Mach number) with altitude.   
Flutter analysis has been carried out at various a
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Fig 3.17 The variation of critical Mach number with altitude for simply supported panel 
of aspect ratio 7.2 (specimen C) under parabolic thermal profile (without in-plane 
constraints). 
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 3.18 The variation of critical Mach number with altitude for panel of aspect ratio 
7.2 (specimen C) under uniform temperature. Edges are simply supported with in-plane 
onstraints. 

.5. Effect on m

he panels that form the skin of the vehicle will be subjected to harsh aerodynamic 
nvironment, especially in the supersonic and hypersonic regimes of flight. The skin will be 
xposed to high temperatures due to friction with the airflow and also due to solar radiation. 
here will be a Thermal Protection System (TPS layer), which protects the metallic skin from 
etting overheated. As TPS material, ceramic is the material is used generally, since it can 
ithstand high temperature gradients. However, it contributes negligible structural stiffness 
 the panel. Thus the TPS acts as a non-structural mass. 

For the flutter analysis the TPS mass is smeared into the panel surface, which is 
xposed to the flow. For analytical calculation the overall density of the panel is calculated 
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3 ass loading due to Thermal Protection System (TPS) mass  
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e
using the equation. 
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hh TPSTPSmat
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ρρ

ρ
+

=                                                                       (3.5) 

here ρmat and is h are respectively the material density and the thickness of the aluminium 
anel and

w
p  TPSρ  and hTPS  are respectively the material density and thickness of the TPS. For 

e wing panel (specimen C of a/b=7.2) the values are ρmat =2800 kg/m3, h=0.0011m, th TPSρ = 
00kg/m3, and hTPS =0.015m. The effective density thus given as ρoverall =6891 kg/m3.  

Analysis for specimen C with TPS mass simulated is done for the flow along x-
irection (edge a, θ = 0). A constant thermal profile with in-plane edge constraints is 
ssumed. Results are generated by NASTRAN only. The results are presented in Fig.3.19. It 
an be observed that the non-structural TPS mass, uniformly distributed over the panels, does 

utter boundary. However, the natural frequencies and flutter 
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d
a
c
not have any effect on the fl
frequencies are lowered. 
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ig 3.19 (a) Variation of Critical Mach number (b) flutter frequency for specimen C 
ith effects of edge loading from in-plane edge constraints on thermal expansion for 
ow along x-direction (edge a) with and without TPS mass. Air Density assumed is 
.715 kg/m3. 

ade to estimate the effects of various thermal profiles and flow 
 edges. Three 
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). The non-structural TPS mass, 
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sults from the analytical formulation, in-house FEM code are in good 
agreem t with those from NASTRAN software till the buckling point, beyond which 
NASTR esults indicate a sharper fa ond 
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3.6. Chapter Summary and Observations 

 numerical study is mA
directions on the supersonic flutter boundary of panels with simply supported
different panels specimens with various aspect ratios have been used. Parabolic therm
profiles have been used for edges without in-plane constraints and constant thermal profiles 
for edges with in-plane edge constraints. A combined thermal profile case with in-plane edge 
constraints has also been studied. Finally, the effects of altitudes and TPS mass have also 
been investigated.  

 This study predicts a sharp fall of the flutter boundary parameters for rectangular 
panels with temperature rise. Furthermore, for all the cases, the flow along the longer side is 

ost critical (with lowest critical dynamic pressurem
di ted uniformly, only effects the frequencies, but does not change the flutter boundary. 

The results obtained by the analytical method and in-house finite element codes are in 
good agreement. Re

en
AN r ll of critical values with thermal parameters. Bey

g poin he analysis as a post buckling geometrical nonlin
problem, whereas the analytical and in-house FEM code continues as a linear analysis. 

The high critical Mach numbers predicted by the present analysis based on piston 
theory aerodynamics only indicate that the specimen panels under the given conditions are 
extremely stiff, despite the fact that such high Mach numbers do not fall in the reg
piston theory aerodynamics.  
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Chap

CONCLUSION  

 

ction 
ion 

ent formulation a four 
noded Quadrilateral C1 continuity plate bendin placement components 
(transverse displacement w and the slopes about x and y-axes) at each node is used. 

 The results for different flow direction indicate that the critical dynamic pressure 
decreases as the flow gets more and more aligned to the longest direction. This implies that 
the flow along the longer side is most critical. Furthermore the studies on rectangular panels 
with thermal effects predict a sharp fall of the flutter boundary parameters with temperature 
rise for various cases of thermal effects, which are as follows. 

1. Parabolic temperature distribution over the panel (without in-plane edge 
constraints). 

2. Uniform temperature distribution over the panel (with edge loads that arise 
from in-plane co

n aluminium panels of various aspect ratios.  

 method and in-house finite element codes are in 

 flutter boundary.   

ter 4 

4.1 Summary and Observations 

The analytical and in-house finite element formulation for supersonic panel flutter analysis of
the simply supported rectangular plates is dealt with. The linearized quasi-steady two-
dimensional aerodynamic theory (piston theory) is used in conjunction with thin-plate theory 
to formulate the problem. The panel is subjected to supersonic airflow in arbitrary dire
and is associated with a parabolic (with free edges) and uniform temperature distribut
(with in-plane edge constraints) over the plate.  

The analytical solutions for supersonic panel flutter analysis are obtained by solving 
the governing differential equation using model superposition method. Piston theory is used 
for aerodynamic pressure computations. For the in-house finite elem

g element with three dis

nstraints at the panel edges). 
3. Combination of parabolic and uniform temperature distribution over the panel 

(with in-plane edge constraints). 
The variation of critical parameters (critical dynamic pressure/ critical velocity/ 

critical Mach number) are investigated for the above cases with different flow directions for 
ome specimes

The results obtained by the analytical
good agreement. Results from the analytical formulation, in-house FEM code are in good 
agreement with those from NASTRAN software till the buckling point, beyond which 
NASTRAN results indicate a sharper fall of critical values with thermal parameters. Beyond 
buckling point, NASTRAN considers the analysis as a post buckling geometrical nonlinear 
problem, whereas the analytical and in-house FEM code continues as a linear analysis. 

 The non-structural TPS mass, distributed uniformly, only affects the frequencies, but 
does not change the

The high critical Mach numbers predicted by the present analysis based on piston 
theory aerodynamics only indicate that the specimen panels under the given conditions are 
extremely stiff, despite the fact that such high Mach numbers do not fall in the regime of 
piston theory aerodynamics. 
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4.2 Scope for future work 

The pr

kness can also be considered for analysis. 

 urther studies on supersonic flutter analysis including such effects are necessary to 
arrive at a more reliable and realistic design of panels.    

esent work is limited to only for the rectangular panels with simply supported edges, 
with assumed thermal profile. In the actual panels of any supersonic vehicle, in-plane loading 
can be induced from arbitrary thermal profiles as well as from elastic constraints at the edges 
connecting to stiffness. Furthermore thermally induced bending effects from thermal 
gradients across the panel thic

F
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APPENDIX A 
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1 1

  nm
m n

nmwwddI ηξϕηξηξϕ ,,
1 1

∑∑∫ ∫ ==
− −

 ( ) (

where ξm ,ηn , wm and wn are given as 

Order Lo
1 0 2 
2 ± 0.577350269189626 1 

± 0.774596669241483 0.555555555555556 3 0 0.888888888888889 
± 0.861136311594053 0.347854845137454 4 ± 0.339981043584856 0.652145154862546 
± 0.906179845938664 0.236926885056189 
± 0.538469310105683 0.478628670499366 5 

0 0.568888888888889 
± 0.932469514203152 0.171324492379179 
± 0.661209386466265 0.360761573048139 6 
± 0.238619186083197 0.467913934572691 

 

e The expression for [K ] in equation (1.20), is  
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where [K
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++= 321
1 KKKbaD eee μμ                      (A.3)  K

1], [K2] and [K3] are expressed in equation (A.3a), (A.3b) and (A.3c) respectively  
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The aerodynamic load matrices [Ke
qx] and [Ke
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The consistent mass matrix [Me] of equation (1.28) is given as 

-1
16

*b
e

-5
6*

be *a
e

-6
0*

be ^2
 

-1
99

*b
e

-8
4*

be *a
e

80
*b

e ^2
 

-2
74

*b
e

84
*b

e *a
e

-1
20

*b
e ^2

  

-4
61

*b
e

12
6*

be *a
e

16
0*

be ^2

-1
16

*a
e

-6
0*

ae ^2
 

-5
6*

be *a
e

-2
74

*a
e

-1
20

*a
e ^2

 

84
*b

e *a
e

-1
99

*a

...
..(

A
.6

) 

e

e ^2
 

e ^2
 

80
*a

-8
4*

be *a
e

-4
61

*a
e

16
0*

a

12
6*

be *a
e

19
7 

11
6*

ae

11
6*

be

61
3 

27
4*

ae

-1
99

*b
e

61
3 

-1
99

*a
e e

27
4*

b

17
27

 

-4
61

*a
e

-4
61

*b
e

19
9*

be

84
*b

e *a
e

80
*b

e ^2
 

e

 

e

e

^2
 

e

e ^2
 

11
6*

b

56
*b

e *a
e

-6
0*

be ^2

46
1*

b

-1
26

*b
e *a

16
0*

be

27
4*

b

-8
4*

be *a

-1
20

*b
e

-2
74

*a
e ^2

 e e

 e e

16
0*

ae ^2
 

*a
e

e

80
*a

e ^2
 e

-1
20

*a
e

-8
4*

be *a

-1
16

*a

-6
0*

ae ^2

56
*b

e *a

-4
61

*a

-1
26

*b
e

-1
99

*a

84
*b

e *a

61
3 

27
4*

ae e e e e be e be

19
9*

b

19
7 

11
6*

a

-1
16

*b

17
27

 

-4
61

*a

46
1* 61

3 

-1
99

*a

-2
74

*

-2
74

*b
e *a

e

e ^2
 

e *a
e

e ^2
 

e

*a
e

e ^2
 

e

*a
e

e ^2
 

-8
4*

be

-1
20

*b

-4
61

*b

-1
26

*b
e

16
0*

b

-1
16

*b

56
*b

e

-6
0*

b

-1
99

*b

84
*b

e

80
*b

19
9*

ae

80
*a

e ^2
 

*a
e

*a
e

16
0*

ae ^2
 

e *a
e

*a
e

e ^2
 

*a
e e e ^2

 

e *a
e

84
*b

e

46
1

-1
26

*b

11
6

-6
0*

a

56
*b

e

27
4*

a

-1
20

*a

-8
4*

b

61
3 

e be

17
27

 

*a
e e

19
7 

11
6*

ae be

61
3 

27
4*

ae

19
9*

be

19
9*

a

27
4*

46
1

-4
61

*b

- 11
6*

- -

46
1*

be

be *a
e

be ^2
 

27
4*

be

e *a
e

e ^2
 

19
9*

be

84
*b

e *a
e

e ^2
 

11
6*

be

e *a
e

*b
e ^2

 

12
6*

16
0*

84
*b

-1
20

*b

- 80
*b

-5
6*

b

-6
0

46
1*

ae

e ^2
 

be *a
e

19
9*

ae

e ^2
 

84
*b

e *a
e

27
4*

ae e ^2
 

84
*b

e *a
e

11
6*

ae

e ^2
 

56
*b

e *a
e

16
0*

a

12
6* 80
*a

- -1
20

*a

-6
0*

a

-

[M
] =

(1
/ 3

15
0)

 x
 (ρ

 h
 a

e 
be)

 x
 

17
27

 

46
1*

a be

61
3 

19
9*

a

27
4*

be

61
3 

27
4*

ae

19
9*

be

19
7 

11
6*

ae

11
6*

bee e

46
1*

- -- -

 

National Aerospace Laboratories 



  

 
APPENDIX B 

l M h nu

The critical Mach number corresponding to the critical velocity determined by NASTRAN 
does not match input Mach num  the his be ated to this 
critica loc . Th iter e p ess con ed  up ng the input Mach number till 
the output and input Mach numbers agree. The onverged N STRAN results so obtained can 
then be compared with those from the analytical solutions. The convergence study for a panel 
of aspe  rati /b) = 1 has been presented in the above table. 
 
  
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

np ac
No.   

Output Mach 
No. 

Method of Convergence of Critica ac mber 

ber,
roc

n t
 is 

input Mach number needs 
tinu
 c

to upd
l ve ity is ativ by dati

A

ct o (a

 
 
 
 
 
 
 
 

 

I ut M h 

1.5 4.63 
2.0 5.70 
2.5 6.50 
3.0 7.24 
3.5 7.85 
4.0 8.45 
4.5 9.00 
5.0 9.50 
5.5 9.92 
6.0 10.51 
6.5 10.80 
7.0 11.25 
7.5 11.69 
8.0 12.10 
8.5 12.42 
9.0 12.87 
9.5 13.16 
10.0 13.60 
10.5 13.90 

Inpu ach
No.   

Output Mach 
No. 

t M  

11.0 14.18 
11.5 14.50 
12.0 14.78 
12.5 15.00 
13.0 15.50 
13.5 15.80 
14.0 16.20 
14.5 16.50 
15.0 16.54 
15.5 16.83 
16.0 17.20 
16.5 17.50 
17.0 17.72 
17.5 17.86 
18.0 18.16 
18.5 18.45 
19.0 18.75 
19.5 18.90 
20.0 19.18 
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