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d)rfuniicol s)sreni is presenrcd. If is also showri r h u r  rhe merhod i~ u generuliAofim ojrhe so culled Torul 
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INTRODUCTION T 

Th; output method (OEM)’ is the most widely used technique 
for estiination of parameters” of stab!.: dynmical system 

A 01 

including ail-crali I-’. However the method pobes severe diffi- 
culties when applied to inhere’ntly unstable or augtnented 
systenis’. When the system is unstahle. numerical integration 
leads to direrzing solutions. A method called equatidn deiou- 
pling (EU)has been recently presented !is parameter estima- 
tion ot unstable systems’. This m,ihr,d uses measured states 
to decouple the state equations and iliiegraic thc system of 
ililferential equations independed of each other. The decou- 
piing 01  tlic equations may ;hang: the unstable system LO the 
ruble onz. Asjmptotic rheory of ED output emor method 
IEDOEM) and generalisation of the total lcast squares (TLS) 
solutinn we presented. Such Atudies are limited in open litera- 
ture’-‘. 

EQUATION DECOUPLING OUTPUT 
ERROR METHOD 
The dynamics of the system are given 3s 

r = Ax + Bu wirh x(0) = x., (1 )  
,l = c* + u u  (2) 

z ( k )  = ? ‘ ( k )  + . . ( k )  k = 1.2. .. N (3) 
Here. N is the number of data points and v is the mensurement 
noise assumed id be Gaussian with zero mean and covariance 
matrix R. The 0 { A ,  B, C, D )  represents the parameter vector 
to he estimated. The cost function to he ininiinised is defined 
as 

,\ 
I T 

2 E(O!  = - 1 I : ( k )  - y (k ) l  

Here, 1 stands for iteration nuniher. The sci:sitivity imatrix 

a ( k )  needs to be computed. The insiabiliky caused due to ao 
nunierical divergence can be overcome by incoqmatlng sta- 
bilisuion into the OEM by using nxaauxd states. .rnt. The 
manncr of utilising tlie measured stares to stahilise the system 
equations leads to EDOEMX wherein the slates pertaining to 
the off diagonal elements x e  replaced by tlie cori~espoiiding 
measured states. The system matrix A is pxtirioned into two 
submatrices denoted by AD (diagonal matrix1 and Aon (with 
offdiagonal rlementsofA). Equation( 1)can be rewritten with 
x - .rn, as 

L J  

The only integrated variables entering the diffcicnttal equn- 
tioii are in the first term. Thus each diffcrential equation can 
be integrated independently of the others. The cost function 
to be minimised is given by equation II). Hwever.  the 
computation ofthe sensitivity function involve> the decoupled 
matericcs AD and Ao,, and the state mcasurtmcnts augmenting 
the control input measurements. 

ASYMPTOTIC THEORY OF EDOEhl 

In this section the implications of the use of me;iwred states, 
in terms of sensitivity matrix computation arc studicd thercby 
providing analytical hasib t o  the working ( i f  the EDOM. Fol- 
the case wlicrc there is n o  DSOCCSS noise. euuiition ( I )  can be 

Minimisation of the above cost function with respect to 0 y ( k )  = Cx ( k )  + Did ( k )  ( 9 )  
yrclds the estimates vf0 as 

n n where $ denotes the state transition matrix and v its integral. 

110) 

y = e  d ~ = l A f + A - + + * - +  . . . . . .  ( 1 1 )  

A? 0i+! = 0; t @ A @ /  (5) 
@ z p i  = I -t A A r  + A’ - + . .  . . . 2! 
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where Af = r ( k  + I )  - ( k )  is the sampling interval. 
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Conipulation 111 ihc pilralneter incrclnent vector. A@, requires 
the wmpuration 01 tnu senhiilvity equations. Wtlich are oh- 
tiuned hy p3rti:iI ditfciciitiatwn oi tlic sybtcni equations with 
respect ti, each c l c l i im t  of thc unhnowii parameter vector Q. 
Sinw thc senitivit) equations have the matrixit as the system 
eqwitioris. thc xmic transition matrix. equation (10). can he 
u x d  to wlvc thc11i. By differentiating cquatiun ( X j  and (9) 
withrcquebtto (3. t l ie discrete fort~r of thescnsitivity equations 
are obr,iiiicli a>'' 

. 

(I .i) 

For siniplicity sccond order longitudinal dynamics of an air- 
cratt im v:msidercd. Thc dyn3iiaic5, i n  continuous and discreic 
fomi arc .*iveii hk 

(141 

(15) 

06!  

Thc sc.nsil~\:it). i i i i itrix comput;~tim can he inadr using equa- 
t ion  i 121. The [xmineter vcct~)i- t o  be' estimated i s  given hy 
0 = i L  . M>, . M,) . Z&. Ma,j, the  tlciiients CI.A and n. TO 

illusirate ihc coniputationh i i ivul\ed in the sensitivity iiiatrix. 
thz p;uual ditferentiation of the states with respect to the 
deriviitiw M,, I S  considered. f i rst  for OEM and then for 
EDOthl.  
Usinp equatiim i I ?! and i 16) and the fact that the last three 
term> in equiitioli t 12) vanish. one obtains, 

(181 

t J 3  

In equatlon ib) i t ie second term rcprchents the first :r;id~cnr 01 
the COSI functiim Expanding this first gradient ;uaJ uung 
equation (18). isuhscript Isrands for integrated vm:ihlc). 11ne 

ohtains; 

For thc prohlsm Jcscrihed hy equation i 13). thc Equatiu~i 
Decoupling fo~ i i iu l~ i t ion  i s  given hy 

Using cquarion (1 I j i n  equation i I21 Inr the sensitivity q u a -  
tioii with ~espccl t i l M b , '  and;iinsidcrinp tile kict that terms 2nd 
.ind 5th in equ;itiun 1121 vanish. thus.. 

Fur the fist gradlent (wr f  M,) for EDOEM 



. 
To derive the asymptotic equivalence between EDOEM and 
OEM, 

I + w; (24) W," = wl + w, ; qni = qr + qn ; 'I,, = n. 

where subscript 1 denotes true values, n the measurement 
noise, I the integrated value, and i the errors due to integration. 
Substituting equation (24) into equation (19) and observing 
the fact that the integration errors (w i )  tend to zero as the 
iterations are increased. Here, the convergence of the OE 
algoi ithm . is assumed which. 2 generally guaranteed, for 
OEM, 

Substituting equation 124) into equation (23) and the fact that 
w, + 0 for EDOEM. one, gets, 

In equation (26) since the measurement noise [w,, , qn] is 
independent of the parameters to be estimated, the partials of 
q. and w,, wrt M, vanish. Next, the following term involving 
[w, , qn] are obtained, in equation (26) 

N 
- - [ q , , ( k ) r  bvrdk) [ w n ( k -  I)] AI (27) 

N - l  N - l  
k =  1 

which tends to zero since the measurement noise yn and w. 
are uncorrelated. Hence, i n  the light ofthe aboveobservations, 
comparing equation (25) and (26), one gets. 

V E E ( 0 )  , VE,, (0) 
N -  1 N -  1 

asymptotically for the two-state model. 

Thus, the asymptotic behaviow of the EDOEM is similar to 
that of OEM. However, the OEM does not work directly for 
unstable systems as noted earlier. In EDOEM, since the meas- 
ured states, obtained from the unstable plant operating in 
closed loop are stable, their use in the estimation process, tries 
to arrest this divergence and at the same time enables parame- 
ter estima.tion of the basic unstable plant directly. 

GENERALISATION THEORY OF EDOEM 

The EDOEM can be viewrd as a generalisation of the TLS 
approach for parameter estimation. TheTLS approach' is used 
to account for the errors in the measurements of X, the v a r -  
ables in the regression equation, in addition to the errors due  
to noise in Y. The general regression equation is given by 

y = x e + ~  (29) 
When the measurements X are noisy, the LS method does not 
explicitly account for these errors. The TLS method addresses 
this problem as follows: 

The equation (29) is restated as 

[XI v] [@'I - I f  = 0 (30) 
Due to the measurement errors, the compound data matrix 
[XI YI is full rank and there is no nonzero solution vector 
[@I - lf .  To get a solution, the rank of the measured data 
[XI YI is reduced with an estimate of data errors [AX I Ay1 

* A  

([x I YI - [AX I A YI) [@'I - 11' = o (31) 
subject to the constraint of minimal approximation effort 

A A  

1 1 [ A X  I A f l  C? 11: is minimal (32) 

where C is the square root of the convariance matrix of the 
row vectors of the dataerror matrix [AX I Afl .  The solution of 
equation (31) is given in terms of the singular value decom- 
position of the matirx [X I r] C-': 

r 
(33) 

The trasformed solution vector C [e' I - I ]  is found as the 
kernel of matrix [XI u] C-', which equals the last column 
vector vn + I of the singular matrix V. Equation (31) is solved 
for [hru I - I]', 1 is chosen such that the last element equals 
- 1. In case of EDOEM 

A c[errJ. I -  11 = iv,+, 

A A  

(34) 

y = Cx, + rim (35) 

where x, stands for the integrated state generated from the 
integration of the state equations and rim stands for the meas- 
urement noise. If C = I, the identity matrix, 

y = x ,+nm (36) 

Introducing the integrated variables from equation (34) into 
the equation (35). 

(37) 

which is rewritten as equation (38) and in compact form as 
equation (39) 
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