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Method for System Parameter Estimation
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in this paper the theory of Equation Decoupling methodfor parameter estimation of unstable or augmented
dynanucal system 1S presented. T 1S also shown that the method is a generalisation ojrhe so culled Total
Least Squares method in which errors in measurements us weil as states are taken into account.
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INTRODUCTION

The output method (OEM)” is the most widely used technique
for estimation of parameters” of stabl.: dynamical system
including airerafi *™. However the method poses severediffi-
culties when applied to inherently unstable or augmented
systems’. When the system is unstable, numerical integration
leads to diverging solutions. A method called equation decou-
pling (EDYas been recently presented for parameter estima-
tion it unstable systems’. This wzihog uses measured states
to deccuple the state equations ard integraie the system of
differential equations independeat of each other. The decou-
piirg of the equations may changs the unstable systemio the
stable one. Asymplohie theory of ED output error method
{EDOEM) and generalisation of the total least squares (TLS)
solution are presented. Such studies are limited in epen litera-
ture’-".

EQUATION DECOUPLING OUTPUT
ERROR METHOD

The dynamics of the system are given as

X = AX + &J u'[‘fh .1(0) = Ay (l)
yo= Cx + Do (2)
)y =yt ok k=12.-.-- N (3)

Here. N is the number of data points and v is the mensurement
noise assumed to be Gaussian with zero mcan and covariance
matrix R. The @ {4, &, C, D} represents the parameter vector

10 he estimated. The cost function to be minimised is defined
as

N

h
E© =5 Y 20k -yl
A=

- N ;
Rt = yih + 5 In (R | {4)
Minimisation of the above cost function with respect to @
yields the estimates of © as
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Biyr =6+ LAY {(5)
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Here, [ stands for iteration number, The sensitivity matrx

Iy k)
00
numerical divergence can be overcome by incomporating sta-
bilisation into the OEM by using measured states. xm. The
manner of utilising the measured stares (o stabilise the system
equations leads to EDOEM® wherein the slates pertaining to
the off diagonal elements aie replaced by tlie corresponding
measured states. The system matrix A is partitioned into two
submatrices denoted by Ap (diagonal matrix) and Aop (with
offdiagonal elementsof A). Equation(1) can be rewritten with

X = Xmas
Mm‘l (7)

Xy
L J

The only integrated variables entering the differenuat equa-
tion are in the first term. Thus each differential equation can
be integrated independently of the others. The cost function
to be minimised is given by equation {4). However. the
computation of the sensitivity function involves the decoupled
materices Ap and Ao and the state measurements augmenting
the control input measurements.

ASYMPTOTIC THEORY OF EDOEM

In this section the implications of the use of measured states,
interms of sensitivity matrix computation arc studied thereby
providing analytical basis to the working of the EDOM. For
the case where there IS N0 process noise, equation {1 can be
discretised as
xtk+ 1) = dx (k) + yBu(k) and x(0) =x (8)
yi{k) = Cx (k) + Du (k) (9

needs to be computed. The instabitity caused due to

¥ = Apx + {B‘A[)D}

where ¢ denotes the state transition matrix and w its integral.

AIZ
¢:eAA’=|+AAI+A’ '5'1'

Ar At
V=emd'r=1AI+A ¥+A2¥+

t(k 1) - ¢ (k) is the sampling interval.

(10)

where At =
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Computation of the parameter increment vector. AQ, requires
the computation of tne senshivity equations. which are ob-
tuned hy pariiad differenuation of the system equations with
respect to cach element of the unknown parameter vector Q.
Since the sensitivity equationshave the matrix A as the system
eguations, the same transition matrix. equation (10}, can he
used to solve them. By differentiating equation (8) and (9)
withreguest 1o ©. ihe discrete form of the sensitivity equations
are obiaimed as”

dxtk + 1) a_'\-(k)+ I -k
70 70 Tae*W a2
a8 du{k) Jwy -
+ Y a k) + yB——" + —%
50 diK) + a(_) + a@ 11
Iy (k) Av (k) aC an
. S :C___ _ . . -
20 20 +BE) .\{A)+“H‘a® u(k) (15}

For simplicity second order longitudinal dynamics of an air-
cratt arc considered. The dynamics, incontinuous and discrete
form arc given hy
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The matrices &. w (to first (J:du approximation) and the
SYSLCI AN s We giveri by
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The scnsitivity matrix compatation can he made using equa-
tion ii2). The parumneter vector to be' estimated is given hy
Q =1z, M M, .25, . Ms,], the clements of A and 8. To
tlustrate she computations involved inthe sensitivity mairix.
the partal ditferenuation Of the states with respect to the
derivative M, s considered. first for OEM and then for
EDOEM.

Using cyuation i12) and 116) and the fact that the last three
terms in eguation t 12) vanish. one obtains,

fdu ik ] [aw{k)
Y | [t u] 2w s Zyl ol | M |
| Byt i} o My My 9y k)

! q:ﬂffu i r}MnJ

A |0 0] wik)
ofr )

[aw m] 0]
REZR Y M 0
. | dy (k) * M, &y (k) m+['~'(k}]m+
| aaty * ant, |
lm;+2q] a(;’;“[
W
e (k) At (%
{ M |

Vol 77. August 1996

=213

In equation (6} the second term represents the first sradient of
the cost function. Expanding this first gradient and using
equation {18}, (subscript f stands for integrated varniabie), one
obtains;
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For the problem described by equation ¢ 14},
Decoupling formulation is given by

the Equation
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The corresponding transition matrix and sysiem matrices are
given by
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Using cquatior {2 | j inequation 11 2) for the sensitivity equa-
tion with respectio My and considering the fact that termss 2nd
and Sthinequation (12) vanish, thus..
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Fur the fist gradient (wrr My,) for EDOEM
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To derive the asymptotic equivalence between EDOEM and
OEM,

Win = WI+WnQQm = ({r+fIn; W= W 4wy

(24)

where subscript ; denotes true values, » the measurement
noise, | the integrated value, and: the errors due to integration.
Substituting equation (24) into equation (19) and observing
ihe fact that the integration errors (w;) tend to zero as the
iterations are increased. Here, the convergence of the OE

algorithm .is assumed which.iz generally guaranteed, for
OEM,

N . r aW: (k - 1)
VE; (Q) - H Z wp(k) oMy +
N-1 N-1 gn(k) dg; (k—1)
k = i aMw
z, ow, (k—1)
M, + 0 Ar+
dgr (k— 1) we(k—1)
Me = on.
(o + Zq) aqla(:;— b
s (k= 1) At (25)
My ————=
aM,,

Substituting equation {24} intw equation (23) and the fact that
wi — 0 for EDOEM. one, gets,

N r an (k'— I)
VEE ((':')) — 1 2 Wn(k) aMw +
N-1  N-1 gnlk) dgs (k- 1)
k=t M,
Zw aw, (k - })
M At + 0 A
dgr (k — 1) witk= )+ wa (k- 1) |27
Mq*—.—
oMy

~

dqi(k—V+gutk— 1
oM.,
dw, (k—1)+wyk—-1)
" oM.,

] (Hn + zq)
As {26}

M

In equation (26) since the measurement noise [wy , gn] IS
independent of the parameters to be estimated, the partials of
gn and wy, wrt M,, vanish. Next, the following term involving

{wn , gn) are obtained, in equation (26)

N [wath ' 0
k=1

(27)

which tends to zero since the measurement noise ¢, and w,
are uncorrelated. Hence, in the light of the aboveobservations,
comparing equation (25) and (26), one gets.
VEE {6) 2 VEH (@)
N-1 N-1

(28)

asymptotically for the two-state model.
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Thus, the asymptotic behaviow of the EDOEM is similar to
that of OEM. However, the OEM does not work directly for
unstable systemsasnoted earlier. InEDOEM, since the meas-
ured states, obtained from the unstable plant operating in
closed loop are stable,their use in the estimation process, tries
to arrest this divergenceand at the same time enables parame-
ter estimation Of the basic unstable plant directly.

GENERALISATION THEORY OF EDOEM

The EDOEM can be viewrd as a generalisation of the TLS
approach for parameterestimation. The TI.S approach’ is used
to account for the errors in the measurements of X, the vari-
ables in the regression equation, in addition to the errorsdue
to noise in Y. The general regression equation is given by

Y=X0+¢ (29)

When the measurements X are noisy, the L.S method does not
explicitly account forthese errors. The TLS method addresses
this problem as follows:

The equation (29)is restated as

xXin@i-iy=o0 (30)
Due to the measurement errors, the compound data matrix
[XI ¥1 is full rank and there is no nonzero solution vector

{871 —1}". To get a solution, the rank of the measured data
[X1 ¥] is reduced with an estimate of data errors [AX|AY]

A A T T
({X1Y]-[AXIAYD® 1 -1} =0 (31
subject to the constraint of minimal approximation effort

A A
HAXTAYIC'1E is minimal (32)

where C is the square root of the convariance matrix of the
row vectors of the dataerror matrix [AX | A¥Y. The solution of
equation (31) is given in terms of the singular value decom-

position of the matirx [X | ¥] €

Cibris 1-11 = hvpas (33)

The trasformed solution vector C{BTI — 1] is found as the

A A _
kernel of matrix [XIY] C ', which equals the last column
vector vy + 1 Of the singular matrix V. Equation (31)is solved

for[@m | - i]T, A ischosen such that the last element equals
- 1. In case of EDOEM

[l

X = Apx,+ [BlAgp) [f::] (34)

y = Cx; o, (35)

where x; stands for the integrated state generated from the
integration of the state equations and n; stands for the meas-
urement noise. If C = I, the identity matrix,

(36)

Introducing the integrated variables from equation (34) into
the equation (35),

y = X;"'nm

U

Yj = ¢pxi;_, +[BAgp] [xm] A+ nyy {37
j-1

which is rewritten as equation (38) and in compact form as
equation (39)
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. . whichi ,
the analegy and the generalisation of the TLS probiem have s
been established in ternis o of the EDOEM for Whlcll theas- | i ®

i = [x’ U &1 (38)

Y'—’f'x'm:im (39)

. whereXisthe expanded matrix containing the mtegrated slate

the measured states and control inputs.  is the parameter _
" vector to be estimated, Equation (39) has the same general
' TLS problem .
_There are measurement errors in V. The x7 emtams errors die”

form as the regmssmn equation (29) for

to integration caused by i incorrect initial condmons round off
emors eic: Also the mecasurement errors in the states X, are
present in general. Thus the EDOEM formu]atmn of the
estimation problem is stich that it generalised the TLS preb' '
initself, the generahsanon of the LS problem. 7

generatéd with a doublat input to the pllol stlck with a sam-

pling tirhe of 0:05 s. o !

State equations:

w = wa+(uﬂ+Zq)q+23¢53 _ (40)°
Ca=M, w+qu+Maeﬁe B (41)
_"_Observatmn equataoas - e |
Az—Zuw'l—M q+25;8e
| W ".'. o i:

-7 " (42)

" where W is the vemcal velocny, u, the stat:onaly forward

" speed, g the: pltch rate, Az the vertical accelerauon and 8 is’
the elevator deﬂectlon Since for M,, with' positive numerical

* " value of system is gei
" gain K to stabilzse the sy

3, —8 +Kw".'

ply unstable, w is feedback with a
n as follows

(43)

where & denotes the pllot mput The dzrect identifi catlon
between 3. and output measurements is attempted The OEM
and EDOEM were used to analyse the data; Fig | shows the
time history match for g. This numerlcal dnvergence caused
due to integration of the. mherentiy unstable plant Is'evident

when OEM is used. When EDOEM is used the measured state
arrests the nuinerical dwergenee and the time l'ustory match

- 15 satisfactory. The theoretxeal and appllcatton results mdtcate
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\data of an’ axrcraft are smmlated: The data is

* menied systems is presented and: validated

that EDOEM can be used successfully for estlmanon of aero-
dynatmc derivatives of unstable or augment -, I'system:

CONCLUSIONS
The asymptot:c theory oﬁ E.DOEM whlch'

Also lt is shown lhat the EDOEM can be
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