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In this paper factorization filtering algorithms are described and used for processing 
data from a typical flight test range. Specifically U-D (unit upper triangular-@iagonal) 
factorization based Kalman filtering algorithms are considered. The algorithms are 
validated using simulated data and implemented in MATLAB and alpha DEC machines. 
UDP protocols are used to transfer data from one DEC machine to another where the 
UD filter algorithm is activated to process the data. A very brief description of the fusion 
scheme in which the UD filtering algorithms are being usEd is given. 

values of thdse parameters which completely 
specify the based on the measurements (11 These 

electro-optical devices (EOD), sonar etc 
The meGurements are processed using an optimal estimation algorithm. 'A precision 
track &termination estimator takes the measurement noise into account and 

ermines the track that provides a "best fit" to the collected data. Major constituents 
a track determination process are : vehicle's (system) kinematic motion model, 
asurements and estimation techniques. For a flight test range the tracking of a 

flight vehicle and sensor fusion are of great importance. In this paper, UD-factorization 
filtering algorithm, which directly handles bias parameters and correlated process noise 
in addition to the state estimates, is described. The algorithms are implemented in PC 
MATLAB and'C language (in alpha DEC computer). The algorithms are validated using 
simulated and real data. Using socket-programming features the UDP protocol for data 
communication has also been established between two alpha DEC computers. 

2. Tracking Filter 

Kalman filter has found very wide application in tracking problems because of its optimal 
and recursive features. The conventional Kalman filter algorithm is not numerically 
robust due to round-off errors, and numerical accuracy can degrade to the point where 
results cease to be meaningful. Typical problems that could occur are loss of positive- 
definiteness of the covariance matrix resulting from numerical errors such as finite word 
length computations and cancellation errors due to the subtraction term in the Kalman 
covariance update. Square-root filter formulations offer a solution to this problem of 
numerical accuracy and hence stability of the filter. The improved numerical behavior of 
square root algorithms is due to a reduction of the numerical ranges of the variables. In 
the UD filter [2 ] ,  the covariance update formulae and the estimation recursions are 
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. reformulated so that the covariance matrix does not appear explicitly. Specifically 
recursions are used for U and D factors of the covariance matrix. Computing and 
updating with triangular and diagonal matrices involve fewer arithmetic operations. The 
algorithm processes measurements, one component at a time. 

2.1 Mathematical Model 

A mathematical model of the vehicle state includes position, velocity and sometimes 
acceleration as state variables. The measurement model relates state variables to 
available measurement variables. For simplicity the states of motion are defined in 
the spherical coordinates such that the state equation can be decoupled into 
three independent channels. Then the tracking filter can work independently on each 
channel. The problem addressed in this paper is represented by the following set of 
equations: 

Measurement Model: 
zi = H x ,  +v, 

( 2 )  
Here. x is the state vector, w is the process noise with zero mean and covariance matrix 
Q. z is the measurement vector and v is the measurement noise with zero mean and 
covariance matrix R. all of appropriate dimensions. 

2.2 U-D factorization Kalman filter 

The tracking filter is implemented in the factorized form. 

Time Propaqation Alqorithm 

State vector evolution (prediction) 

Covariance update 

. 
.Y,.; = @  . x .  

I.. i 

r,-, = @Pj& +(;oc;' - 
. ^ .  

With P = lN)llr and Q, the time update factors 6 and 5 are obtained through 
modified Gram-Schmidt orthogonalization process [2] .  The matrix U is an upper 
triangular matrix with unit elements on its main diagonal and D is a diagonal matrix. 

covariance matrix P. are a technique for implementing "square root filtering" without 
requiring cbmputation of square roots. The U-D Kalman filtering algorithm is considered 
efficient, stable and accurate for real-time applications "4. 

\ Covariance and gain processing algorithms. operating on U and D factors of state error 



i -- 

The ll,l) factors of P = WDWT may be computed now. For j= n, n-l,.. ., 2, the following 
equations are recursively evaluated as shown below: 

The measurement update in Kalman filtering combines a priori estimate X and error 
covariance Fwith scalar observation I = a T x + v ;  a7 = H  to construct an updated 
(filtered state) estimate and covariance as follows: 

K = pula, 

i = X + K(z-aT?),  

a = a -  Pa+r  7 -  

i, = I; - K n j  

Here, r is the measurement noise variance (for scalar data processing). Gain K and 
updated covariance factors fi and 6 can be obtained from the following equations: 

j = ITTLI ;  f = (.f 1 ,..,) f") 
1,. = u'. I ,  f. 

= ZIr /a , ;  a, = r +.,A; K: = (v, o...o) 

- - 
1' = U f :  i=l.2, ...! n 

For j=2, ..., n recursively the following equations are evaluated: 

a, = aj_, +vJ . f j  

d .  = d,ui.: iu.: 
- 
- 

i, = 1 4 ,  + i , R , :  : ,  RJ = -{: !uJ..l 

(7 )  

- - 
Where I1  =[GI ,..., ITn], fi = [ j l , ,  .... G ! , ]  and the gain is given by K = K,,,, la,, . Here d =is 

predicted diagonal element, and j i  is the updated diagonal element of the D matrix. 
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. 2.3 UD Filter for Correlated Process Noise and Bias Parameters 

A mathematicat model representing a trajectory is usually not exact (even in a statistical 
sense) and the process noise is hardly a strictly white noise process. For ihis case the 
state model is given as: 

.,] 0 

(9) 
Here x is the state vector, p is the (state) variable representing the correlated noise and 
y is the bias vector. The transition matrix is almost triangular. The mapping (time 
propagation) of the U-D factors is carried out using the following equivalence [2]: 

A priori factors: 

; b=diagonaI(6x ,iP ,by)  all at time j 

u,=v&" +v,fip ; i7w=vr~,+vp~w+vyljy 

u =Q = f i  ; E  = D = 6  
u, =MU, = MU, ; u, = u, 

- - _  
U,DJJJ = (V, fix)bx (V*fi1)' - 

Y Y  Y Y Y  Y 
a - - - - 

(1 0) 
The above updating is mechanized by using the modified Gram-Schmidt 
orthogonalization algorithm. The factors related to correlated process noise and the 
bias are mapped as final factors using the modified Gram-Schmidt algorithm to get: 

-- - 
UDU' = W Diagonai(D,Q)WT 
i 



3. Sensor Fusion Scheme [3] 

In order to be able to. use sensor-channels such as EOT, PCMC, S-Band. two TM, 
RADAR 1, RADAR 2, INS, and GPS for fusion, it is necessary to develop fusion logic to 
use the information from these sensors, Fig. 1. The priority logic is  decided based on 
the sensor accuracy within the range of the sensor capability. Based on this priority 
logic the following sequence could be given to the sensors (of the first module) within 
the range limit of, say RL km. 

EOT 
PCMC 
TM and S-Band fusion 
S-Band 
TM 
Track loss 

f 

For range more than RL km PCMC radar tracks the vehicle. For the second module 
which contains the RADARS, the following sequence is fdlowed 

RADAR 1 and dADAR 2 fusion 
RADAR1 
RADAR2 
Track loss 

.. 

For the third module which contains the INS and GPS, the following sequence IS 
followed 
INS and GPS fusion (GPS data replaced by INS) 
INS 
GPS (GPS data replaced by INS) 
Track loss 

The U-D filters described in the previous section are being used in the above sensor 
fusion scheme for tracking of a vehicle and data fusion. 

4. Results and Discussions 

Simulated data with correlated process noise have been generated. The transition 
matrices used are given by: 

vi =[::I ;M, =exp(-Arlr) ; r=Orom 

(1 1) 
The states are position and velocity. A constant bias has been added to the position 
data so that Vy=l. At is the sampling interval equal to 0.5 sec and the value of M is 0.9, 
indicating high correlation. The UDF (without accounting for correlated noise and bias) 
and the UDFCPNB (accounting for correlated process noise and bias) are used to 
process these data using vehicle position only as the observable. Fig. 2 shows the 
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comparison of the state estimates obtained by these filters. From the results of state 
errors (difference of true and estimated state), it is seen that the UDFCPNB performs 
better than UDF when the data is contaminated by cotrelated noise. This is also 
supported by the results of Table 1. 

The real data of a flight vehicle (in Cartesian coordinates X,Y,Z) are processed using 
both the UD filters. The transition matrix of the state eqn. (9) is given as: 

1 A i  A i l 1 2  

v r = k  ; y 
(12) 

and H=[l  0 01. State vector x has position, velocity, and acceleration as its components. 
The figs. 3 and 4 show the results of this analysis. From fig. 3 it is seen that the 
performance of both the filters is grossly similar. However, from fig. 4 and Table 2 it can 
be inferred that the performance of UDFCPNB is better than the UDF. 

5. Concluding Remarks 

UDF 
UDFCPNB 

Mean 
Position velocity 

0.8489 1.68 
-8.4 -17.21 1 

Table 2: Results of Real Data- Mean values of residuals* 
Mean of Residuals 1 
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Fig. 1 Block diagram of data acquisition and trackinglfusion 
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Fig. 3 Residuals and RSSPE - Real Data 
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Fig. 4. Bias Estimates - Real data 


