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ABSTRACT

In this paper, several parameter/state estimation approachesfor the determinationofdragpolars from flight
data are described and evaluated for a fly-by-wire(FBW) aircraft. Bolh model-based approaches(MBAS) and
non-model-basedapproaches (NMBAs) are considered. Dynamic response data from roller coaster and wind-
upturn manoeuvresare generated in a FBW aircraft flightsimulator at different flight conditionsand the typical
performance results are presented. Anovel approach to estimate the drag polar has been evaluated. It has been
found that the NMBAS perform better than the MBAS Classically, the MBAs have been used for the determination
of drag polars. The merits of an NMBA are that it does not require specification of the detailed model of the
aerodynamic coefficientsand it can be suitably used for online estimation of drag polars from the flight data
of aerospace vehicles.

Keywords: Drag polar determination, model-based approaches, non-model-based approaches, fly-by-wireaircraft

flight simulator

1. INTRODUCTION

Determination of the performance characteristics
of an aircraft during flight testing is of great
importance'. Systematic evaluation of the drag
polars of an aircraft using dynamic manoeuvres
can be carried out over the full angle of attack
range of the aircraft. In recent years, parameter
estimation methods have found extensive use in
aircraft applicationsto determine aircraft performance
and stability characteristics using dynamic
manoeuvres*.The demands of improved performance
characteristics of modern flight vehicles have led
to aerodynamically unstable configurations which
need to be highly augmented in order that they can
be flown. For such an FBW aircraft, parameter
estimation and determination of performance
characteristics would require special considerations®.

In this paper, several state/parameter estimation
approaches are compared and evaluated for the

firsttime for drag polar determination using responses
generated from a 6-DOF simulator for an FBW
aircraft in the country.

Both the model-based approaches (MBAs) and
non-model-based approaches (NMBAs) are used
for the determination of drag polars. Certain methods
have potential application for real-time quick-look
drag polar determination. Also, the results of drag
polar determination using a novel approach are
presented. The latter method does not require knowledge
of a priori statistics of process and measurement
noises.

2. PARAMETER/ STATE ESTIMATION
METHODS

The parameter/state estimation methods are
linked as shown in Fig.1. The estimation before
modelling* (EBM) approach encompasses the NMBA.
The main distinction between NMBA and MBA
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is that in the latter the aerodynamic derivatives
are explicitly estimated either as direct parameters
in stabilised output error method (SOEM) or as
additional states in extended U-D filter (EUDF)
as shown in Fig. 1.

2.1 State & Measuremeut Models
The following set of equations are considered:
Xin :ti:j.lmxJ +Gw,
z; =Hx, ty, (1

Here, x is the state vector, w is the process
noise with zero mean and covariance matrix Q, z
isthe measurement vector and v isthe measurement
noise with zero mean and covariance matrix R, all
of appropriate dimensions. ¢ is the state transition
matrix and H, the observation model.

2.2 Basic U-D Filtering Approach
This filter is implemented in the factorised

FLIGHT DATA

form for the present application. It is given in two
parts: Time propagation algorithm and measurement
update algorithm.

22.| Time Propagation Algorithm

State vector evolution (prediction)

=

~j+l = ¢j+l,jij (2)
Covariance update

P =¢P¢" tGQG"

With p— ip{y" and covariance matrix Q, the
time update factors &/ and D are obtained through
modified Gram-Schmidt orthogonalisation process.
The matrix I/ is an upper triangular matrix with
unit elements on its main diagonal and D is a
diagonal matrix. Covariance and gain processing
algorithms, operating on U and D factors of state
error covariance matrix P, are a technique for
implementing ‘squareroot filtering” without requiring
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Figure 1. Link between various methods for determination of drag pelars from flight data
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computation of square roots. UJ-D Kalman filtering
algorithm is considered efficient, stable and accurate
for real-time applications.

One defines
w=[o0iGl,  D=diegD.g|
with #7 = [w,,w,,...w ],

Here, Tdenotes transpose of vector/matrix. U,

D factors of P = WDW "may be computed now. For
J=n.n-1,..,2, the following equations are recursively
evaluated as shown below:

(n-f) (n 7} > D

D, = !
(7(,1) = <w(" N i) >p /D

J s
{n-je) - (n ~/) {n-1)

~Uli j)w,

_ ni) n-1
D= <™ w5, (4)

CE,

Here subscript D qualifies the weighted inner
product wrt D.

2.2.2 Measurement Update Algoriihm

The measurement update in Kalman filtering
combines apriori estimate ¥ and error covariance
7 with scalar observation z =a’x+v; a’= H to
construct an updated (filtered state) estimate and
covariance as follows:

K= ﬁa/a,

x = 3E'+K(z—arf)
e )

a=aPair

P=P-KaP

Here, r is the measurement noise variance (for
scalar data processing). Kalman gain Kand updated

covariance factors U and D can be obtained from
the following equations:

f=Ua fM=(f.1) ‘

‘: = [!'; v =df; ;i=l,2,...,n} 6)
d; = dlr/al; ay = r+v|j];

K] = (»0..0) j

Forj=2,...,n recursively the following equations
are evaluated:

a = a v

; =da/a;

w = uj+1jKj \

Ay ==t e ™
K, =K +vjifj

WhereU =[3,....#} U={#,..., ], and Kalman

gain is given by K=K_ /z . Here d is predicted

diagonal element, and a; is the updated diagonal

element of the D matrix. The U-D filter described
aboveisdeveloped in'C' language and implemented
in DEC Alpha computer. It has been validated using
simulated trajectory data and also real flight data.
A priori specification of the covariance matrices
(Q and R) of the process and measurement noise
IS necessary for tuning the {J-D.

2 3 Estimation before Modelling—Model-Based
Approach-

This approach involves two steps. In the first
step, sub-optimal smoothed states of vehicle are
obtained using an EUDF algorithm to perform data
compatibility. This essentially makes use of the
redundancy present in the measured inertial and
air data variables to obtain the best state estimates
from the dynamic manoeuvres. Scale factors and
bias errors in the sensors are estimated by expanding
the state vector to include these parameters as
augmenting (additional) statesand the time histories
of the aerodynamic lift and drag coefficient forces
corresponding to each manoeuvre are computed.
In the second step, the aerodynamic parameters
are estimated using the stepwise multiple linear
regression (SMLR)method. For selectingan appropriate
model structure, partial F statistics are used to
build up the parameter vector by selectingsignificant
parameters in the model, one at a time, until the
regression equation is satisfied. In addition, at each
step, the values of partial F, total #, squared multiple
correlation coefficient, residual sum of squares
and residual variance are evaluated.

2A8&
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Figure 2. F and R? values for lift and drag coefficients
(model 1)-RC manoeuvre.

The regression equations for £, and C,-) (with
linear terms of Taylor series) is of the form:

231 Model i

22

c,=c +¢, Yic,avc, i, s
2] - ;AD a q :Z!‘O “be

V qc
(::L) = (:?Ih + t:jlh, ;;;; + (:}JL o + (:?L% Ei;;;’4- (:j[%& é;e

The variables in model 1 are ¥, a, ¢, and §..
These variables enter the regression equation for
C, and C, in the order (based on the partial F
statistics) shown in Table 1. Figure 2 shows the
plot of computed F and &? versus variable entry
number for a typical RC manoeuvre data. As can
be seen in this figure, the trend for F and R? for
lift is acceptable. However, the trend of overall F
for C, shows a decreasing trend and the R* value
shows that this model is able to explain only 98
per cent of the variation in C. This indicates the
need for additional terms in the model. An additional
term with a? as the variable is added to model t
resulting in model 2 as given below:

2.3.2 Model 2

4 qc
C, =C,+C, ;;+ C o+ C,'azaz +C, a+ C, 0

-4

qc
Cp=CytCy if 1C,at Gy, o’ G, " 10y, 8,

247

Table 1. ResultsofmodelstructuredeterminationusingEBM:
Data set-l1 (RC manoeuvre)
Variable  Relating R} Overall F Partial
entered  derivative (%) F statistics
No. Name
Lift parameters: Model |
l'a €, 995450 0.1089E+06 0.5205E + 03
2v  C, 99.8320 0.1476E+06 0.1316E + 02
3a  Ci, 900285 0.2310E+06 0.6641E +02
4q G, 99.9842 0.7852E+06 0.4186E +02
Drag parameters: Model 1
la Cp, 985372 03355E+05 0.9379E+02
2 v Cp. 987239 0.1923E+05 0.9502E + 01
35 Cp, 988348 0.1402E+05 0.6869E + Ol
4 q Cf),, Not Enlered
Lift parameters: Model 2
la G, 995450 0.1089E+06 0.1699E + 03
2v  C,, 998320 ©0.1476E+06 0.1776E + 02
36, Ci, 999285 0.2310E+06 0.1380E + 03
4q C,, 999842 0.7852E+06 0.9524E +02
5a C., 999967 0.2950E €07 0.4278E +02
Drag parameters: Model 2
1@ Cb, 996417 0.1385E+06 0.1288E+03
2a Cp 998844 0.2147E+06 -0.5696E + 02
3q Cp, 999234 0.2155E+06 0.2219E+ 02
45, Cp, 999614 03208E+06 0.2499E + 02
5 v Cp, 99.9664 0.2937E + 06 -0.8513E + 01

Theorderin which the variablesenter the regression
equation is shown in Table | and the results of F
and R ? are plotted in Fig. 3. The trends indicate
the adequacy of this model for C, although the
improvement in C, is only marginal. Hence «?
term is included only in drag equation and this
structure is used for C, and C, in the MBAs.
Subsequently, the drag polars can be reconstructed
using the estimated parameters in the Taylor series

representation of the aerodynamic coefficients®.

lThe advantage of using this method is that the

model structure can be determined and used in
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other techniques for further refinement. The method
does not require initial values of the unknown
parameters to start the estimation procedure (due
to one-shot nature of the regression in the second
step).

24 U-D Filter-Non-Model-Based Approach

This is a NMBA in which the aerodynamic
derivatives are not estimated/required. As in EBM
method, using kinematic consistency checking
procedure, the aircraft states are reconstructed by
EUDF. Using the filtered states (and the kinematic
relations), the dimensional forces X and Z are computed.
Acentrally pivoted five-point algorithm for numerical
differentiation obtains the time derivatives required
at this stage.

Next, the time histories of the nondimensional
aerodynamic coefficients C and ', are computed
using the aircraft mass characteristics. The drag
and lift coefficients (time histories) C, and C,
are obtained and the drag polar determined. The
kinematic consistency equations® are:

2.4.1 State Equations

il=—(q _Aq)w+(r—Ar)v
~gsine+(a, -Aa,),
v=-(r—-Arjut(p-Ap)w
+gcosfsing +(a7 —Aay), w0)=v,
b=—(p- ) +(q gy
+gcosBeosp +(a, —Aa), w(0)=w,
$=_{p _Ap)+(q_Aq)sin¢tm9

0) =,

(8)

+(r —Ar)cos¢ tan6, $(0) =9,
0=(q—Agq)cosd~(r - Ar)

sing, 8(0) = 6,
!ﬂz(q—Aq)sincﬁsecO

+(r — Ar)cos¢sec, v(0)=vy,
h=usin® - vcosBsind
. —wcosfcosd, HO0)=h, |

|
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Figure 3. F and R? values for lift and drag Coefficients
(model 2)-RC manozuvre.

5 4.2 Observation Equations

' 2. .2, 2
V, =iy vy tw, + AV

a, =K tan'(—r;f)+ Aa
B, =sin”'(72)4, = ¢ ®)
9, =K89+Aéw,,, =y

h, =h

where %, v, and w_are the velocity components
along three axes at the nose boom and they are

given by

h, =y - (r-Ar)y, t{g-Aql,

o =v - (p-Ap), t{r-ar), (10)

w, =w _ (g-Aqx, + (p-Ap,
where X,,¥, and z, are the nose boom offset distances
from the center of gravity. Using the corrected
states and linear accelerations in the following

equations, the lift and drag coefficients can be
estimated:

(1D
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The lift and drag coefficients are computed
from C, and C, using following equations:

C, =-C,cosa+C,smu
L Z X } (]2)

Cp =-C,cosa -C,sina

25 U-D Filter-based MockelHBassd A pproach

This is a MBA where the mathematical model
(Taylor series expansion of the aerodynamic
coefficients) is formulated with unknown system
parametersas augmented statesand hence the parameter
estimation problem is transformedinto a state estimation
problem leading to EUDF.

A priori specification of the covariance matrices
of the process and measurement noise is necessary
to use the EUDF. The mathematical model formulation
is as follows:

2.5.1 State Model

.7 v 2
=-—|Cph+Cp, —+Cpastl
m( Dy D"”o p,% Duz“

qc F,
+Cp, —+Cp, 8, [+—Fcosla+o
5y 2u, Ds. e} m s(a T)
t gsin{a -8)+ b,
. g8 v
az_W(C1°+CLv;+Cfua

 (13)

gc F, .
+C, —+C, b, -—5sinfa+oy)+
i, 2"0+ I, .«.] — m(a O'T) q

t Bcos{u-8)+b,
\Y

B=gtbh,

where b ,b and b, are the bias parameters in state
equations. In addition to the above state model, all the
unknown parameters in the state and observation
equations are augmented as state vectors.

2:A0

2.5.2 Observation Model

V, =V

a’,;a

0,=0

a, = gﬁ(CX)+£ cos O (14)
" oom m

a. =8C)- % g .
™ m m

with
C, =-Cieos a-Cpsin a
Cy.=Csina-Cpeos a
C,=C, +cw£+c%u+c,;g-c—+c,ﬁa,
v 2
Cp=Cp, +Cp, ;—+Can+CDa2a

0

(15)

+Cp %‘c-w,)aeae

The lift and drag polars are determined using
the estimated augmented state parameters in Eqn (I 5).

26 Stabilised Output Error Method

The output error method' (OEM) is the most
widely used technique for the estimation of parameters
of stable dynamical systems. It has been successfully
utilised for the estimation of stability and control
derivatives of aircraft from flight data. However,
the method poses severe difficulties when applied
to parameter estimation for fly-by-wire (FBW )aircraft.
When the basic aircraft is unstable, numerical integration
of the state model leads to diverging solutions.
This instability caused due to numerical divergence
can be overcome by incorporating stabilisation into
the OEM usingmeasured states for those aerodynamic
derivatives, which cause instability in the system
model. While this approach has the advantage of
stabilisingthe system, it needs accurate measurement
of states. For the aerodynamic coefficients, the
model structure selected using EBM (Fig. |) can
be used. The state space mathematical model is
formulated with three (V, aand 6 ) states and five
(¥, a, 6, a, and a,) observable variables. The unknown
parameters in the state and observation equations
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are estimated iteratively and these are used to construct
the lift and dragpolars. The mathematical formulation
for stablised output error method (SOEM) is the
same as in Eqgns (13)to (I 5) except that the measured
states a and ¢ are used for artificial stabilisation
of numerical integration of the state equations, i.e.
Eqn (13).

2.7 Extended Forgetting Factor Recursive
Least Squares Method

An effective recursive method called extended
forgetting factor recursive least squares (EFFRLS)
method for the estimation of drag polar is described.
This method does not require knowledge of process
and measurement noise statistics. It only requires
a suitable choice of a forgetting factor* (FF). The
main advantage of this method is that only one
adjustable parameter is required compared to several
elements of Q and R required for tuning ofa Kalman
filter. The algorithm used in the non-model based
mode® is given as

Xty = Pyxy J
eslrjsi = q’k[Lk.«j(YjH B Hj+l‘Df+b’kxM)]

¥ v r ' -1
Lyj= Pk,qu)ﬁl:‘kHjH()Li + Hj+Iq)j+b-’k}i/j¢j+lﬂcﬁj+l)

-1
P E(X.'%+Lj+lAj+]Xk+].:j+])
,l ,
=101 Ly Hy® B0 (16)

FF, A should be very close to 1 but less than
1. If FF is equal to 1, then it gives ordinary least
squares solution. The memory index (MI) of the
filter can be defined as MI=1/(1-FF). Thus if
FF =1I,then Ml is infinity — thefilter is said to
have infinite memory. This means that the entire
data set is given equal weighing. If FF >, the M|
will also be smaller (finite memory). thereby implying
that the past data are given less weighting, since
the weighting factor used in the least squares
perforniance functional is given as

ARk

Choice of FF is based on the following
considerations. 1f the process noise variance is
expected to be large, the FF should be small, since
the past data is not giving more information on the
current state/parameter. |f the process noise variance
is relatively smaller than the measurement noise
variance, the FF should be of a large value. This
implies that more data should be used to average
out the effect of the noise on measurements. FF
can also be linked to the column rank of the observation
model H. Ifthisrank is larger, there is more information
(contained by the ™ measurement data) on the
present state. FF can also be taken as inversely
proportional to the condition number of the data
matrix:

B =(X, %)

If the condition number of the matrix is large,
then one would like to give less emphasis on the
past data, and hence the FF should be smaller. The
condition number of a matrix is defined as the
ratio of magnitude of the largest eigenvalue to the
magnitude of the smallest eigenvalue. The above
are general guidelines to choose a FF. For a given
application specific evaluation study is generally
required to arrive at a suitable FF. Thus the FF
may be chosen as

V ariance( R) |

Variance( Q) Condition No.(dam matrix P)
1

Column rank (1)

From the above it is clear that the weighting
factor is intended to ensure that data in the distant
past are forgotten in order to afford the possibility
of following the statistical variation of the
measurement data.

3 RESULTS & DISCUSSIONS

Aircraft responses are generated at three
representative flight conditions {rom the FBW
aircraft simulator using two dynamic performance
manoeuvres as
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Table 2. Percentage fit ervor for lift and drag coefficients

RC manoeuvure

Parameter Data set | Data set 2 Data set 3 Data set 4
estimation {Alt = 8 km. {Alt = 8 km, (Al = 8 km. (All = 8 km.
approaches Mach No. = 0.6) Mach No. = 0.7) Mach No. = 0.8) Mach No. = 1.0)

o CL C C CU C , C"\ C Cn
EFFRLS-NMBA  0.015t1 0.0089 0.0139  0.01L5 00163 0.0i45 0.0169 0.0129
EUDF-NMBA 0.0216 0.1586 0.0201  0.1t12 0.0190 0.1036 0.0442  0.4275
EUDF-MBA 0.2597 0.9108 0.3940  0.6660 0.4939 1.0506 0.5439 0.3659
SOEM 0.2198 0.7540 0.3747  0.5979 0.4746 1.0009 04973 0.2996

WUT manoeuvre
Parameter Data s¢t | Data set 2 Data s¢t 3 Data set 4
estimation {Alt = 8 km, (Alt = 8 km, {Alt = 8 km. (Alt = 8 km,
approaches Mach No. = 0.6) Mach No. = 0.7) Mach No. = 0.8) lJach No. = 1.0)
C Cy gf_ Lh C, Ch 9 EQ\ -
EFFRLS-NMBA 0.0624 0.2664 0.0718 0.2908 0.0767 0.3144 0.0499 0.2413
EUDF-NMBA 0.0411 0.5960 0.0543 0.493G 0.0624 0.4588 00423 0.2261
EUDF-MBA 0.6153 0.9564 0.4524 1.1780 0.3922  (.8220 0.3995 0.7903
SOEM 0.3871 0.8862 0.4811 1.2402 0.5078 0.8579 0.2487 04741
N ; 2
EI(C{' Mrue ~ ('{ Jest
Percentage fit eiror = N 7 x where (.) = Lift or drag coeffictent
E' (C(.}.'rue )

Roller Coaster

Roller coaster (RC) longitudinal manoeuvres
are generated for which the simulated vehicle is
taken through 1g-2g-0g-tg normal acceleration cycle
at the rate of 0.1g/s for Mach Nos.=0.6, 0.7, 0.8
and 1.0 at altitude = 8 km.

Wind-up-Turn

Wind-up-turn (WUT) coupled manoeuvre data
are generated for which the vehicle is progressively
banked and loaded so that the g linearly builds up
from 1gto nearly maximum g, and angle o f attack
ranges from 5°to 20°, at the same flight conditions
as in RC manoeuvre.

The RC manoeuvres are generated from the
FBW aircraft simulator, while it is operating in the
hatch simufatton mode. WU data is generated by
actually flying the simulator by a pilot/engineer.

Table 2 gives the fit error performance of different
methods at various flight conditions for two types
~f manoewvres. It can he seen that the EFFRLS-
SAMBA and EUDREF-NMBA pertorm better than the

othertwo MBAs. Dragpolarsresults obtained from
RC and WUT manoeuvre at altitude 8 kin and
MachNo. 0.6 are presented in Figs 4 and 5, respectively,
for the four methods. It iS Seen that the results
are satisfactory. Though more results have been
generated at other flight conditions, but for the
sake of brevity, these have not been included here.

The SOFM is an iterative process and hence
requires more time for drag polar determination,
EUDF is a recursive process and could he an attractive
alternative to the SOEM. However, it requires proper
choice of the process and measurement noise statistics.
The two-step method EBM that helps in model
selection based on statistical criteria is a good
method for drag polar determination. However, it
could be more time consuming. It is included here
only for the sake of completion and to show the
link with other methods. ANMBA could be preferred
over MBA. as 1t would require less computation
time and would still give accurate results lor drag
polars from lIlight data. It isalse a potentialcandidate
for real-tiiiie on-line determination of drag palars.
This approacli has recently been validated 1
the data from transport categary aircraft. ftis betng

sing
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Figure 4. Drag polars—roller coaster manoeuvre (data set 1).

further studied for in-flight drag polar determination.
For the upcoming flights of an FBW aircraft the
approaches evaluated here are planned to be used
for the determination of drag polars using real
flight test data.

4. CONCLUSION

Mainly four parameter/state estimation methods
have been evaluated for the determination of drag
polar from dynamic performance manoeuvre data
for an FBW aircraft. White it is possibie to get
very good estimates of drag polsrs from all the
methods, the NMBAs are very efficient and less
time consuming. They can aiso he applied for real
time estimation of drag polars from flight data. A
novel approach for estimation of drag polars has
been validated. The latter requires to choose only
one adjustable factor compared to several (as in
Kalman filter cases). It is very promising method
(or nn-line determination of drag polars from real

PO

EFFRLS - NMBA 1[ EUDF- KMBA
1
i
| !
L S [
] :
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Y L 1
0.2 0.3 0.4 05 0.2 0.3 IR 25
¢ .
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S 4 S
L-__I_—‘Tﬁ_"r F_ —7 T 1
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(,_ G
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Figure 5. Drag polars—wind-up-turn manoeuvre {data set )
flight-test data.
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