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Abstract: In the paper, analysis of stabilised
output-error methods (SOEMs) for parameter
estimation of unstable aircraft is presented. These
methods overcome the numerical difficulties
encountered in parameter estimation of unstable
systems by utilising measured states. The
methods, along with the output error method
(OEM) and the equation error method (EEM),
are briefly described for the sake of comparison.
However, the main idea of the paper is to present
asymptotic analysis of the SOEM. The results of
application of SOEMs to simulated data of an
unstableiaugmented aircraft are presented.

1 Introduction

The output-error method (OEM) [I] is the most widely
used technique for estimation of parameters of stable
dynamical systems [2, 3]. It has been very successfully
utilised for the estimation of stability and control deriv-
atives of aircraft from flight data [4-6]. However, the
method poses severe difficulties when applied to inher-
ently unstable systems [7, &]. Even if the basic unstable
plant is operating with a stabilising feedback loop
around it, the application of the OEM to directly esti-
mate the parameters of the state-space models of the
plant from its input/output data poses similar difficul-
ties. When the system is unstable, numerical integration
leads to diverging solutions.

Modem aircraft are designed to be aerodynamically
unstable to meet improved performance characteristics
such as high manoeuvrability. Such basically unstable
aircraft are flown with a fly-by wire control system
(FBWCS), i.e. in a closed loop. However, many appli-
cations in flight mechanics require the determination of
the aerodynamic derivatives of the basic unstable air-
craft. The aerodynamic derivatives are required [7]
both to explain aerodynamic, stability and control
behaviour of the aircraft, thereby describing its static/
dynamic behaviour, and, in the mathematical models,
for design of flight control systems and high fidelity
simulators.

Hence, for the successful application of the OEM to
an inherently unstable/fly-by wire control system, spe-
cial techniques and modifications are necessary to pre-
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vent or arrest the growth of divergence. An approach
which provides artificial stabilisation in the mathemati-
cal model used in the OEM (software) has been
reported [8]1 for unstable aircraft. However, this
approach requires an extensive engineering effort. A
method based on an extension of the basic principles of
regression analysis, called the equation-decouplimg
OEM(EDOEM) has been applied for parameter esti-
mation of unstable systems[9]. This method uses meas-
ured states to decouple the state equations and
integrate the system of differential equations independ-
ent of each other. The decoupling of the equations may
change an unstable system to a stable one. The degree
of decoupling can be changed depending on the insta-
bilities in the system. Several approaches to parameter
estimation of inherently unstable/FBW aircraft have
been reported [10-13].

The detailed analysis of stabilised OEMs (SOEMs),
the OEMSs which use measurements of required states
to stabilise the estimation algorithm, is limited in the
literature. In the present paper, such methods are
termed stabilised output-error methods (SOEMSs). After
providing a brief overview of the OEM and the equa-
tion error method (EEM), the SOEMSs consisting of the
RAOEM (regression analysis OEM) and the EDOEM
are described. Subsequently, detailed analysis of the
SOEM is presented. The main idea of the paper is to
give an asymptotic analysis of the SOEMSs. The results
of application of SOEMs to simulated data of an
unstableiaugmented aircraft are also presented.

2 Output error method

The OEM minimises the error between the measured
and model responses produced by identical inputs. It is
assumed that there is no process noise. The OEM is
applicable to both linear and nonlinear systems [14].
For simplicity, a linear system is described. The
dynamics of the system are given as

X =Az+ Bu withz(0) =z (1)

z(k) =y(k) +v(k) k=1,2,....N (3)
where x is the n-state vector,  the control vector, y the
m-observation vector, z the measurement vector, N the
number of data points and v is the measurement noise
assumed to be Gaussian with zero mean and covari-
ance matrix R. The ® {A, B, C, D} represents the
parameter vector to be estimated. To estimate the

parameters @, the cost function to be minimised Is
defined as

N
B(©) = 33 1e(6) v 20 -u(h)] + IR
k=1 (4)
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Here T denotes the transpose of 3 matrix/vector. Mini-
misation of the above cost llinction with respect to ©
yields the maximum likelihood estimates of ©.

Brp1 =0, + 1AG, ®
B dy(k) ’ _1 Julk) )
ylk )
W R k)~ b)) (6)

k
The first term in eqn. 6 is the Gauss—Newton approxi-
mation to the second gradient of the cost function E(©)
and is called the information matrix. Egn. 5 in terms of
the first and second gradients can be written as

Py |

&1 = 0, +[VEO E®©) (7)
Here / stands for the iteration number. The constant
is called the damping factor which can he used to
improve the convergence of the algorithm. Thus, to
compute the first and second gradients, we need to
compute the term dy(k)/00. This term is called the sen-
sitivity matrix and is obtained by the finite-difference
method. For aircraft parameter estimation the OEM is
the most widely used estimator. since it has many desir-
able statistical properties [1].

3  Equationerror method {(EEM)

This method is based on the principle of least squares.
The EEM [11] minimiscs the error in the (state) equa-
tions to estimate the parameters. It is assumed that the
states, their derivatives and control inputs are accu-
rately measured. The method is fast, simple, nonitera-
tive in nature and is applicable to linear as well as
linear-in-parameter (LIP) systems. The equation error
can be written as (from eqn. 1)

e(k) =i, — Ar,. — Bun, (8)

Here x,, is the measured state, subscript m denoting
‘measured’. The parameter estimates are obtained by
minimising the equation error with respect to ®. Eqn. 8
can be written as

e(k) =dm — AuZam (9)

where 4, = (AIR] and x,, =[x] | ul1".
In this case. the cost function is given by

'um(k)JT[i’am (M - *'1a-ram(k)}

1 M
E{©) =35 liom(k)
=1 (10)

The estimator is given as
N

OU T =0 + 1Y (Famth) — AaZam (k) (2am (k)T
k=1 (11)

ignoring the information matrix part for simplicity {12].

Application of the EEM to parameter estimation
requires accurate measurements of states and their
derivatives. The EEM can be applied to unstable sys-
tems because it does not involve any numerical integra-
tion which would otherwise cause divergence. The
utilisation of measured states (and the state-derivatives)
for estimation. stabilises the algorithm, and enables
estimation of the parameters of the unstable system
directly. This notion of using measured states is the
basis of the stabilised output error methods. The

SOEMs described in this paper seem to fall in beiween
the EEM and the OEM methods for parameter estima-
tion. and hence can he said to belong to a class of
mixed EE-OEM methods for parameter estimation.

4  Stabilised output-error methods (SOEMSs}

The instability caused by numerical divergence can he
overcome by incorporating stabilisation into the OEM
using measured states. The manner of utilising the
measured states to stabilise the system equations, leads
to two varieties of stabilised OEMSs: the equation
decoupling OEM (EDOEM), wherein the states per-
taining to the off-diagonal elements are replaced by the
corresponding measured states. and the regression anal-
ysis OEM (RAOEM), wherein only the states occurring
with the parameters which cause numerical divergence
are replaced by the state-measurements.

4.1 Equation decoupling OEM (EDOEM)

The system matrix A is partitioned into two sub-matri-
ces, denoted by Ay and A,p, where A, is the diagonal
matrix containing the diagonal elements of 4, and the,
matrix A,, the off-diagonal elements. Augmenting the
contrbl input vector » with the measured states x,,
eqn. 1 can he written as

T = AD;]?-l-fBlAOD

The only integrated variables entering the differential
equation are in the A, matrix, and all other variables
related to 4,,, are measured states. Thus each differen-
tial equation can be integrated independently of the
others, and hence the equations are completely decou-
pled. This decoupling may change the original unstable
system into a stable one. Thus, application of this
method requires independent, noise-free measurements
of all the state variables.

The cost function to be minimised is given by eqn. 4.
However, the computation of the sensitivity function
involves the decoupled matrices A, and A, and the
state measurements augmenting the control input meas-
urements.

4.2 Regression analysis OEM (RAOCEM)

In this method, which is a variation of the EDOEM,
the measured states are used for the aerodynamic deriv-
atives which cause instability in the system, and inte-
grated states are used as the remaining states. While
this approach has the advantage of stabilisiiig the sys-
tem, it needs accurate measurement of states, as in the
case of the EDOEM. In this case, the matrix A is parti-
tioned into two parts, 45 containing that part of the A
matrix which has parameters that do not contribute to
divergence and 4, for that part which contributes to
the system instability, so that the system equation has
the form

Ly

i.c. the integrated states are used only for the stable
part of the system matrix and measured states for the
parameters contributing to the unstable part of the sys-
tem. Egn. 13 has a form similar to eqn. 12 for the
EDOEM. The only difference between the two is that
m eqn. 12. the §natrix A, is diagonal, whereas in

i=Asz+[BlAys] [“m] (13)

egn. 13 4 may ndt be diagonal. Thus, in the RAOEM
and the EDOEM{ the measured states are used. This



technique trics to proventarrest the growth of errors
due to numerical integration of the svsiem equations.

5 Analysis of SOEMSs

In this Section. the implications of the use of measured
states. in terms of sensitivity matrix computation and
covariiitice. arce studied. thereby providing an analytical
basis to the working of the SOEMs. It is assumed that
the analysis for the OEM is valid when applied to a
stable system for which the convergence of the algo-
rithm is generally assured. Also. it is assumed that the
presented analysis for the SOEM is valid for the unsta-
ble system, since the use of measured states stabilises
the parameter estimation method.

For the case where there is no process noise, eqn. 1
can be discretised and expressed as

r(k 1) =ox(k) + ©Bulk) and z{0} =z¢g (14)

y(k) =Cxik) T Du(k) (15)

where ¢ denotes the state transition matrix and wy its
integral

L
R I U e (16)

a A2 At3
@,,-.:/ dr e IM A+ AT (1)
0]

where Ar = r(k + 1) - rik) is the sampllng interval.
Computation of the parameter improvement AQ©,
eqn. 6, requires the computation of the sensitivity

matrix
dy Iy
-2} =2k 18
(8@)” 00, (18)

The sensitivity matrix, eqn. 18. Is obtained from the
sensitivity equations, which arc obtained by partial dif-
ferentiation of the system equations with respect to
each clement of the unknown parameter vector ©.
Since the sensitivity equations have an identical matrix
A as the system equations, the same transition matrix,
egn. 16. can he iised to solve them. By differentiating
eqns. 14 and 15 with respect to €. the discrete form of
the sensitivity equations are obtained as [7]

delk+ 1y 2alk) Do B
06~ %0 gtk tuggultl
(Jtt(f\) ()l
ylk) owik) oC oD
50 ~ g0 tagth) T 5gulk) (20)

In order to study the implication of measured states in
the SOEMs, the detailed computations of the parame-
ter update in the OEM and the SOEM. using a simple
lirst-order example, is considered in the discussion to
follow.

The state equation of the system is given as

p=LptLss (21)
and the measiireinent equation is
P (k) =plk) + (k) (22)

where p is the roll rate and & is the aileron deflection.
The L, and Lg are the aerodynamic derivatives to be
estimated. It is to he noted here that A. the system
matrix. is Lp and B, the control matrix, is Ly, mMatrix C
=land R+ 1.

The cost function for the OEM for this case is given
by (eqn. 4)

éz )= p(BF(3)

where p(k) is the computed response using the « priori
values of L, and Lg

p(k T 1) = op(k) T Bs(k) (24)
Using eqns. 16 and 17, and neglecting higher-order
terms of Az, which is justified since the sampling inter-
val is small in general, the matrices ¢ and y are given

by
o=11TLAt and © =A¢ (25)

Substituting eqgn. 25 into eqn. 24. we get
plk t1) = (1 T LAt)p(k) + AtL;6(k)  (26)

The estimates of L, and L; are those which minimise
eqn. 23. The sensitivity matrix is given by eqn. 19

opthel) . o) o
3oL~ oLyt T AL, 1P
N a5(k)
[ p——. T h_—— -
R T R Ty I 2%
up
— Bk 27
+ oy PO 27)

In terms of partial differentiation with respect to indi-
vidual aerodynamic derivatives, using information from
eqn. 25, egn. 27 becomes (after simplification)

Ip(k+1) _Op(k) | dp(k) ik
oL, oL, oL, ky (28
plk +1) _ dp(k) k) |
= + L AL Atd(k 2
9L;  oL; o, Tt (0)
Thus, in this case, the first gradient VE(®} is given by
. _|9p Op
Vp = [5L_p’ ETLJ 130)

The parameter vector © ={L,. L] and successive esti-
mates of @ are obtained by iterating eqn. 5. Thus, for
the single state variable case. starting with the initial
estimates of the parameters L, and Ls which will be ©,
using eqgn. 5, ©, is first obtained and then iteratively.
the subsequent estimates of @ are ohtained by comput-
ing the first and second gradients of egn. 24 which are

given by:
0 W &
Z(Pm - éL )
TE(©) = (31)
OP( Op(k)
g(pm(}” C}L ]
- N
) — Iplk—1)
S tom )=tk |
+LpAt8—p%—f1—1l + Atp(k — 1)}
=1 ’ (32)
‘ Op(k — 1)
S ) = p0) |
+LpAta—pg§T_}l + Atk 1)}
L 5 ol



In order to analyse the concept of SOEMs. assuming
that the derivative L, causes instability in eqn. 21, the
measured states are used for the state p in addition to
the measured control surface deflection 3. The expres-
sions for the first and second gradients are now derived
for this case, and the effect of the measured states on
the sensitivity matrix computations are analysed.

When the measured state is used in eqn. 21 for the
state p, the state equation will be of the form

The measured p is appended to the measured control
surface deflection &, and hence in eqn. 34 the system
matrix A =0and B = [L,,Lz]. Hence ¢ = 1 and y == Ars.
Eqn. 34 in diserete form (using eqn. 24) is given by

p(k+1) = [tk + AL, Ls) | (35)
. e

As in the case of the derivations of eqns. 32 and 33, the
cost function (eqn. 23) is to be mimmised with respect
to the parameter vector © = [L,, L. It is to be empha-
sised here that any change in the parameter L, or L;
causes the state p to change and hence in the subse-
quent expressions, the partial differentiation of the
measured state with respect to the parameters is
retained. The control surface deflection & is treated
independent of the parameters.

Applying eqn. 19 to egn. 35 yields the following sen-
sitivity.equations:

aplk+1) _ oplk) @ | pmiE)
oL, %or, AU Bl
(3 pni(k)
+ AL, Lsl=— 36
[ P O:laLp { 6(k} :‘ ( )
E)p(k) Opn (k) -
WAV Atp, Lk 3
oL LA = A 8T
BL ~ op, T Lk, T MG (38)
The measured state p,, can be written as
Pm =P TDn (39)

where p, is the true value of the roll rate p and g, is the
measurement noise in p. Substituting the above expres-
sion in egns. 37 and 38, one obtains:

Oplk +1)  Op(k) Ap: (k) Op.. (k)
- LA b LA
oL,  aL, ' oL, aL,
+ Atpg (kY + Atpa (k) (49)
dp(k+ 1) 9plk) Iy (k) Ipnlk)
2t M A : Lyt + Atd(k)
oL, oL, Tt T AL, (k)
(41)
212

The first gradient is given by

VE«(0) 42)
N1 -
r N
aplk - 1)
S ) -ptin | L
k=1
py (k- 1) A (k — 1)
L A S A S N el . S S
+ LAt iT, + LAt T
+ Aip{k — 1)+ Mpa(k - 1)]
1
TN-1
. E—1)
3 (k) — (k) {—(—
k=1
+ Até(k - 1)}

In egn. 42, since the measurement noise I1s independent
of the parameters to be estimated, and it is assumed to
be a white random process, the terms involving g, drop
out on average, in the statistical sense. Thus finally we
have

VEs(©)

43
N -1 (43)
- N
aplk - 1) i
5 ot iy [ 271
= L,
dpe(k - 1) ; ‘. ]
1 +LPAt———aLP + Atpi(k — 1)
N1 ol — 1)
pﬂf
m (k) — p(k))
Z(p p(k) [ AL,
oplk—1) o
] +LpNT+-\i5(k 1)}J

Next, in egn. 32 the integrated state p is replaced by p,
+ p; (only where appropriate in the bracketed terms),
where p;, denotes the error in integration due to incor-
rect initial conditions or any other related errors, to
obtain (for the OEM)

VEH©O)

- a':

44}
N-1 @)
r \’ b
' aplk - 1
> ot - i [ 220
k=1 P
Apik — 1) Ipdk = 1)
+ LAt + LA
p aL, i aL,
+ Adp(k — 1) + Atpik ;)J
1
TN-1| o,
1
Z pvn ]")} {—(BL*)
k=1
1 Ip:(k — 1
+ LpAt%%——) +L,,AtdLéT6J
+ Até(k - 1)} |

As the parameter estimation is done iteratively, the use
of improved estimates in the integration makes the
integration error p; tend to zero as the iteration
progresses (here the convergence of the algorithm is
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assumed). and hrncr the cxpression for the first gradi-
ent. eqn. 44, for tlie OEM becomes

VEL(O) (45)
N -1
N
Oplk —1
5t iy [ 222
k=1 ity
+L.)_\tM + Atp(k— 1)
1 ! aL,
TN .
Iplh —1)
Z p,,l(k k}) [OL
k=1 8
Opl(}\ - ) / . N
+L;)_\.1‘——8T + Atd{k -1}

Comparison of sensitivity ean. 43 for the SOEM ith
eqn. 45 for the OEM. reveals that the asymptotic
behaviour of the SOEM is similar to that of the OEM.
However, the OEM does not work directly for unstable
systems, because the numerical integration diverges
owing to the unstable system. In case of SOEMs, since
the measured states {obtained from the unstable plant
operating in a closed loop) are stable, their use in the
estimation process tries to prevent this divergence, and
at the same time enables parameter cstimation of the
basic unstable plant directly, in a manner similar to
that of the OEM for the stable system. Similar analysis
(not included in the paper) carried out for second-order
longitudinal short-period dynamics has also established
the validity of the procedure. Thus, in essence, the
asymptotic analysis has shown that the SOEMs, when
applied to unstable systems: would behave in an almost
similar manner as the OEM would behave when
applied to a stable system.

Intuitively, to substantiate the explanation of the
working of SOEMs. we can consider a second-order
unstable system as follows:

£y, =apn oy, +0123«'2, +bl“1 (46)

E9, =anrr, +aipxs, Thouy (47}
The subscript i stands for integrated state. When these
equations are integrated, the unstable system parame-
ters cause numerical divergence of the states. Assuming
that the parameter that causes divergence is ay, if the
state x,; is replaced by measured x,,,. we have the fol-
lowing state equations:

i'l, =aan, +012:I'2' +b] 48] (48)
Ty, =ayry,, +012I2, + baiy {49)

When eqns. 48 and 49 are integrated. by the use ofx,,,,,
the divergence of x», in eqn. 49 is arrested, and hence
that in eqn. 4X is also arrested. Thus, the use of a meas-
ured state in the integration procedure effectively stabi-
lises the output-error cost function (eqn. 4). In general,
the parameters which cause numerical instability are
related to the so-called offending states (g, @),which, in
practice. are measurable. In particular. these and
related states are used as flight-control system varia-
bles.

6 Numerical validation

Example 1. Short period data of BEAVER aircraft are
simulated. The static stability parameter M,, is adjusted
to give a system with a time to double of Is. The data

e on P 1o 4 5 ke b 123 s A aa PPV

- a2

is generated with a doublet input to the pilot stick with
a sampling time of 0.05 s [10-15].

State equations:
W o=Zowe T (up + Zg)q+ Zs, ée (50)
q = Myw tAq +M; 6 (51)
Observation equations:
A, =70t A +Z5( 6,
w=w

| =q (52)
where w is the vertical velocity, w, the stationary for-
ward speed, g the pitch rate, A, the vertical acceleration
and &, is the elevator deflection. Since for M, with a
positive numerical value the system is unstable, vertical
velocity is fed back with a gain & to stabilise the system
as follows:

6 =6 tiw (53)

where 8, denotes the pllot mput Various sets of data
are generated by varying the gain k to study the effect
of gain k on the estimated parameters. The direct iden-
tification between &, and output measurements is
attempted. Figs. 1 and 2 show the time-history match
when the OEM is used to analyse the data. The numer-
ical divergence caused duc to integration of the inher-
ently unstable plant is clear from the Figure.

GOr
7 E—
200 1 2 3 4 5 6 7 8 g 10
60! o
01 7 3 4 8578 7 B8 9 10
time,s
Fig.1  Time-history match wsing the OEM (example 1
measured - estimated
05 -
F '
o TN ;
3 -O.S‘L e i
o -1.0‘ ) \‘!
2150 . —— —
0 1 2 3 4 5 [ 7 8 9 10
02 — N -
o
g o
[ I |
T2t 1
_0‘4' - I
0 1 2 3 4 5 [ 7 8 9 10
time s
Fi9.2  Time-history maich using the OEM (example 1)

measured -~ estimaied

The EDOEM and the RAOEM are next applied to
the same data. Figs. 3 and 4 show the time-history
match when the RAOEM is applied. The time-history
match is very good, indicating the benefit of the use of
measured states in the numerical integration procedure.

~ra



o 1 273 4 s & 7 8 & 10

“ N
£ ! NS
3 -5 N
i
10k e o4
0 1 p 3 4 5 6 7 8 g 10
hime,s
Fig.3 Time-history marcl using the RAQEM texample 1)
- measured — - --— cstimated
0.4; Py - -
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0 1 2 3 4 5 6 7 8 g 1
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& -0.2 L/
- Z.!_ S e ;
0 1 2 3 4 5 6 7 8 g 10
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Fig.4 Time-hisiory match using the RAOEM {example 1)
measured ——-— cstimated

In the RAOEM for this data. measured states w and ¢
are used in the equation for ¢, eqn. 51, since it is
known that. in this case. the derivatives M, and M,
contribute to the instability. The estimated dernvatives
for increasing feedback gains from k = 0.025 to k =
0.25 are given in Table 1. All the parameter estimates
are very close to the true values when the gains are
small.

Table 1: Parameter estimates using the RAOEM

(examplell

Gaink-»  0.025 0.05 0.25
Parameter true Valuel
Zo -1.4249 -1.4166 -1.4172 -1.3947
z, -1.4768 -1.4958 -14702  -1.2347
Fie -6.2632  -6.5408 -6.5666  -6.8637
M., 0.2163 0.2173 0.2183 0.2267
M, -3.7067 -3.7266 -3.7469  -3.9077
M, -12.784 -12.8568  -12.8568 -13.1809
L1% 1.0397 1.6647 8.1598
| 2% _ 0.7447 1.2164 47577

The EDOEM is also used to analyse the data by
decoupling the state equations using measured states
for the off-diagonal elements. These results are given in
Table 2, from which it is clear that, as in the case of the
RAQOEM, when the gains are small (¢ = 0.025 and 4=
0.05), the estimates are close to the true values. The
results indicate that. in the absence of measurement
noise and with small feedback gains. the EDOEM and

-y

E 2

the RAOEM can he used successtully for esuumation of
aerodynamic derivatives of unstablefaugmented sys-
tems.

Table 2 Parameter estimates using the EDOEM
(example1)
Gain k— 0.025 0.05 0.25

Parameter true valuel

Z, -1.4249 -1.4286 -1.4299 -1.4375
Z, -1.47€8 -1.3708 -1.3363 -1.1165
Z;. -6.2632 -6.2596 -6.2647 -6.3884
M., 0.2163 0.2178 0.2188 0.2275
M, -3.7067 -3.7380 -3.7580 -3.9464
M. -12.784 -12.8490 -12.8884 -13.2163
L1% — 0.8159 1.1797 4.5660
L2% _ 0.4960 0.7054 2.4142

K1S(1:K5)
1+ K3S

ACTDYN
and
delay

Kg( ]‘K'IO S)

Fig.5 Block diagram of sipulated closed-loop system

Example 2: A typical fourth-order longitudinal
FBWCS system, shown in Fig. 5, is simulated at a
nominal flight condition. The dynamics of the basic
aircraft are [13] given by

State equations:

C:t‘ Z() 1 0 ZI/ (l ZS(
g Mo M, & A, . Mg |
| = + 8.
# 4 1 0 0 o 1)
v / Vo Y. 0 X X, vivg X
(54
Meuasurement equutions:
Ct 1 O o 0 0 0
g O 10 0 ( 0
. e 5, (35)
Qg Cyp 00 Oy 0 Dy
(438 C41 0O 0 C44 U/U(; D,ﬂ

where the Z, . X, M, C, and Dy, arc the aerody-
namic derivatives to be estimated. The OEM, the
EDOEM and the RAOEM are applied to this data set.
When the OEM is used, the algorithm tends to con-
verge (in the sense of the determinant of the covariance
matrix R). but the time-history match is not satisfac-
tory, as seen in Fig. 6. Table 3 lists estimates of all the
parameters.

For the RAOEM. measured gtates (a,,,.q,,) are used
in the ¢ equation, since the defivatives cpntributing to
the divergence 1n the longitudinal dynamics are a part
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of this equation. leading to the following formulation
"of the state equations:

. a Zo 1 0 0 ] Q
i g 0 o 0 AL ]
o1 o o 1 o 8
b/ X, 0 X, X, | lv/wo.
0 0 Zy]
M, M, My, [t )
1o o o o (56)
0 0 Xs; i b

For applying the EDOEM, the A matrix is decoupled
into two parts containing the diagonal elements and
off-diagonal elements as follows:

1% Zy O 0 07 a -’
§ 0 M, 0 0 q
6 | |0 0 1 0 0
b/ 0 0 0 XJ Lvwe
0 1 ‘th _
Qm
M, O M, 5
+ - 7
0o o o ||®
L Be

*Yu 0 JX’(SC
The estimates by these methods are shown in Table 3,

and the time-history match is shown in Fig. 7. The

match is very good, indicating the advantage of using
measured states for avoiding numerical divergence

problems.
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Thus it is clear that both the KAOEM and the
EDOEM perform well. and enable parameter estima-
tion of unstableiaugmented systems in the presence of
feedback for unstable basic plant, despite the large
number of parameters that are estimated. The estimates
of the significant flight mechanical parameters. A,.
M, Ms;,. are close to their true values. Also, the
numerical performance of the SOEMs is much better
than that of the OEM (when both the techniques are
applied to unstable/augmented systems) in terms of L}
and £2 norms (where norm (&, F} = sum [absolute
(©F V7 I' = 1, 2). Thus, the parameter estimation
using SOEMs for a system with a large number of con-
trol feedback loops and parameters has been success-
fully achieved in this paper.

Table 3: Parameter estimates using the RAOEM and the
EDOEM (example 2}

Parameter True values OEM RAOEM EDOEM
Zy i vy -0.4432 -0.4432  -0.4123 -0.4123
Zse -0.1499 -0.5324  -0.1929 -0.1883
Z vy . -0.1955 -0.1302  -0.1599  -0.1601
M, 1.3316 1.4009 1.3459 1.3488
M, -0.4717 4.4611 -0.4748  -0.4714
M;, -4.8267 -5.1973  -4.8614 -4,8656
Xa -0.0965 -0.0853 -0.0943  -0.0959
X, /v —0.0443 -0.1081 -0.0477 -0.1019
Moo -0.0429 4.0527 -0.0449  -0.04%9,
Xy -0.1018 ~0.0204 -0.1023  -9.0443
M, v, 0.0226 -1.7899  0.0161 0.0032
c31 0.9179 1.1512 0.90%4 0.9088
c34 0.4879 -0.0204  0.0011 0.0070
c41 —41.387 -47.0086  -41.003 -40,9754
caa -19.271 425008  -19.8553 -19.8759
L1% _ 46.52 2.4 2.58

L% _— 52.19 1.85 1.92

7 Conclusions

In this paper, asymptotic analysis of stabiliscd output-
error methods for parameter estimation of unstable/
augmented systems has been presented. The methods
use measured states, to avoid numerical divergence
caused by integration of the state equations in the
parameter-estimation procedure. The methods are vali-
dated using simulated data of second-order short
period and fourth order longitudinal dynamics of an
aircraft.
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