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Analytical solution for an orthotropic elastic plate containing
cracks
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Abstract. The problem of estimating the bending stress distribution in the neighborhood of a crack
located on a single line in an orthotropic elastic plate of constant thickness subjected to bending
moment or twisting moment is examined. Using classical plate theory and integral transform tech-
niques, the general formulae for the bending moment and twisting moment in an elastic plate con-
taining cracks located on a single line are derived. The solution is obtained in a closed form for the
case in which there is a single crack in an infinite plate and the results are compared with those
obtained from the literature.
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1. Introduction

Many relatively thin structures such as airplane fuselage skins can be subjected to
bending loads and the study of crack tip stress state is important for the design and
construction of safe structures. The solution of the thin plate-bending problem was
pioneered by Williams (1961), who made use of the eigen function expansion tech-
nique and determined the stress distribution in the neighborhood of a crack. Sih
et al. (1962) applied a complex variable method for evaluating the strength of stress
singularities at crack tips in plate extension and bending problems. A straightforward
and accurate analytical method for the determination of crack-tip stress fields in pure
bending and twisting problems for thin plates is proposed by Jones and Subramonian
(1983), where the three dimensional equations of equilibrium have been reduced to
an equivalent two dimensional set by using the simplifications valid for pure bend-
ing of thin plates. A study of plate-tearing mode of fracture from the simplified ana-
lytical approach and finite element approach is validated through photoelastic results
in (Jones and Subramonian (1983)). The general solution for finite number of cracks
using anisotropic elasticity is presented by Krenk (1975). Alwar and Ramachandran
(1983) showed that the stress intensity factor is nearly linear through the thickness
for thin plates, in the absence of crack closure. Using finite element method, Mark
et al. (1995), Alberto Zucchini et al. (2000) computed stress intensity factors for thin
cracked plates. Approximate weight functions are applied to investigate the influence
of the orthotropy of the material on the fracture behavior of double cantilever beam
in Massabò et al. (2003). Using complex variable method Zehnder and Hui (1994)
calculated stress intensity factor for a finite crack in an infinite isotropic plate. The
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present method uses an integral transform technique and does not assume any sym-
metry about the co-ordinate axis and hence it differs from the other methods used
for solving plate bending problems containing cracks in the literature. Also the con-
stants appearing in the solution of the governing differential equations are obtained
from the displacement boundary conditions by defining the curvature discontinuities
on the crack surfaces apart from the moment boundary conditions and continuity
conditions. The mechanical behavior near the crack tip is modeled in a more simple
approach, using classical plate theory in the case of an isotropic plate by the author
in Chattopadhyay (2003). In the present study, the general formulae for the stress dis-
tribution in an infinite elastic orthotropic plate containing cracks are derived and the
stress intensity factor is determined in a closed form in the case of a single crack
when the plate is subjected to bending or twisting moments and the results are com-
pared with those from the literature.

2. Formulation of the problem

Let us consider the cases of bending or twisting actions of an infinite plate by
moments that are uniformly distributed along the edges of the plate containing col-
linear cracks. We take xy-plane to coincide with the middle plane of the plate before
deformation. The z-axis is assumed to be perpendicular to the middle plane. We
denote the bending moment per unit length about x-axis by Myy and about y-axis by
Mxx and the twisting moment per unit length by Mxy . The constant thickness of the
plate is h and we consider it to be small in comparison with other dimensions. Let us
assume that during bending, the plate undergo the displacement w perpendicular to
xy-plane. In the present analytical method, we consider the problem in which an infi-
nite orthotropic elastic plate whose material principle axes are aligned with respect to
the co-ordinate axes, contains cracks located on a single line is acted upon by applied
moments. Let the co-ordinate system be so chosen that the x-axis coincide with the
line on which the cracks are located. Let L denote the union of intervals occupied
by the cracks on the x-axis and M is the interval not occupied by the cracks. Sup-
pose that a thin plate containing a crack is subjected to uniform bending or twist-
ing moments at infinity. The boundary conditions for pure bending and twisting of
thin cracked plates may be expressed in terms of the moment boundary conditions.
Since the crack surface is traction-free, the boundary conditions along the crack sur-
face permitting all of the free edge conditions for pure bending and twisting of thin
plate is given by the following equations:

Mxy(x,0)=0, x ∈L, (1)

Myy(x,0)=0, x ∈L. (2)

We note that these boundary conditions are expressed in terms of surface stresses by
Jones et al. (1983). The solution to the present problem may be obtained by judi-
ciously superposing the simple solution of an uncracked plate under uniform bending
moment or twisting moment to that of a cracked plate with bending or twisting
moment applied to the crack surfaces. That is, the solution may be obtained by using
standard superposition technique and thus for the purpose of evaluating the crack
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tip singular stresses it is sufficient to consider the problem in which self-equilibrating
crack surface loads are the only external loads. Thus, it suffices to solve the prob-
lem of specifying uniform bending and twisting moment on the crack segment of the
plate. Let the desired system be composed of two parts, one the uniform moment
field and the other a perturbation field due to the crack which dies out at infinity.
While the boundary conditions along the free edges of the crack require traction free
conditions, it is possible to formulate the problem as one of finding solutions for the
perturbation solutions satisfying the filed equations and the boundary conditions

Mxy(x,0)= G∗(x)

2
, x ∈L, (3)

Myy(x,0)= H ∗(x)

2
, x ∈L. (4)

and G∗(x) and H ∗(x) are the known prescribed functions on the crack surfaces. The
required solution will now be determined in two parts, one for y >0, the upper half
plane and the other for y < 0, the lower half plane and subsequently they will be
matched to insure continuity of the solution for the segments outside the crack.

The displacements in the x direction and y direction at any point are given by the
following expressions:

ux =−z
∂w

∂x
, (5)

uy =−z
∂w

∂y
. (6)

The moment–curvature relations in an orthotropic plate (Timoshenko, 1959) are
given by

Mxx =−h3

12

(
C11

∂2w

∂x2
+C12

∂2w

∂y2

)
, (7)

Myy =−h3

12

(
C22

∂2w

∂y2
+C12

∂2w

∂x2

)
, (8)

Mxy =−h3

6
C66

∂2w

∂x∂y
. (9)

where C11, C12, C22, C66 are elastic constants of the material and are defined as fol-
lows:

C11 = 1
Ey�0

; C22 = 1
Ex�0

; C66 =Gxy

(10)
C12 = νyx

Ey�0
= νxy

Ex�0
; �0 = 1−νyxνxy

ExEy



308 Lalitha Chattopadhyay

where Ex and Ey are Young’s moduli in the directions of the x and y axes, respec-
tively. Gxy is the shear modulus for plane parallel to the xy-plane. νxy is the Pois-
son ratio characterizing the contraction in the direction of y-axis when the tension is
applied in the direction of x-axis. Likewise, νyx is the Poisson ratio characterizing the
contraction in the direction of x-axis when the tension is applied in the direction of
y-axis.

The maximum magnitude of the stress components located at the top or bottom
at z=h/2 of the plate are functions of (x, y) and given by the following expressions:

σxy = 6Mxy

h2
; σyy = 6Myy

h2
; σxx = 6Mxx

h2
(11)

Using the definitions of in-plane strain components, these strain components in terms
of the curvatures are given by,

εxx =−z
∂2w

∂x2
, (12)

εyy =−z
∂2w

∂y2
, (13)

γ
xy

=−z
∂2w

∂x∂y
. (14)

We define the boundary conditions in terms of the derivative of the displacements
(in-plane strain) as given by

A(x)=0, x ∈M, (15)

B(x)=0, x ∈M, (16)

where the in-plane strain components on the crack segment are defined by the func-
tions A(x),B(x)

A(x)= ∂

∂x

[
u(1)

x (x,0)−u(2)
x (x,0)

]
, x ∈L, (17)

B(x)= ∂

∂x

[
u(1)

y (x,0)−u(2)
y (x,0)

]
, x ∈L, (18)

and the superscripts (1) and (2) denote the components in the upper half plane y >0
and lower half plane y <0 respectively.

3. Solution of crack problem

In this section, we consider an elastic plate subjected to bending loads and contain-
ing cracks located on a single line. Using Fourier transform we solve the equations
of equilibrium, and from the prescribed boundary conditions and continuity condi-
tions, the solution of the present crack problem reduces to that of solving singular
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integral equations. If Qx and Qy are the shearing forces per unit length parallel
to the y and x axes then the governing equations of bending effect are given in
Timoshenko (1959),

∂Mxy

∂x
− ∂My

∂y
+Qy =0, (19)

∂Myx

∂y
+ ∂Mx

∂x
−Qx =0, (20)

∂Qx

∂x
+ ∂Qy

∂y
=0. (21)

From equation (19) and the boundary condition (2), the Kirchhoff boundary condi-
tion given by the equation

Qy − ∂Myx

∂x
=0, y =0, x ∈L

is also satisfied on free edge of the crack surfaces.
The strain compatibility equation is given by,

∂2εxx

∂y2
+ ∂2εyy

∂x2
=2

∂2γxy

∂x∂y
. (22)

If we define the moment resultants in terms of the Airy’s function ϕ(x, y) as given
by

Mx = ∂2ϕ

∂y2
; My = ∂2ϕ

∂x2
; Mxy = ∂2ϕ

∂x∂y
, (23)

then the governing Equations (19–21) are satisfied. Also from the compatibility
Equation (22) and from moment curvature relations (7–9), the present problem
reduces to that of solving the bi-harmonic equation in ϕ(x, y)

∇4ϕ =0, (24)

where,

∇4ϕ = ∂4ϕ

∂y4
+2�1

∂4ϕ

∂x2∂y2
+�2

∂4ϕ

∂x4
, (25)

�1 = C11C22 −C2
12 −2C12C66

2C22C66
, (26)

�2 = C11

C22
. (27)
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Let ϕ(1)(x, y) denote ϕ(x, y) in the upper half plane y > 0 and G(1)(ξ, y) be the
Fourier transform of ϕ(x, y) for y >0. Then

G(1)(ξ, y)=
∞∫

−∞
ϕ(1)(x, y)eiξx dx, y >0 (28)

Taking Fourier transformation of the bi-harmonic equation we get the ordinary
differential equation in G(ξ, y) as given by

d4
G(ξ, y)

dy4
−2�1ξ

2 d2
G(ξ, y)

dy2
+�2ξ

4G(ξ, y)=0 (29)

The solutions for the above differential equation are given by the following expres-
sions

G(1)(ξ, y)=P1(ξ)e−t1|ξ |y +Q1(ξ)e−t2|ξ |y, y >0, (30)

G(2)(ξ, y)=P2(ξ)et1|ξ |y +Q2(ξ)et2|ξ |y, y <0, (31)

where the superscripts (1) and (2) indicate the upper and lower half planes respectively.
The constants t1 and t2 are the roots with the real parts of the quartic equation

t4 −2�1t
2 +�2 =0 (32)

G(1) and G(2) are the Fourier transforms of ϕ(x, y) for y >0 and y <0, P1(ξ),P2(ξ),

Q1(ξ),Q2(ξ) are the unknown functions to be determined. From the moment bound-
ary conditions (3–4) and the continuity conditions outside the crack segment, we
have the following equations,

M(1)
y (x,0)−M(2)

y (x,0)=0, ∀x, (33)

M(1)
xy (x,0)−M(2)

xy (x,0)=0, ∀x. (34)

The bending and twisting moments in terms of G(1)(ξ, y) for y >0 are given by

M(1)
x (x, y)= 1

2π

∞∫
−∞

∂2G(1)(ξ, y)

∂y2
e−iξx dξ, y >0, (35)

M(1)
y (x, y)= 1

2π

∞∫
−∞

ξ 2G(1)(ξ, y)e−iξx dξ, y >0, (36)

M(1)
xy (x, y)=− i

2π

∞∫
−∞

ξ
∂G(1)(ξ, y)

∂y
e−iξx dξ, y >0. (37)

The bending and twisting moments for y <0 in terms of G(2)(ξ, y) are given by

M(2)
x (x, y)= 1

2π

∞∫
−∞

∂2G(2)(ξ, y)

∂y2
e−iξx dξ, y <0, (38)
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M(2)
y (x, y)= 1

2π

∞∫
−∞

ξ 2G(2)(ξ, y)e−iξx dξ, y <0, (39)

M(2)
xy (x, y)=− i

2π

∞∫
−∞

ξ
∂G(2)(ξ, y)

∂y
e−iξx dξ, y <0. (40)

Taking Fourier transforms of the boundary conditions (17–18), moment–curvature
relations (7–9), the strain–curvature relations (12–14), from (33) to (34) and from the
Fourier transforms of the moment components from (35) to (37), we get the four
algebraic equations for solving the four unknowns P1(ξ),P2(ξ),Q1(ξ),Q2(ξ) appear-
ing in G(1) and G(2) in terms of Ā(ξ) and B̄(ξ), the Fourier transforms of A(x) and
B(x). Substituting these values into the Equations (36), we get the bending moment
resultants in the upper half plane y >0, as given by,

M(1)
y (x, y)= �0

4π(t2
2 − t2

1 )

∞∫
−∞

{[
Ā |ξ |− iB̄ sgn(ξ)

t1

]
e−t1|ξ |y

−
[
Ā (ξ)− iB̄ sgn(ξ)

t2

]
e−t2|ξ |y

}
e−iξxdξ, y >0, (41)

where �0 =C11 − C2
12

C22
.

Performing the inner integral in terms of A(s) and B(s) we get the bending
moment resultants in the upper half-plane y >0, in terms of functions A(s) and B(s)

as given by

M(1)
y (x, y)= �0

2π(t2
2 − t2

1 )

∞∫
−∞

A(s)y

{
t1[

(x − s)2 + t2
1 y2

] − t2[
(x − s)2 + t2

2 y2
]
}

ds

−
∞∫

−∞

B(s)(x − s)

t1t2

{
t1[

(x − s)2 + t2
1 y2

] − t2[
(x − s)2 + t2

2 y2
]
}

ds, y >0.

(42)

Similarly, substituting the values of the P2(ξ),Q2(ξ) in terms of Ā(ξ) and B̄(ξ) into
the Equations (39), we get the bending moment resultants in the lower half plane
y <0, as given by,

M(2)
y (x, y)= −�0

4π(t2
2 − t2

1 )

∞∫
−∞

{[
Ā(ξ)+ iB̄(ξ) sgn(ξ)

t1

]
et1|ξ |y

−
[
Ā (ξ)+ iB̄ sgn(ξ)

t2

]
et2|ξ |ye−iξx dξ, y <0, (43)

Performing the inner integral in terms of A(s) and B(s) we get the bending moment
resultants in the lower half-plane y < 0, in terms of the unknown displacement
functions A(s) and B(s) as given by
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M(2)
y (x, y)= �0

2π(t2
2 − t2

1 )

∞∫
−∞

A(s)y

{
t1[

(x − s)2 + t2
1 y2

] − t2[
(x − s)2 + t2

2 y2
]
}

ds

−
∞∫

−∞

B(s)(x − s)

t1t2

{
t1[

(x − s)2 + t2
1 y2

] − t2[
(x − s)2 + t2

2 y2
]
}

ds, y <0, (44)

Combining (42) and (44) we get the bending moment resultant as given by,

My(x, y)= �0

2π(t2
2 − t2

1 )

∞∫
−∞

A(s)y

{
t1[

(x − s)2 + t2
1 y2

] − t2[
(x − s)2 + t2

2 y2
]
}

ds

−
∞∫

−∞

B(s)(x − s)

t1t2

{
t1[

(x − s)2 + t2
1 y2

] − t2[
(x − s)2 + t2

2 y2
]
}

ds, y �=0,

(45)

Similarly the expression for the bending moment Mx(x, y) is given by

Mxx(x, y)=− �0

2π(t2
2 − t2

1 )

∞∫
−∞

A(s)y

{
t3
1[

(x − s)2 + t2
1 y2

] − t3
2[

(x − s)2 + t2
2 y2

]
}

ds

−
∞∫

−∞
B(s)(x − s)

{
t1[

(x − s)2 + t2
1 y2

] − t2[
(x − s)2 + t2

2 y2
]
}

ds, y �=0,

(46)

The expression for the twisting moment Mxy(x, y) is given by

Mxy(x, y)= �0

2π(t2
2 − t2

1 )

∞∫
−∞

[A(s)(x − s)+yB(s)]

×
{

t1[
(x − s)2 + t2

1 y2
] − t2[

(x − s)2 + t2
2 y2

]
}

ds, y �=0, (47)

The curvature terms are given by

∂2w

∂x2
=− 1

2π(t2
2 − t2

1 )

∞∫
−∞

A(s)y

{
m1t1[

(x − s)2 + t2
1 y2

] − m2t2[
(x − s)2 + t2

2 y2
]
}

ds

−
∞∫

−∞

B(s)(x − s)

t1t2

{
m1t2[

(x − s)2 + t2
1 y2

] − m2t1[
(x − s)2 + t2

2 y2
]
}

ds, (48)

∂2w

∂x∂y
= 1

2π(t2
2 − t2

1 )

∞∫
−∞

[A(s)(x − s)+yB(s)]

{
t1m2[

(x − s)2 + t2
1 y2

] − t2m1[
(x − s)2 + t2

2 y2
]
}

ds

(49)
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m1 = t2
1 + C12

C22
; m2 = t2

2 + C12

C22

where A(s) and B(s) are the unknown functions to be determined. The limiting val-
ues as y →0+ and y →0− of the bending and twisting moments along the crack line
are given by,

My(x,0)=− �0

2πt1t2 (t1 + t2)

∞∫
−∞

B(s)

x − s
ds, (50)

Mxy(x,0)=− �0

2π (t1 + t2)

∞∫
−∞

A(s)

x − s
ds, (51)

Mx(x,0)=− �0

2π (t1 + t2)

∞∫
−∞

B(s)

x − s
ds. (52)

By using the conditions (3–4) and (15–16) in the above expressions, the interval of
integration reduces to L. From the boundary conditions (3–4) and the above rela-
tions we get the singular integral equations

L∫
−L

A(s)

x − s
ds = −π(t1 + t2)

�0
G∗ (x) , x ∈L, (53)

L∫
−L

B(s)

x − s
ds = −πt1t2(t1 + t2)

�0
H ∗ (x) , x ∈L, (54)

for the determination of the functions A and B on the interval L.

4. The single crack problem

In this section, we consider the problem of determining the distribution of stress and
moment in the vicinity of a Griffith crack of length 2c, occupying the interval (−c, c)

on the x-axis in an infinite orthotropic elastic plate subjected to the moment about
x-axis H ∗ (x) as given in Figure 1. In this case the interval L= (−c, c) on the x-axis
and we have the moment boundary condition as given by,

My(x,0)= 1
2
H ∗(x), |x|<c (55)

and the singular integral Equations (54) reduce to the following equations,

c∫
−c

B(s)

x − s
ds = −πt1t2(t1 + t2)

�0
H ∗ (x) , |x|<c (56)
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-c
c 

x 

y 

L =  (-c, c)

L 

M0

M0

Figure 1. Crack in a plate subject to bending load.

Solution of this integral equation is given by the following expressions

B (s)= −t1t2(t1 + t2)

π�0
√

c2 − s2

c∫
−c

H ∗(x)

√(
c2 −x2

)
x − s

dx + c1, |s|<c (57)

where the arbitrary constant c1 is determined from the condition

c∫
−c

B(s)ds =0 (58)

From the above conditions (58) and the expressions (57) we find that

c1 =0 (59)

Substituting the value of and B(s) from (57) into (50), the bending moment resul-
tants for a single crack problem is given by the following expression,

My(x,0)= sgn(x)

2π

√(
x2 − c2

)
c∫

−c

H ∗(x)

√(
c2 − t2

)
t −x

dt, |x|>c (60)

5. Particular cases of loadings along the edges of the plate

To illustrate the above procedure, we consider the infinite plate subject to (a) bending
and (b) twisting as shown in the Figures 1 and 2 respectively for the determination
of stress intensity factors.

Case (a): We consider an infinite elastic plate containing a crack opened by the
moment M0 acting along its edges (Figure 1). In this case the function H ∗(x) is given
by

H ∗(x)=M0 (61)
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x 

-c 
c y 

L =  (-c, c) 

L  

H0 

H0 

H0 

H0 

Figure 2. Crack in a plate subject to twisting load.

The bending moment resultant along the crack line from the Equations (60) is
given by,

My(x,0)= sgn(x)

2π

√(
x2 − c2

)M0

c∫
−c

√(
c2 − t2

)
t −x

dt, |x|>c, (62)

The maximum bending stress at z = h/2, along the crack line from Equations (11)
and (62) is given by

σyy(x,0)= 6M0 sgn(x)

2πh2
√(

x2 − c2
)

c∫
−c

√(
c2 − t2

)
t −x

dt, |x|>c, (63)

Stress intensity factor KI due to bending moment in this case is given by

KI = Lt

x → c

{√
[2(x − c)]σyy(x,0)

}
= 6M0

√
c

h2
(64)

The above stress intensity factor is the same as that of given by Sih et al. (1962),
Jones and Subramonian (1983), Zehnder and Hui (1994), Murakami (1987) and
Lalitha Chattopadhyay (2003) for isotropic material.

Case (b): In this case we assume that the plate containing a crack is subjected to
the twisting moment H0 (Figure 2) along its edges.

From the curvature term (Equation 49) the twisting moment along the crack line
(y =0) is given by

h3C66

6

[
∂2w

∂x∂y

]
y=0

= (t1m2 − t2m1)

2π(t2
2 − t2

1 )

c∫
−c

A(s)

(x − s)
ds (65)
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From the boundary condition we have the following condition on the crack lone (y =0),

h3C66

6

[
∂2w

∂x∂y

]
=H0, |x|≤ c (66)

Since the twisting moment is given by,

Mxy = h3C66

6

[
∂2w

∂x∂y

]
(67)

∂Mxy

∂x
= h3

6
C66

∂

∂x

[
∂2w

∂x∂y

]
= (t1m2 − t2m1)

2π(t2
2 − t2

1 )

c∫
−c

A(s)

(x − s)2
ds =0 (68)

the twisting moment Mxy along the crack line (y =0) is non-singular
Stress intensity factor KII due to twisting moment Mxy in this case is given by,

KII = Lt
x → c

{√
[2(x − c)]σxy(x,0)

}
=0 (69)

The above stress intensity factor is the same as that of given Zehnder and Hui (1994)
for isotropic material.

6. Conclusion

A simple method for determining the analytical expression is explained for the bend-
ing stress distribution, the bending moment and twisting moment resultant in the
vicinity of a crack in an infinite orthotropic elastic thin plate of constant thickness.
An elastic plate containing a single crack is examined in detail and the stress inten-
sity factor is calculated for the cases when the plate is subjected to two loading cases
namely (i) bending and (ii) twisting. These stress intensity factors are independent of
material constants for orthotropic material with axes aligned along the x-axis and
y-axis. The stress intensity factors are compared and the results agree closely with
the literature results.
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