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Abstract

The unsteady three dimensional Reynolds averaged Navier-Stokes equations are solved for the moving
domain in an inertial frame of reference to obtain time-accurate solution for the flow past a helicopter rotor
blade in forward flight. The method uses an implicit dual time stepping procedure, a finite volume nodal
point spatial discretisation and Baldwin-Lomax turbulence model. Results are presented for nonlifting
and lifting cases. For the first case, the surface pressure distributions are found to be in good agreement
with the experimental results at 89% of the rotor radius, except near the shock which is predicted to lie
closer to the leading edge. In the lifting case, the surface pressure distributions compare well with the
inviscid solution, both methods predicting the presence of a shock in the outboard region at the azimuth
angle of 90°. However, the effect of viscosity here turns out to be to weaken the shock as well as to shift
the shock position upstream.
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1 Introduction

The flow field around a helicopter rotor in forward flight is characterised by highly nonlinear three-
dimensional unsteady viscous flow phenomena like transonic flow, shock-induced separation, vortex wake,
dynamic stall and blade-vortex interaction. Some of these complexities persist even for an isolated rotor
blade. Since the advancing and retreating blades operate under very different conditions, compressibility
effects can be dominant on the advancing blade while separated flow may be present on the retreating
blade. Consequently, the advancing blade is often characterised by shock formation on the suction (upper)
surface and subsequent flow separation due to shock boundary layer interaction. In a loose sense, the
flow field on the advancing blade can be modelled by using the two-dimensional blade element theory.
The retreating blade, on the other hand, exhibits a chaotic flow field, particularly near the root since the
trailing edge here faces the free stream. This often leads to flow separation on a massive scale and eventual
dynamic stall. The strong tip vortex and the wake shed by a blade also affects the following blades thus
leading to blade-vortex interaction. There is, however, one simplicity in the forward flight case, namely,
reduced influence of the vortex wake on the flow field near the rotor since the free stream sweeps away
the wake in the downstream direction. This is unlike a hovering rotor where the vortical wake remains
close to the rotor and has considerable effect on the flow field near the rotor. The numerical simulation of
such a complex flow situation calls for a high-resolution computation requiring the capability to compute
transonic flows on the advancing blade and dynamic stall on the retreating blade.

In order to gain insight into the various fluid dynamical phenomena occurring over a helicopter rotor
in farward flicht, several time-accurate solutions of both Euler equations and Reynolds averaged Navier

Stokes equations have been obtained in recent years [1-8]. Since computer run-times required for rotary-
wing problems are much more than for a fixed-wing case, dual time method is often employed in the flow
solvers. In this paper, an implicit finite volume nodal point scheme [9] with dual time stepping approach
[10-14] has been used to simulate the flow over a helicopter rotor blade in forward flight. The numerical
scheme is based on Euler’s time differencing formula and a finite volume nodal point spatial discretisation
wherein each control volume is obtained by joining the centroids of neighbouring cells surrounding the
nodal point. The dual time stepping consists of an implicit discretisation in real time and the marching
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of solution in a pseudo time to steady state at each physical time step. At each real time step of this dual
time stepping procedure, an equivalent pseudo steady state problem is solved using local time stepping,
which allows one to choose a very large physical time step based on accuracy requirements alone.

2 Computational Method

The Reynolds-averaged Navier-Stokes equations for three-dimensional unsteady compressible flow in a
moving domain in nondimensional conservative form are given by
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Here, U is the vector of conserved variables, E,F and G are flux vectors, (z,y,z) is the Cartesian
coordinate system and ¢ is the time variable.

The governing equations (1) are solved by employing a dual time method with an implicit finite volume
nodal point spatial discretisation [9,13,14]. Application of an implicit second order accurate backward
difference formula for discretisation in real time and Euler’s implicit time differencing formula for pseudo
time leads to the following basic equation (2) of the implicit dual time stepping technique:
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Here U™ = U(t*) = U(mAt*) is the solution vector at pseudo time level m and AU™ = U™+ — g™
is the change in U™ over the time step At*, At denotes the real or physical time step that is required
to resolve the physical unsteadiness of the flow. The barred quantities denote the solution vectors at the
previous real time levels n and n — 1 whereas R represents the spatial operators which give rise to the
flux residual after a discretisation in space.

To facilitate the finite volume formulation, equations (2) are written in integral form and the surface
integrals are evaluated by summing up the contributions due to the flux terms over the six faces of
the computational cell. Applying integral conservative equations to each control volume, linearizing the
changes in flux vectors using Taylor’s series expansions in time, assuming locally constant transport
properties, and dropping the superscript m we obtain
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Here 1, is the control volume surrounding the nodal point (%, j, k) of the curvilinear grid; A = 0E;/dU,
B = 9F;/oU, C = 8G1/dU, Er = 8Ey, /0U,, Fs = 8Fy,/0U, and Gt = 0Gy;, /0U, are the Jacobian
matrices; Er, Fr and Gy are the inviscid flux vectors and Ey, Fy and Gy are the viscous flux vectors;
Smar Smy and Sy, are the z, y and z components of the surface vector corresponding to the m-th surface
of the control volume.

The terms containing inviscid flux vectors can be calculated by using the flow variables at the six
neighbouring points and Taylor’s series expansions can be utilised to discretise the derivatives in the



viscous flux terms directly in the physical plane. The resulting block tridiagonal system of equations
are solved by using a suitable block tridiagonal solution algorithm and proper initial and boundary
conditions. A blend of second and fourth order artificial dissipation terms [15] is added explicitly to
ensure convergence and to suppress oscillations near shock waves. Implicit second order dissipation
terms are also added to improve the practical stability bound of the implicit scheme. Turbulence closure
is achieved through the algebraic eddy viscosity model of Baldwin and Lomax [16]. For a moving body,
the equations are solved in the inertial frame of reference by employing a grid which remains fixed to the
body and moves along with it. At each real time step ¢ + At, starting from the solution at the previous
time step ¢, the solution is marched in pseudo time t* using local time stepping. Since the choice of
physical time step At is no longer limited by stability considerations, a much larger time step, with a
fixed but small number of inner iterations in pseudo time, can be used to reduce the undesirably large
computational time for unsteady flow calculations. Based on this dual time stepping method an implicit
Reynolds averaged Navier-Stokes solver IMPRANS has been developed at NAL for computing a wide
range of three-dimensional unsteady viscous compressible flows. This RANS solver has been used to
compute the unsteady flow over a rectangular helicopter rotor blade in forward flight under nonlifting
and lifting conditions.

3 Results and Discussion

The schematic diagram of a helicopter rotor blade of radius R (a) in the plane of rotation zz or 2z’
and (b) in the sectional plane z’y’ is shown in Fig. 1(i). Here, the coordinate systems in the inertial and
rotating frames of reference are denoted by (z,y,2) and (2,y, 2’) respectively and the rotation angles of
the blade about the z’, ¥’ and 2’ axes are taken to be a, 3 and . These coordinate systems are chosen
such that the axes z, 3’ and 2’ lie in chordwise, axial and spanwise directions with the origin of the
system lying at the centre of rotation ¢(z¢, yc, 2:). The blade has a rectangular planform with uniform
chord ¢ and rotates about the y or 3/ axis with an angular velocity 2 in the presence of a free stream
of velocity Wy in the negative 2z direction. This is equivalent to a rotating blade moving with a forward
velocity Wy in the z direction. It may be noted that the blade pitch here is defined by the angle —+y and,
for a helicopter rotor blade in hover, Wy = 0 since there is no forward velocity.

Results are presented for the unsteady flow over a blade of aspect ratio R/c = 6 with NACA 0012
aerofoil section. Here, the blade extends from r/c =1 to 6 or r/R = 1/6 to 1 where r is directed along
the blade span away from the centre of rotation, and the quarter-chord line of the blade is attached to
the hub. This also implies that the root of the blade lies unit chord away from the axis of rotation. A
physical time step At = 0.010472 (corresponding to about 0.1° rotation of the blade per time step) and
a dual time stepping with 10 pseudo time steps are used. Computations are continued till the blade
azimuth angle reaches 540° (or one and a half cycle) when the flow becomes almost periodic. A C-H grid
of size 231 x 65 x 45 is used for both the nonlifting and lifting cases presented here. Typical sectional
grids at /R = 1.1 and 0.5 generated by using the commercial software Gridgen are shown in Fig. 1(ii)
to illustrate the typical grid structure at sections beyond the tip and on the blade. It may be noted that
experimental investigation of a two-bladed model rotor, with each blade having the above configuration,
was conducted by Caradonna and Tung [17] for hover condition and by Caradonna et al [18] for forward
flight conditions. However, only the Euler calculation [4] is available for the lifting case.

Fig. 2 shows the time accurate solutions for the nonlifting case (pitch angle —y = 0) with advance
ratio —Wy/QR = 0.2, tip Mach number M,;, = 0.8 and tip Reynolds number Re, = 3.55 x 106. The
temporal variations of the force coefficients C,/, C,y and C,. along the 2/, ¥/ and 2’ axes respectively
and moment coefficients Caryr, Cpryy and Car,s about the o/, y' and 2’ axes respectively are shown in
Fig. 2(i), where the region ¢ < 180° is taken from the region 360° < 1 < 540°. The rapid fluctuations
in Cy and Chry during the retreating stage are mainly the result of chaotic flow developed due to the
free stream hitting the trailing edge. However, for this nonlifting case, all the coefficients are found to
be very small. Fig. 2(ii) shows the surface pressure distributions at r/R = 0.89 for different azimuth
angles. It is found that, for the advancing blade (1) < 180°), the pressure distribution compares very well
with the experimental pressure distribution [18], except near the shock. The shock here is predicted to



lie slightly upstream of the experimentally observed position. The Mach contours in the rotating frame
of reference at the same radial station r/R = 0.89 are shown in Fig. 2(iii), illustrating the presence of a
shock at about 60% of the chord. In conjuction with Fig. 2(ii), the shock is found to exist from i = 60°
to about 9 = 150° at r/R = 0.89. The extent of the shock is illustrated more clearly in Fig. 2(iv) where
the pressure contours are plotted on the blade surface. The figure shows that the shock begins to form
at about ¥ = 45° and persists during most of the advancing stage till about ¢y = 180°. The pressure
contours in Fig. 2(iii) suggest that the blade sections behave like 2-D aerofoils during the advancing stage
where the 2-D analysis of blade sections can possibily be used for design and analysis of helicopter rotor
blades by using blade element theory.

Computed results for the lifting case with pitch angle —y = 8°, advance ratio —Wy /IR = 0.3, tip
Mach number M;;, = 0.628 and tip Reynolds number Re;, = 3.55 X 108 are shown in Figs. 3 and 4. In
the absence of any free-wake analysis, no correction was applied to the prescribed pitch angle. The force
and moment coeflicients, shown in Fig. 3(i), illustrate the fact that most of the forces and moments are
generated by the advancing blade. The pressure distributions on the blade, at different radial stations
r/R and three azimuth angles ¢ = 0°, 90° and 270° are shown in Fig. 3(ii) to 3(iv). For ¢ = 90° and
270°, these are compared with the Euler computation results [4] at /R = 0.8, 0.89 and 0.96. It is found
that the weak shocks, present in the outboard region (r/R > 0.6) at ¢ = 90°, shift upstream due to
viscous effect. There is, however, very little viscous effect on the retreating blade as may be inferred
from Fig. 3(iv) for ¢ = 270°. Fig 4 shows the Mach contours at different radial stations for ¢ = 90° and
270° and pressure contours on the blade surface at different azimuth angles 1. As seen in Fig. 4(i), at
1 = 90°, the shock extends from r/R = 0.6 to the tip; this is further confirmed by Fig.4(iii). The shock
forms close to the leading edge in the inboard region and gradually moves away towards the outboard
region. Close to the tip, the shock again tends to move towards the leading edge.

4 Concluding Remarks

The complex unsteady flow over a helicopter rotor blade in forward flight is simulated through time-
accurate computations using IMPRANS, a Reynolds averaged Navier-Stokes code. The implicit RANS
solver is based on an indigenously derived implicit finite volume nodal point scheme and it incorporates
dual time stepping to enhance its capability to handle problems requiring large CPU time. There is
reasonably good agreement between the computed and measured data in the nonlifting case while the
results for the lifting case compare well with the Euler computations except near the shock. Currently,
the solver IMPRANS is being applied in the CFD analysis of the wind turbine blades.
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(i) Schematic diagram (ii) Sectional grids at (a) r/R = 1.1
and (b) r/R = 0.5.
Fig. 1 Schematic diagram and grid for a rectangular rotor blade in forward flight.
Aspect ratio R/c = 6; Section: NACA 0012 aerofoil.
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Fig. 2 Characteristics of a rectangular nonlifting rotor blade in forward flight. Aspect ratio R/c = 6;
Section: NACA 0012 aerofoil; —Wy/QR = 0.2; My, = 0.8; Rey;p = 3.55 million.
o: Experimental pressure [18].
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(iii) Pressure distributions at 1 = 90° (iv) Pressure distributions at 9 = 270°

Fig. 3 Characteristics of a rectangular lifting rotor blade in forward flight. Aspect ratio R/c = 6;
Section: NACA 0012 aerofoil; —Wy/QR = 0.3; Miip = 0.628; Reyip = 3.55 million;
v = —8°. Dashed line: C,, distribution by Euler computation [4].
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Fig. 4 Mach and pressure contours on a rectangular lifting rotor blade in forward flight.
Aspect ratio R/c = 6; Section: NACA 0012 aerofoil; —Wy/QR = 0.3; M;p = 0.628;
Rey;, = 3.55 million; v = —8°.



