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MODAL COUPLING EFFECTS IN THE FREE VIBRATION OF
ELASTICALLY INTERCONNECTED BEAMS

A. JOSHI AND A. R. UPADHYA

Structures Division, National Aeronautical Laboratory, Bangalore 560017, [ndia

(Receiued 28 August 1986, and in revised form 25 October 1986)

The problem of free vibration of a uniform beam elastically interconnected to a
cantilevered beam, representing an idealized launch vehicle aeroelastic model in a wind
tunnel, is studied. With elementary beam theory modelling, numerical results are obtained
for the frequencies, mode shapes and the generalized modal mass of this elastically cou pled
system, for a range of values of the spring constants and cantilevered beam stiffness and
inertia values. The study shows that when the linear springs are supported at the nodal
points corresponding to the first free-free beam mode, the modal interaction comes
primarily from the rotational spring stiffness. The effect of the linear spring stiffness on
the higher model modes is also found to be marginal. However, the rotational stiffness
has a significant effect on all the predominantly model modes as it couples the model
deformations and the support rod deformations. The study also shows that though the
variations in the stiffness or the inertia values of the cantilever beam affect only the
predominantly cantilever modes, these variations become important because of the fact
that the cantilevered support rod frequencies may come close to, or even cross over, the
predominantly model mode frequencies. The results also bring out the fact that shifting
of the support points away from the first mode nodal points has a maximum effect only
on the first model mode.

1. INTRODUCTION

Many spacecraft such as rockets, launch vehicles, missiles, etc., are designed as slender
cylindrical structures in order to achieve optimum flight performance. However, these
structures generally have low flexural vibration frequencies and therefore are prone to
transverse dynamic excitation arising from either unsteady flow around the spacecraft or
from atmospheric turbulence or gusts. This phenomenon is commonly known as buffeting.
The buffeting response of a spacecraft subjected to the unsteady pressure fluctuations, if
significant, may not only induce significant dynamic stress levels but may also significantly
alter the flight path. Therefore, it becomes necessary to quantify the buffet response of a
spacecraft structure at the design stage itself.

Determination of the buffet response of a slender cylindrical body involves understand-
ing the structural properties as well as the unsteady aerodynamic behaviour of the
spacecraft. There have been very few theoretical studies to predict the buffet response of
a spacecraft [1,2], mainly because of the fact that the simplified aerodynamic models
are generally inadequate in representing the complex nature of the true airflow pattern
around the oscillating complex spacecraft configurations. Therefore, the study of the
buffet response of spacecraft has largely remained in the realm of experimental testing
where an appropriately scaled model of the spacecraft is subjected to airflow inside a
wind tunnel [3-5]. The design of these scaled buffet models is dependent on the similarity
conditions which specify that the reduced frequency parameter should be the same for
both the prototype and the scaled model. This constraint can be satisfied if the natural
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frequencies and the generalized modal masses of the model are appropriately scaled.
Experimental studies on the models so designed have proved very useful in assessing the

buffet resIfonse of a full scale slructure prior to its launching. However, in all these studies
the free-frjee boundary condition simulation poses difficulties and is also a potential source
of error contributing to both the frequency and the generalized modal mass of the designed
modeL This is because one necessarily needs to support the mode! inside the wind tunnel,
which is in contradiction tv th:: <ictua! condition which is a frec-free configuration.

There have been some attempts to icientify the best way to support the model and in
this respect it is relevant to point out here that the buffet response is generally concentrated
in the first three free-free modes of the model and the responses in higher modes are
either marginal or negligible. With this in mind the model is normally supported on
springs at the nodal points corresponding to the first free-free mode and the stiffness of
the springs is so adjusted that it h~s minimum interference with the higher model modes.
Ideally, the springs should offer only translational resistance at the node points but a
practical spring configuration also offers significant resistance to rotational motion at the
node points. Also, if the springs are too flexible, there are likely to be large static deflections
under the self-weight and the steady aerodynamic loads, resulting in significant changes
in the preset angles of attack. Therefore, a compromise has to be reached in arriving at
the appropriate values for the spring stiffness and this has to be done by trial and error
because no guidelines exist as yet for choosing the most suitable value of the spring
stiffness for a given model configuration.

The present study is an examination orthe effect of an elastic support system, consisting
of a cantilevered rod and a pair of springs, on the free vibration characteristics of a
typical spacecraft model with a view to investigate the dynamic modal coupling between
the model and the elastic support system. The simple elementary beam formulation is
used, and the problem is solved exactly to yield the results for the frequency and the
generalized modal mass as a function of the support elasticity- In particular, the study
is aimed at bringing out the effect of rotational spring stiffnesses on the frequencies and
the generalized modal masses of the spacecraft and also their interaction with the
translational stiffnesses. The study is also aimed at bringing out the influence of a shift
in the support point location, away from the nodal points. For the purpose of analysis
a uniform slender beam is taken to represent the spacecraft model.
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2. FORMULATION AND SOLUTION

Figure 1 shows the configuration of the model and support system. It consists of the
model connected to' another uniform beam, which is clamped at one end and free at the
other end, by two translational springs and two rotational springs. The cantilevered beam
acts as a support rod inside the wind tunnel and is also known as the sting rod. Points
1 and 2 are the nodal points corresponding to the first free-free mode of a uniform beam.
The governing differential equation of motion, in each of the five beam segments, based
on the elementary theory of beams can be given as, (a list of nomenclature is given in
the Appendix)

£1 a4uliiz4+ pA. a2u j at2=o
) ) .I' ) ) J.I ' (1)

where j = 1, 2,3,4, 5 denote each of the five segments. For harmonic vibration one can
assume the solution in general form as

Uj(Z, t)= Uj(z) sin wt. (2)
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Figure 1. Elastically interconnected beams: geometry and co-ordinate systems.

Substituting the solution (2) into the governing equation (1) and suitably non-dimension-
alizing it gives

tti

,,4 - / - -4 A4 - 0(J u- dz. - . u- =
J J J.I ,

where Zj is the dimensio'nless length co-ordinate in each of the beam segment,ii; is the
dimensionless displacement in each of the five beam segments and Aiis the corresponding
frequency parameter, which is related to A, the dimensionless frequency parameter, by

A;= {(PoAo/ pjAj)(L~/ L1)(EJ~/ Eolo)} A4, (4)

where the quantities with suffix 0 correspond to a reference beam and the quantities with
suffixj correspond to the jth beam segment. In operator form equation (3) can be rewritten
as

(3)

(P; - A7)ii; = O.

The general solution of equation (5) is given by

Uj = Aj cosh Ajzj + Bj sinh Ajzj + Cj cos Ai; + Dj sin Ai), (6)

where A), Bj, C; and Dj are the arbitrary constants corresponding to the jth beam segment.
Equation (6) represents the five displacement functions with a total of 20 unknown

constants which are to be determined by applying the boundary conditions and the
junction conditions.

(5)

2.1. BOUNDARYCONDITIONS

The general solution given by equation (6) needs to satisfy the cantilever boundary
conditions on the support rod and free-free boundary conditions at the two ends of the
model. Therefore, one has the following six boundary conditions.

UI(ZI= 0) = (aul/ fizdUI = 0) = 0, (a2U3/azj)(Z3= 0) = (a3U3/aZ~)(Z3= 0) = 0,

(a2us/az~)(Zs = 0) = (a3us/az~)(zs= 0) = o.

(7,8)

(9)
2.2. JUNCTION CONDITIONS

It can be seen from Figure 1 that the support rod and the model are connected to each
other at points 1 and 2 through elastic springs and therefore one needs to satisfy the
necessary twelve conditions at these points. These conditions include the displacement
and slope continuity equations and the shear force and bending moment balance equations.
These conditions can be written in two parts as follows.
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2.2.1. Displacement and slope continuity conditions

The continuity of displacement and slope at the junction of segment 1 and 2 are given
as

UI(ZI = 1) = U:!(Z2 = 0), (du,/ iizl)( Z1 = 1) = (rlU2/ (l22)(Z:!= 0). (l0, II)

Similarly, there are four more conditions on the displacements and slopes at the junctions
of segments 3 and 4 and of segments 4 and 5.

2.2.2. Shear force and bending moment balance

From equilibrium considerations it is necessary that all the forces and moments should
balance each other at a junction. The conditions on shear force and bending moment at

the junction of segment 1 and 2 are as follows:

- E I II ( 03 U 1az i) ( I ) + K 1 {U1 ( ] ) - U3 ( 1 ) } + E:! /2 ( 03 U 2/ (I 2 ~) ( 0) = 0,

- E1 I,( a2UI! iJziH 1) - K,.{ U;(1) - U~( 1)} + E2Ii a2U2! 0Z~)(0) = o.

(t2)

(13)

Similarly, there are six more conditions on the forces and moments at the other three
junction points. Thus there are a total of 20 conditions for 20 unknowns of the general
solution given by equation (6).
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Figure 2. Normalized mode shapes for two values of the linear stiffness parameter, KI' and zero rotational
stiffness. (a) and (e) predominantly first support rod modes: (b) and (d) predominantly first model modes.
-, model; - --, support rod mode.
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Substitution of the general solution (6) into the equations (7)-(13) results in a set of
20 homogeneous simultaneous transcendental equations and for a non-trivial solution of

this systemof equations, the determinant of the coefficients matrix is set to zero.

3. NUMERICAL RESULTS FOR VARIOUS SUPPORT STIFFNESSES

Figures 2-8 present the numerical resuits for the frequencies, the mode shapes and the

generalized modal mass values of the coupled elastic support-model system for various
values of the linear spring stiffness parameter, K, and the rotational spring stiffness

parameter, K,.
It may be recalled here that the model is connected to the support system at the points

corresponding to the nodes of the first free-free mode of the model and therefore it is
expected that in the absence of rotational stiffness the translational stiffness should not
have any effect on the first model mode. In fact, Figure 2(b) shows that the normalized
mode shape of the model, shown by the solid line (for the case of K, = 8 and K, = 0), is
identical to the first free-free model bending mode. (Here it may be relevant to point out
that for a free-free model with no support, the value of A2is 4.6748 and m22is 4. 2059.)
It can also be seen from Figure 2(d) that increase in the linear spring stiffness from 8 to
27 has no influence on the model mode. It can also be seen from Figures 2(a) and 2(b)
that for both K, = 8 and 27, there is very iittle model deflection in the predominantly first

support rod mode and this is also of the rigid body type. The differences between the
first support rod mode shapes for K, = 8 and 27 come primarily from the increased
deflection and curvature in the support rod itself. It is also relevant to mention here that
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the higher model modes (i.e., second, third, etc.) are negligibly influenced for the cases
of both K, = 8 and K, =27. This is probably because of the fact that the higher modes

contain a la~ger amoun~ of stra;n .e~ergy and therefore the comribution to it arising from
the springs IS comparatIvely n4ghgible.

Figure 3 shows the effect of rotational spring stilfnes's parameter Kr for the case of
KI = 27 in terms of the variation of the frequencies and the generalized modal masses.
Here m denotes the number of the predominanUy support rod mode and n denotes the

predominantly model mode. It can be secl2. that even though the frequency of only the
first model mode is noticeably altered with Kr increasing from 0 to 12, the total generalized
masses in both the first and the second model modes (denoted by n = I and 2) are

significantly affected. This indicates that the model mode shapes for these two cases are
altered significantly and, therefore, it is now appropriate to examine the individual mode

shapes in greater detail. -
Figure 4 shows the influence of Kr on the first support rod mode and it can be seen

that for K, = 0 and Kr = 5, the model deflection in this mode is negligible. When K, is
raised to 27, both the frequency and the generalized mass values are increased substantially.
However, when Kr is increased to 10, while keeping the K, constant at 27, the frequency

of the predominantly first support rod mode increases while the generalized mass for the
same mode decreases. This can be attributed to the fact that the support rod deflection

pattern (indicated by the broken line) has changed and it is also interesting to note that
the model deflection pattern in this mode closely resembles the predominantly first model
mode excepting for the actual deflection levels. This closeness is also manifest in the
value of the frequency for this mode which is 4.6168 and is quite close to the free-free
value of 4,6786.
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Figure 5 shows the variation of the predominantly first model mode shape for different
values of KI and Kr. It can be seen from Figure 5(a) that a rotational restraint only of

Kr = 5 produces a significant amount of curvature in the support rod anq also noticeabiy
shifts the nodal points away from the support location. This is because/, in the absence
of any translational restraint, the support rod is constrained to foHow the slope of the
model at the junctions. As a result of this, the motion of the support rod 'gets strongly
coupled to the motion of the model. Figure 5(b) shows that as KI is increased from 0 to
27, the deflection levels in the support rod come dovm considerably, thereby indicating
that the linear springs tend to reduce the curvatures. This is manifest as a reduction in
both the frequency and the generalized mass for KI = 27, Kr = 5. However, when Kr is
increased from 5 to 10 for the same value of KI = 27, it is found that A.2remains practically
unchanged while m-n increases slightly. A closer examination of Figure 5(c) shows that
the increased rotational stiffness causes changes only in the support rod curvatures leaving
the model mode reasonably unaffected. In all the Figures 5(a), (b) and (c) it is found
that a relatively small rotational stiffness of K= 5 introduces a very strong coupling
between the model and the support system and therefore it now becomes necessary to
study the effect of rotational restraint in greater detail.
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Figure 6 shows th~ variation of Ai and mil with K, for K, = 8. It can be seen that for
very low values of K" the predominantly first model mode frequency_almost coincides
with predominantlysecondsupport rodmode frequency.However,as Kt increases, these
two separate and A2 reduces and merges with the predominantly first support rod mode
for Kl =50. This indicates that there is a gradual change in the support rod mode shape
in the predominantly first model mode from a typical second cantilever mode form to a

typical first cantilever mode. On ~he other hand, the generalized mass for the same mode
(n = 1) has a minimum around Kl = 25 and increases for both low as well as high values
of Kt. This increase, as will be seen shortly, is because of increased contribution from

the support rod for both the limits of Kl = 5 and Ki = 50. Figure 7(a) shows a comparison
of the predominantly second support rod mode and the predominantly first model mode
and it can be seen that there is a significant amount of interaction between the model
and the support rod in both the modes. In fact it becomes almost impossible to differentiate
between the two modes and only the model deformation decides which is the pre-
dominantly model mode and which is the predominantly support rod mode. Figure 7(b)
shows the other limit of this interaction as signified by K, = 50 where the predominantly
first model mode approaches the predominantly first support rod mode. Here also it is
seen that there is substantial deflection of the support rod in the predominantly model
mode and only the model deflection shape and levels decide which is the model mode
and which is the support mode.

All the results discussed till now have presented the variation of the total generalized
modal mass only, which, as has been seen, is a combination of the generalized mass of
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Figure 8. Variation of the generalized mass components for (a) predominantly model modes and (b) pre-
dominantly support rod modes versus KI for K, = 8. -, model -- -, support rod.

- -



124 A. JOSHi AND A. R. UPADHYA

. .

the model and of the support rod. Many times it is very useful to know the individual

values of the generalized masses which not only give a fairly good idea of the energy

content in the individual components but also decide which segment is predominating,
if one uses a common base for non-dimensionalization. Figure 8 shows the generalized
mass variation in terms of its components, for the predominantly first model mode and
the predominantly first and second support rod modes. It can be seen from Figure 8(a)
that for low values of KI the generalized mass in the model drops slightly and then
remains practically constant for higher values of KI' The generalized mass in the support
rod has a minima around KI 0=24 indicating that for both low and high values of KI there
is an increased support rod deflection. In fact this explains the minimum also observed
in the total generalized mass in Figure 6(b). Figure 8(b) shows that the content of
generalized mass in the model is very low in the predominantly first support rod mode
and high in the predominantly second support rod mode for low values of KI' This is
understandaable as the model first mode is coupled to the support rod second mode for
low values of K(. Similar coupling of the model mode for high values of KI is manifest
as an increase in the model generalized mass in the first support rod mode.
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4. EFFECT OF THE SUPPORT ROD ST1FFNESS AND INERTIA

For results presented in Figures 2-8 the support rod configuration has been considered
as constant with the support rod stiffness parameter (EILf(EI)m = 0.8 and the support
rod inertia parameter (pA)j pA)m = O'5. However, it is important to investigate also the
effect of variation in these parameters on the free vibration characteristics of the coupled
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System and to see whether or not there is an optimum value for these parameters which
e~sures minimum support imerference.

Figure 9 shows the variation of the frequency parameter, A" and the generalized mass

~arameter, mil, with the support stif!ness parameter for a high linear stiffness (K,=45)
and negligible rotational stiffness (Kr = 0.5). It can be seen that as (En, increases, all
the support rod mode frequencies denoted by various values of m increase. However,
there is no influence of this increase in the support rod siiffness on any of the model
modes mainly because there is no rotational restraint present. Therefore, one might come
to a slightly erroneous conclusion that the support rod stiffness variations are not important
if there is no rotational restraint present. Figure 9(a) also reveals the fact that, as (En,
increases, the support rod frequencies come close to or cross over the first three model

frequencies. For example, at the value of (El)j(El)", c,::0.4 the third and fourth support
rod frequencies are almost the same as the second and third model frequencies respectively.
This closeness of two modes adversely affects the overall response of the system because
there will be a significant energy content in the support rod when the model is being
excited. Therefore, even though the variations in the support rod stiffness do not directly
influence the model modes, the closeness of support rod modes has to be avoided in
deciding the support rod stifIness.
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Figure 10. Normalized mode shapes for (El)j(El)", =2.0 and 0.2; (a) and (c) predominantly support rod
mode; (b) and (d), predominantly model mode. -, model ---, support rod.
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Figure 11. Variation of (a) Ai and (b) mii versus the support rod inertia parameter, (pA)j (pA)m for KI = 27
and K, =0.01. -, model; ---, support rod.

Figure 10 shows the normalized mode shapes for two cases of (E1)s!(El)m = 0.2 and
(EI)s!(EI)m = 2.0 for K, = 45 and Kr = 0.5. It can be seen that the predominantly model
mode is more or lessthe same as the pure free-free model mode. It can also be seen that
model deflections are only marginal in the predominantly support rod mode.

The effect of increasing the support rod inertia is the reverseof increasing the support
rod stiffness, as shown in Figure 11. Here the support rod frequencies decrease with
increasing inertia but, similarly as in the case of increasing (E1)." the support rod
freq~encies again cross over the model frequencies as the inertia is increased but the
model modes remain unaffected. In fact, from both the Figures 9 and 11one can arrive
at fairly good estimates for the support rod stiffnessparameter a'nd the support rod inertia
parameter which will ensure the maximum separation between the predominantly model
mode frequencies and the predominantly support rod mode frequencies. Figure 12(a)
and (b) show that for both very low support rod inertia {(pA)sf(pA)m =0'2} and very
high support rod inertia, {(pA)s/(pA)m = l'O},the mode shapes are practically the same.

Thus, the results presented in Figures 9-12 clearly show that, even though the support
rod configuration does not influence the model modes directly if the rotational restraint
is absent, the choice of the support rod stiffness and inertia parameters should be dictated
by the considerations of maximization of the frequency separation.

5. EFFECT OF SHIFT IN THE MODEL SUPPORT POINTS LOCATION

It was mentioned earlier that in order to minimize the support interference with the
first free-free model mode, the model is supported at the node points corresponding to
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Figure 12, Normalized mode shapes for (pA)J(pA)", = 1.0 and 0,2; (a) and (d) predominantly support rod
modes; (b) and (c) predominantly model modes. -, model; _h, support rod,

this mode. However, in practice, there may be certain difficulties in achieving this and it
may become necessary to support the model at points away from the nodes. This shift is
likely to influence the overall response of the coupled system and it is very useful to
quantify the effect of such a shift on the total response of the coupled system.

Figure 13 shows the variation of the generalized mass in the predominantly first model
mode with the support shift parameter, L1xfor two cases of 1(/ = 5 and 1(/ = 40. It can be

seen that the generalized mass is significantly affected for both K/ = 5 and K, = 40 but

there is a slight difference between the two. It may be recalled that the total generalized
mass is a combination of the generalized mass contribution from the support rod and
from the model. It is seen that for K/ = 5 the support rod has no generalized mass
contribution and the effect of the support shift is evident in the model mode shape only.
However, for K, = 40 the support rod deforms significantly as indicated by an increased
mass contribution coming from the support rod. This trend is also manifest in Figure 14
where the mode shapes for both 1(/ =5 and 1(/ = 40 are shown for both Llx = -0,08 and
.dx= 0.06. It can be seen that for 1(/=5 the support rod does not deform at all and that
the effect of the support shift is fei! fully in the model mode shape only. This perhaps
can be attributed to the fact that the support rod is much stiffer than the linear springs
and therefore does not deform for low values of K/. For the case of 1(/ = 40, it can be
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predominantly first mode for (a) K1=5 and (b) K/40. -, model; ---, support rod mode.

seen that as one increases the offset parameter, ..1x,there is a significant deformation of
the support rod along with the model. This means that for Kl = 40 the support rod stiffness
becomes comparable to KI and this results in the deformations of the support rod. This
can explain the observation that for both low spring stiffnesses (lower than the support
rod stiffness) and high spring stiffnesses (comparable to or higher than the support rod
stiffness), the shift in the model support points has almost equal effects on the model
mode shape. However, there is a need to study the support offset influence in conjunction
with the support rod stiffness in greater detail to arrive at some specific conclusions.

6. CONCLUSIONS

A study of the problem of vibration of a uniform beam on two intermediate elastic
supports has been presented. The uniform beam represents a launch vehicle structural
model designed for aeroelastic buffet testing. Numerical results for the frequencies, mode
shapes and the generalized modal masses have been obtained for the various values of
the dimensionless linear spring stiffness parameter, rotational. spring stiffness parameter,
the support rod stiffness parameter, the support rod inertia parameter and the support
offset parameter. The results show that when the model is supported on the node points
corresponding to the first pure free-free beam mode, its first mode vibration characteristics
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remain practically unaltered if there is no rotational restraint present. However,in the
presence of rotational restraint, there is a significantamount of interaction between the
model and the support system and therefore as far as possible the rotational restraint
should be minimized.The results also show that, although the support rod configuration
(i.e., its stiffness and inertia values)affects only the support rod modes, it is necessary
to avoid the various cross-overs of support rod frequencies and to ensure that there is a
sufficientseparation of frequenciesinorder to avoidsimultaneousexcitation ofthe support
rod modes.Finally, the influence of the offset in the support rod location has also been
investigated and it has been shown that although the frequency of the model is only
marginallyaffected the generalized mass is altered significantly.
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APPENDIX: NOMENCLATURE

unknown constant in equation (6) and cross-sectional area of the jth segment
unknown constants in equation (6)
beam segment bending stiffness
reference beam bending stiffness
support rod bending stiffness
model bending stiffness
linear spring stiffness
rotational spring stiffness
(=:K,L~/ Eo/o),dimensionless value of KJ
(=:KrLo/ Eo/o), dimensionless value of K,
jth beam segment length
reference length
(=:a/ azj), the dimensionless differential operator
index number of predominantly support rod mode
( =:I Ju; dm), generalized mass of ith mode
index number of predominantly model mode
displacement in x-direction
Cartesian co-ordinate system
dimensionless value of u
dimensionless displacement in segments
(=:z;! Lj), dimensionless z-co-ordinate in the jth beam segment
reference mass density
mass density of jth beam segment
(=:Po0/ LriAo/Eo/o), dimensionless frequency parameter
value of frequency parameter, A, for ith mode
(=:Pjo/LJAj/E/j), dimensionless frequency parameter with respect to the jth beam
segment
support point offset parameter
superscript denotes differentiation with respect to Zj


