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SUMMARY

Forcefieldscomputed directly from strainscalculated ina displacementtype finiteelement descriptionof
a structural element of varying sectional rigidities show extraneous oscillations. The origin of these
oscillations is traced to the fact that the displacement type finite element procedure determines strains
derived from the displacement field in a least squares correct sense and that forceresultants computed using
these strain fields and the actual sectional rigidities result in unwanted oscillations. It is necessary to
introduce the concept of redistributed assumed force resultant fields that maintain a 'consistent' relationship
to the strain fields and also are orthogonal to these strain functions. In this paper, the Hu-Washizu theorem
is invoked to justify the introduction of an orthogonally correct reconstituted assumed force resultant field
which will then be free of extraneous oscillations. The quadratic isoparametric tapered bar element serves to
illustrate the underlying principles.

It follows that the extremely general Hu-Washizu principle is the most practical procedure of imple-
menting an assumed force resultant, assumed strain displacement type formulation to introduce consistency
and thereby remove problems associated with field-inconsistency (such as cause locking in constrained
media elasticity) and force resultant oscillations due to varying sectional properties.

INTRODUCTION

Conventionaldisplacementtypeformulationsusingexactintegration orall strain energiesbased
on strains derived directly from kinematically admissible displacement fieldslead to the phenom-
enon of locking and stress oscillations in problems where constrained multi-strain fields are

present.! Many ad hoc practices, e.g. reduced integration, addition of bubble modes, assumed

strain methods, mode decomposition, etc., alleviate this problem. Recently, a variational basis for.
suchprocedures has emerged.2- 5 .

Prathap6 showed that the variationally correct wayto formulate the class of constrained media

problems so that locking, poor convergence and stress oscillations due to field-inconsistency are

removed is to identify the terms of the assumed strain field so that only consistent terms are
retained and to determine the constants associated with these terms in the 'assumed' strain field

from the constants in the strain field derived directlyfrom the displacementfields using an
orthogonality condition that emerges from the Hellinger-Reissner formulation. This derived

assumed strain field can be introduced directly into the variational indicator for the minimum

total potential principle and an integration of the energies based on these strains will yield
stiffnessmatrices that are free of all field-inconsistencies.

In this paper, we are interested in a related theme pertaining to the evaluation of force or stress

resultant fields from a displacement type formulation where the rigidities vary over the element
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volume. Weshallusethe verysimpleexampleofa taperedquadratichar elementtoshow that the
direct use of strains derived from displacement fields leads to extraneous oscillations in the final
computed stress or force resultant fields. We show that there is a 'consistent' level up to which
force fields can be represented and that the stiffness matrix obtained by the congruent trans-

formations can reflect energies only from this 'consistent' part of the description. Therefore, the
direct multiplication of varying sectional rigidities with kinematically derived strain fields retains
higher order 'inconsistent' terms which do not contribute to the stiffness matrix but get reflected
as extraneous force oscillations if forces are computed from this. The Hu-Washizu theorem

provides the variational justification for reconstituting the 'consistent' assumed force resultant
field from the 'inconsistent' kinematically derived force field.A simple device of expansion ofthe
latter by Legendre polynomials and suitable truncation yields a 'consistent' representation that
satisfies the orthogonality condition imposed by the Hu-Washizu theorem.

The simpleexampleof a taperedquadratic isoparametricbar element allowserror estimatesto
be made which can be verified by numerical exercises. These confirm the arguments presented in

this paper relating to the need to represent force fields in a consistent manner so that extraneous

force oscillations can be eliminated. These findings will have important extensions to tapered

plate and shell formulations.
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TAPERED QUADRATIC ISOPARAMETRIC BAR ELEMENT-FORMULATION

Minimum total potential energy principle

In a formulation basedon the minimum total potential energyprinciple, thestiffnessmatrix is
derived from a variational indicator written as

IT= 1/2fNTt:dx- W

where t: = du/dx is the axial strain, N = EA(x)t: is the kinematically constituted axial force,

W = Jpudx is the potential of external forces,u the axialdisplacement,p the distributed axial
load, E Young'smodulusofelasticityandA(x) is thevaryingcross-sectionalarea.

In a quadraticelementoflength21with themid-nodeexactlyat the mid-pointof theelement,
the followinginterpolationscanbemadein termsof nodalvaluesof x, uandA:

x=xz+(x3-xd/2 ~

u = UZ+(U3-u1)/2 ~+(ul-2uz+U3)/2 ~z

A = Az+(A3-A1)/2 ~+(AI-2A.z+A3)/2 ~z

We shall nowexamine howthecongruent transformationimplied by NTt:andits integration over

the elementvolume takesplace.We computethe kinematicallyderived Eand N as

E= (U3- ul)/21 +(Ul - 2uz +u3)/1 ~
N=EAt:

= N1 +Nz~+N3(1- 3~Z)+N4(3~- 5C)

where

N1 = E[Az(U3-ud/21+(A3 -Ad/6 (ul-2uz +u3)/1

+(Al-2Az +A3)/6 (U3-ul)/21] (4a)

(1)
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N2 = E[A2(u\-2u2+u3)/I+(A3-A\)/2 (u3-u\)/21

+ 3(A\ -2A2 + A3)/10 (U\-2U2+u3)/IJ

N3 = -E[(A3-A1}/2 (u\-2u2+u3)/1

(4b)

+(A\-2A2+A3)/2 (u3-ud!21]/3

N4= - E[(A\ -2A2 + A3)/2 (u\-2U2+ u3)/IJ/5

(4c)

(4d)

and where we havecarefully expandedthe axial force resultant in terms of the Legendre

polynomial forms for reasonswhichwill become transparentsoon.
Thestrain energyof deformation is then expressedas

U = 1/2 JNTedx

Owingto the orthogonal nature of theLegendrepolynomialsit emergesthat N 3andN4 will not
contribute to the energyand thereforenot to the stiffnessmatrix! Thus,

U = [N\(U3 - u\)/21+ N2/3(Ul - 2uz +u3)/IJI

Here,weseeclearlya pointer to howthe 'consistent' representationof the force fielddenoted by
Nmustbemade-it shouldcompriseonly the termsthat will contribute to the stiffnessand strain
energyand the simplestway to do thiswasto expandthekinematically determinedN in terms of

Legendrepolynomials, retaining only terms that will meaningfully contribute to the energy in
NTe.Thus, N mustbe'consistent'withe, i.e. in thiscase,retainonlyup to linearterms,i.e.

N= N 1 +N2~ (5)

If thisrulehadnotbeenobserved,thenthe forcefieldcomputeddirectlyusingaxialdisplace-
mentsobtainedin afiniteelementsolutionwill haveextraneousforceoscillationsdueto the N 3

and N4 termsdescribedin equations(3)and(4c)and(4d)!To seethevariationalbasisfor the
novelprocedureadoptedsofar,weshallintroducetheformulationof thisproblemaccordingto
theHu-Washizuprinciple.

Hu- Washizuprinciple

In forming the Hu-Washizu functionalfor the total potential, an asyetundeterminedassumed
force function N is introduced, but the assumed strain field jXcan be safely retained ase without

any loss of flexibility in this instance(note that, in a constrained media problem,6it will be
requiredto introducea field-consistentjXthat will bedifferentfrom thekinematicallyderivedand
thereforeusually field-inconsistente).The variational indicator now becomes

n = J{l/2(EA8)TjX+ N (e- n} dx - W (6)

Avariationof theHu-Washizuenergyfunctionalwithrespectto thekinematicallyadmissible

degreeof freedomu givesthe equilibriumequation

Jou'(dN Idx - p}dx ~ 0

(7)
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Variation with respectto the assumedstrain field f:givesrise to a constitutive relation

fM.{ - N+ EM}dx = 0

and variation with respectto the assumedforce field IV gives rise to the condition

(8)

'f

f, N. {(; - e}dx = 0

Weobservethat equations(8) and(9)are curiousorthogonality conditions. If if is taken to be
identicalto (;,equation(9)is identically satisfied.Wenow turn our attention to equation(8).We
note that this can berewritten as

(9)

fJif.{ - N+N }dx = 0
(10)

",

:f~

If N isexpandedin termsof Legendrepolynomials,it canbeprovedthatN, whichis'consistent'
andorthogonallysatisfiesequation(10),is obtainedverysimply byretainingall theLegendre
polynomialtermsthatare'consistent'with 8, i.e.asshownin equation(5).Thus theprocedure
adoptedhasa variationaljustificationaccordingto theHu-Washizuprinciple.
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We shall perform computational exerciseswith two versionsof the element:

HARlO is the conventionalelementusing N for stiffnessmatrix evaluation and recoveryof
the forceresultant;

BARll is the 'consistent'elementusing N for stiffnessmatrix evaluation and recovery of
the forceresultant.

Notethat,in both cases,thestiffnessmatricesandcomputeddisplacementsareidentical.
Thenumericalexperimentswill bebasedon asingleelementrepresentationof aquadraticbar.

Figure1showsa taperedbarclampedat node1andsubjectedto anaxialforceP atnode1 The
taperisdefinedby theparameters

a = (A3 - AI)/2Az and p = (AI - 2Az +A3)/2Az

It is possiblenow to analyticallysimulatea singleelementfinite elementcomputationof this
problemby identifyinggeneralizeddisplacementparameters

at = (U3- uI)/21

az = (Ut - 2uz +u3)/1

h'
;1:

~!
" ~.-

2 3x p

;

i
',I'

d!
i,lj'

Figure1. Singleelementcantilever bar
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FORCE RESULTANTS IN ELEMENTS WITH VARYING SECTIONS

and, noting that Ut = 0, onecanestablishth~t

779

(l + 3P15)

at = (PI EA) (1 + 3N5) (1 + fJ13)- c:.2j3

-a

a2 = (P lEA) (I + 3P15)(1 + Pl3) - a2/3

Substituting into equation (3),one obtains

(PO + 3{/15)- (2)

N = P- P13(1 - 3e)(1 + 3PI5)(l + P13)- a2/3

( - CtP)

- PI5(3~ - 5e) (l + 3P15)(1 + P/3) - a2/3 (11)

The constant and linear components (i.e. Nt = P and N 2 = 0) are correctly recovered. However,
there are noticeable quadratic and cubic oscillations for a general quadratic taper (i.e. a #0 and

P #0) if force resultants are computed directly from equation (3). However, the 'consistent' force
resultant field yields the correct forces.

Casea-Linearly taperedsinglecantilever bar element

We shall verifythe abovemodel by comparisonwith the actual finite elementresults from
a computational exercise usingthe two versionsdescribed above for a bar with cross section

tapering linearlyfrom the root to the tip. Thusa varies from0 to - 1.0whilep== O.Figure2

- EOUATION(II)

0 FEM BAR 3-0

20 -- - EXACT

+ FE M BAR 3-1

a.
"-
z

0

-I 0

!

Figure 2. Axial force pattern for linearly tapered bar with IX = 0.9802 (A3 = O'OIAI)
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shows the axial forcepatternsobtainedfrom the finiteelementdigital computation forIcasewith
'J.= - 0,9802,and theseare seento coincide with the analytically deducedexpressIOngiven in
equation(11).

Figure3 illustrates the manner in which the magnitudeof the quadratic osciilationsin the
kinematically derivedforce resuitantfields varieswith taper. The taper is now describedin ihe
fractionalsenseasA* = (A I - A3)/AI' If N* = (N' - P)/ P, whereN' is the valueat ~= 0, then
from equation (11),with P = 0,weget

N* = (12/(3- '1.2) (12)

The figure comparesthis analytically simulated relationship with that obtained from the finite
elementdigital computations.Theagreementis seento be very good.

Caseb-Linear andquadraticallyvarying taper givingrise to cubicforce oscillations

Wechoosea casewherePO+3P/5)= (12 by computingthe cross-sectionalareasnecessaryfor
this as '1.= - 1.0639411and p= 0.7732352. Fromequation(11)we see that the quadratic
oscillations disappear,leaving behind the cubic oscillations. A finite element computation is
performedwith a singleelementcantileverbar with a tip force P andthe resultsarepresentedin
Figure4. The finite elementresultsagreeexactly with those computedfrom equation(11) based
on the analytical simulation of thepresent problem.

",
Ii

Casec-Linear andquadraticallyvaryingtaper givingrise to quadraticandcubicforceoscillations

We examine a general caseof taper with Al = 1'0,A2 = 0,36 and A3 = 0,04. The area ratios are

'1.= - 4/3 andp= 4/9. The analyticalsimulation predicts that theaxial forcecomputedby the
BAR3.0element will be

!
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N/P = 1+0'4699152(1- 3~2)- 0'13375358(3~- 5~3) (13)
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Figure3. Magnitudeof quadraticoscillationin linearlytaperedbar
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Figure 4. Axial forcepattern for bar with combined linear and quadratic taper('1= - 1'0639411, P= 0,7732352)

Figure 5 showsthe resultsfrom the finite element computations and those predicted by
equation (13).Owing to the presence of the cubic oscillations, the Barlow points (~= :t 1/J3) are
no longer points of accurate forcerecovery! It is necessary to perform a reconstitution of the force

resultant fields on a consistency basis as is done here before reliable force recovery can be made.

CONCLUSIONS

In this paper, we have introduced another variation on the 'field-consistency' theme. Earlier
studies, reviewed in Reference I, showed that in a class of problems recognised as constrained

multi-strain-field problems, a certain 'consistency' in the strain-field definitions was required so

that only 'true' or physically relevant constraints emerged in the penalty regimes of constraining
of the concerned strain fields. It was seen that the Hellinger -Reissner principle6 offered a means

to allow flexibility in designing the assumed strain field such that the desired 'consistency' of the
strain to displacement relationship was achieved.

The present studies demonstrate that there is another class of problems, namely where the
sectional rigidities vary, where a further 'consistency' requirement, that of the constitutive

relationship,comesinto play.Thereis now a determinablestressresultant fieldthat must satisfy
a 'consistency' equilibrium with the strain fieldderived usingthe gradient operators on the
kinematically admissible displacement fields. The more general Hu-Washizu theorem must now

be introduced to admit flexibilityof design of the 'consistent' stress resultant field.
We have derived a rule to construct variationally consistent interpolations for the force

resultant functions for instances where the elastic medium to be modelled by displacement type
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Figure5. Axial forcepattern for bar with combinedlinear andquadratic taper (iI = - 4/3, P = 4/9)

finite elements has varying sectional rigidities.In such cases, use of kinematically computed force

resultant fields leads to additional spurious oscillations in stress recovery. The Hu-Washizu

principle forms the basis for the procedure adopted to reconstitute the 'consistent' force resultant

field from that obtained from the kinematically admissible displacement fields. A tapered
quadratic isoparametric bar element is used to demonstrate the basic principles involved.

The findings have an important bearing on the performance in the prediction of force and stress

resultants of structural elements such as tapered curved beams, plates and shells, and work on

these is underway and will be reported separately.
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