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The linear temporal stability characteristics of converging-diverging, symmetric wavy walled
channel flows are numerically investigated in this paper. The basic flow in the problem is a
superposition of plane channel flow and periodic flow components arising due to the small
amplitude sinusoidal waviness of the channel walls. The disturbance equations are derived within
the frame work of Floquet theory and solved using the spectral collocation method.
Two-dimensional stability calculations indicate the presence of fast growing unstable modes that
arise due to the waviness of the walls. Neutral stability calculations are performed in the disturbance
wavenumber-Reynolds number (a s-R) plane, for the wavy channel with wavenumber k 1 =0.2
and the wall amplitude to semi-channel height ratio, E,,., up to 0.1. It is also shown that the
two-dimensional wavy channel flows can be modulated by a suitable frequency of wall excitation
cog , thereby stabilizing the flow. © 1999 American Institute of Physics. [S 1070-6631(99)02802-0]

I. INTRODUCTION

	

Tollmien-Schlichting waves. The subsequent stages are
characterized by the development of secondary instabilities

Viscous flow over moving wavy boundaries may be ob-

	

and the appearance of three-dimensional effects.' However,
served in several natural phenomena, viz., the generation of

	

the presence of surface waviness or roughness alters this sce-
wind waves on water, the formation of sedimentary ripples

	

nario and leads to other bypass mechanisms that have not yet
in river channels and dunes in the desert, etc. The subject is

	

been investigated in detail. 2 A critical evaluation of the linear
also encountered in some industrial applications, e.g., a

	

stability theory of flows is presented in a recent review by
novel method of fluid transfer, which avoids internal moving

	

Reed et al. 3 Earlier, the shear flow over a wavy boundary
parts, employs a duct with flexible walls so as to generate

	

and the effects of a flexible boundary on hydrodynamic sta-
progressive transversal deflection waves. The problem is

	

bility characteristics have been studied by Benjamin,4,5

worthy of interest because unsteady fluid dynamics, such as

	

Landahl,b and Hains and Price.
7

this one, shows the time-dependent development of the

	

The study of the stability of oscillatory wall bounded
viscous-inviscid interactions of the flow. One of the inter-

	

flows is a relatively new topic. Grosch and Salwen
8

observed
esting physical mechanisms of the flow over wavy bound-

	

that for small mean velocity perturbations the modulated
aries is the transition from laminar to turbulent flow, i.e.,

	

flow was more stable than the steady flow and larger fluc-
whether the critical Reynolds number (below which all the

	

tuations produced an abnormally strong instability. Von
disturbances are damped) decreases for the rigid wavy

	

Kerczek9 performed a perturbation analysis of the linear
boundaries and increases when subjected to certain forced

	

equations about the critical Reynolds number. He found that
excitation of the wavy wall, The identification of suitable

	

modulation frequencies near that of the most unstable
excitation parameters to bring about the delay of transition

	

Tollmien-Schlichting (T-S) wave of the steady case stabi-
continues to remain a central problem in flow management

	

lized the flow. At the critical Reynolds number of 5772.22,
and control. However, it may be mentioned that it is not

	

both very low and high frequencies tend to make the flow
always appropriate to produce a delay in the transition to

	

mildly unstable. He did not find any strongly unstable
turbulence, especially in heat and mass transfer processes.

	

modes, in conflict with the results of Grosch and Salwen. 8

The wavy-walled channel, with its crests and troughs of the

	

Later, Singer et al. 1 0 performed a direct numerical simulation

waviness aligned crosswise to the flow direction, can be a

	

of the transition in an oscillatory plane channel flow. Their
model device employed for enhancing heat and mass transfer

	

results agreed well with those of von Kerczek9 and pointed

efficiency in industrial transport processes and in biomedical

	

out the lack of adequate resolution of the Stokes layer in the

applications such as a blood membrane oxygenator and kid-

	

computation done by Grosch and Salwen. 8 Recently Guzman

ney dialysis.

	

and Amon
11

studied the transitional flows in a converging-

In the study of fluid motions, the process of the laminar-

	

diverging channel using Direct Numerical Simulation tech-

turbulent transition in wall bounded flows begins with insta-

	

niques.
bility in the form of linearly growing two-dimensional

	

In the present work, we examine the effects of small
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FIG. I. Schematic: of flow through a wavy walled channel.

amplitude sinusoidal converging-diverging waviness of the
channel walls on the initial growth of the disturbances. The
basic flow is comprised of time-independent plane channel
flow and space- and timewise periodic flow components are
induced due to the waviness of the walls which may be trav-
eling. The theoretical frame work for the present study is the
Floquet theory. Although the fornulation is general, we con-
sider the two-dimensional problem and study two aspects,
namely. (i) the variation in the critical Reynolds number with
amplitude parameter and (ii) we show that it is possible to
delay transition by a suitable excitation of the wall. The
present work is different from a recent study by Floryan t ` on
the transition process in the presence of distributed rough-
ness elements. In Floryan's study the sinusoidal distributed
waviness is simulated by applying suction/blowing boundary
conditions at the walls. In the present work, the flow con-
figuration is such that the walls of the channel are considered
wavy and no-slip boundary conditions are imposed on the
surfaces. Furthermore, an excitation of the wall is permitted
by prescribing a frequency, thus adding a parameter to Flo-
ryan's study. It is also appropriate to note that, with no ex-
citation of the wall the physical problem of the flow past a
wavy but rigid wall is equivalent in a first approximation to
a suitable distribution of suction/ blowing at the plane wall
surface.

II. FORMULATION AND SOLUTION PROCEDURE
The schematic of the flow configuration is presented in

Fig. 1. The problem is formulated in two parts. First, the
basic flow quantities are sought as perturbation from the
parabolic profile of the fully developed channel flow and in
the second part the Floquet theory is used to study the sta-
bility problem. Selvarajan and Vasanta Ram

13
derived the

governing equations for the basic and the disturbance flows
in the most general form, and outlined a solution procedure.
The salient features are presented here for the sake of clarity
and completeness.

A. Basic flow

The nondimensional forms of the equations of motion
for an incompressible fluid in the usual notation are

1
tl/ =,2

1
P 2
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where the nondimensionalizing scales for length, velocity
and pressure in that order are the mean semi-channel height.

H (see Fig.l) the mean center line velocity, U and pU 2. The
Reynolds number R is based on H and U. We specify the
wall motion x,,,, through the following expression:

x,µ.(t,xt,x3)=±l+E,,.Re[e{ifAt.r,+~;_r3- et l],

	

(2)

where Re (.) denotes real part of (.) and i = yl - 1. Equation
(2) represents a wave traveling in the plane of the wall
around the position x, _ ± 1 with amplitude s,,. , wavenum-
ber vector (X, , \ 3), and the frequency of excitation, u),,' It

may be pointed out that g and w are suffices and not indices.
Further, it may be noted that the case of zero excitation cor-
responds to a rigid wavy boundary. Also, in the above form.
the waves of the upper and lower walls are in anti-phase, so
that at any instant of time the local channel width expands
and contracts around the value 2H.

For small amplitude of wavy wall excitation, the solu-
tion is sought as perturbation from the parabolic velocity
profile, i.e.,

u j = S1j ( I -x;)+e,,.ctj+O(E,,.),

	

(3a)

p=-(2x1/R)+s,,.p+O(e ),

	

(3b)

where the suffix iv refers to the wall. Transferring the bound-
ary conditions in Eqs. (2) to the mean position of the wall,
using standard methods, 14 we get the boundary conditions

for the perturbation ac t as follows:

j,k= 1.2,3

The boundary conditions (4a)-(4c) are directly obtained by
applying no-slip boundary conditions at the walls. It may be
noted that for the case of flow through rigid wavy channels,
the frequency of excitation w g =0, reducing the normal ve-
locity component at the wall to be zero, i.e.,

u2('±1)=0.

	

(4d)

In contrast, Floryan t2 applies a nonzero suction/blowing
boundary condition at the plane wall surface which is depen-
dent on the wavenumber of the distributed roughness to be
simulated. However, in the present study, prescribing a non-
zero normal velocity component at the wall implies that the
wall is moving with a phase velocity. The solution for the
above boundary conditions then assume the form

ili(x,)exp{i (k 1 X I + X 1 x 3 - w g t)}

+i'(x,)exp{ - i('\1x1+X1x3-w g t)}

p(x 2 )exp{i(X lx l +X I x 3-wg t)}

+p*(x,)exp{-i(X 1 x 1 +X 1-3 -w g t)},

(5a)

,

	

(5b)

i

u1(±1)=-2Re[e'(1`t.`I+a3.r} w t)] , (4a)

It,( -!-1)=Re[±iceRe'1~~-Yt+~~x3w5t)] ( 4b)

u3({- 1)=0. (4c)
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FIG. 2. The variation of amplitude functions of the periodic flow compo-
nents (a) 1i 2 .. , (b) 1120 (c) it,, and (d) a,; for R=5772. (i) Two-dimensional
wavy channel flow (-) ; k,=0.2, w A =0.0; and (ii) plane channel flow
a T_s =1.02056,W TS =0.26, (-'-.-.-).

where uj , p are amplitude functions to be regarded complex
and the superscript * denotes the complex conjugate. Substi-
tuting Eqs. (5) in Eq. (1) and linearizing yields the following
equations:

ik l ut+
du2 d

+iX 3 u 3 =0,

	

(6a)
2

w 9 +(1
-

x22 )X 1 ]u1
- 2x2u2

=-ix 1p+(1/R) (-X -\3)+
c1

2

dx2 u 1

	

(6b)
2

w b +(1 -
x2)~t]u2

__

	

dp

	

z 2

	

d
2

-iX1dx2+(1JR)

	

1 -A 3 ) +; u 2.

	

(6c)dx2

i[-

	

+(1 - x2)X1]at3

d 2 -=-iX3p+(1/R) (-)<1 3 ) + ad

	

U3.

	

(6d)x 2

Equations (6a)-(6d) are solved along with the following
boundary conditions due to wall excitation:

i 1 ( +1)=-2; u 2 ( -! l)=±iw g ; ic 3 ( ±1)=0. (7)

The solution of the basic flow is obtained numerically by
solving the boundary value problem using two independent
numerical procedures: (i) the finite difference method of
Scott and Watts,

1 5
and (ii) the spectral collocation method by

Canuto et at.
1 6

Both the numerical methods produced the
same results with an accuracy of four decimal places. The
details are presented in Selvarajan et al. 1 7 In the present
work, we restrict our attention, as already stated, to the case
of two-dimensional wavy channel flows, i.e., X3=0 through-
out the study. The flow parameters of interest mainly corre-
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e

FIG, 3. (a) A mesh plot of the basic (base) flow velocity it, along the
streamwise direction x 1 and normal direction, x 2 , i.e., {u 1 =(1-x,)
+8,,,t,} fork,=0.2,X 3 =0.0,w s =0.0, and s,,.=0.l; and (b) {u2=e„,u',} for
the above parameters.

spond to the critical parameters of the two-dimensional plane
channel flows. We also consider the wavenumber of the
wavy surface to be shallow with respect to the wavenumber
of the disturbances. For the basic flow with 1. 1 = 0.2, X 3

=0, co g =0, and R=5772, the typical variation of u 1 and t ,
with x2 comprising of real and imaginary parts (it 1 i . . tc t i) and
(u),-.u21) are shown in Fig. 2. Here the additional suffices r
and i indicate real and imaginary parts, respectively. Also
shown are the variations of the eigenfunctions that corre-
spond to the critical parameters of the plane channel flow
(R = 5772, X 1 = 1.02056, and w.=0.2640). The variations of

tct ([X1=8,1(1-x;) I-s,,,cc,]) and u,(cc 2 =e,,,ic 2 ) for e,,,

=0.1 are shown in Fig. 3(a) and Fig. 3(b), respectively. The
nonzero velocity distributions along the mean surfaces of the
walls are indicative of the no-slip boundary condition being
satisfied on the wavy surface.

B. The disturbance flow

To study the stability of the wave-excited channel flow a
further disturbance is introduced. This disturbance flow is of
the following form:

I'1=81(1-x2)+a,,,i6j +e 11,1,

	

(8a)

p= - (2xt /R)+EY4,p+s,.ps.

	

($b)
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Here the suffix s, like w and g, is not an index, but refers to
a further disturbance. Substituting Eqs. (8) in Eqs. (1) and
assuming that e,< e,,,.<< 1, the linearized equations of motion

for the further disturbances are

atl .,j
dXj

as ,
+( I -x ;)

a,.,,

-2x211s2+

x1

	

1

att,1

	

all 1

	

I

	

02 11s,

+e l,, it n

	

+u„ t- --

	

=0,

	

(9b)
L

	

ax k

	

ax k

	

R ax k ax k

all,, +(I

	

ap,2 + aPs
at

	

ax,

	

ax 1

011 s2

	

du1 2

	

1 (/2
+ tlk

	

+tt,k- --R

	

=0,

	

(9c)
axk

	

aX k

	

aXkaXk

an 5 3

	

, a/C s 3

	

ap,.
C?

+(I -z' ) ax, + axe

(911 A

	

a1C3

	

I x 2„--

	

66,3
+ E,,, tlk

	

+ 11,k- - -

	

_ O.

	

(9d)
ax k

	

r7-x k

	

R ax k r7.x k

The periodic flow quantities uk and p in Eqs. (9a)-(9d) are
obtained from the computation of the basic flow as outlined
in Sec. II A. Although the solution is first order accurate, it is
adequate for the present investigation in which e,,, is small. 1 7

The practical limit on s,,, may be dictated by flow separation
characteristics behind the wave-crest, which depend on Rey-
nolds number R, wavenumber X 1 , and wall amplitude s,,,

itself.
The outstanding feature of the set of disturbance equa-

tions (9) that demarcates it from the classical stability prob-
lem is the presence of periodic terms in t,x, and x 3 through

Uk . It implies that, although the parameter a,,. is small, the
structure of the solution may be drastically changed by the
periodic terms, Using the Floquet theory' s Eqs. (9) can be
transformed into ordinary differential equations, i.e., we ex-
press u,k and p,, as follows:

aps

uSk=
I As'1(x,)exp[i~ps")], k=1,2,3

	

(10x)
11= - x

Ps=

	

As41
(x2)exp[icp,°1],

	

(IOb)

where

lp,=(a,+ilk ,)x1+(R,.+nX3)x3-(w,.+nwdt, (lOc)

andA s1 , As. 2 , A, 3 and A s4 are the amplitude functions. The
expressions in Eqs. (10) represent superposition of waves of
wavenumber (,3,5+taY3), and frequency (w,
+nw t). In the temporal stability problem,a,, and ,6, are the
disturbance wavenumbers and are prescribed as real. The
solution of the problem then yields the complex frequency,
co, for which Eqs. (9) admit nontrivial solutions. The imagi-
nary part of w, then indicates the growth or decay of the

further disturbance characterized by (a„/3,). We write the
dispersion relation of the problem symbolically in the fol-
lowing form:

F(ws,ce,5,,3., , R,E„,Xi , A3,(o s ) =0,

which shows the additional parameters, viz., e,,,, X1' 1t
3

and w x that enter the problem due to the wave excitation of
the wall.

The equations governing the amplitude

A('i ) ( x2) to A(4) (x 2 ) are as follows:

dA s2 )

i(a,+nX,)AS'~1+-	 +i(,(3,.+17X3)As3)=0,
dx 2

(n)
i{-(w,.+n.w~)a-(a,,.+n>L,)(I -

x2)}A (.,1") - 2
x2A.,z

(~1)

	

1
+i(a,.+nX )A s4 + R

	

+n~ 1 )2+(/3,+n k 3)2

-
d 2 } A

(111 + E"~<bl")=0,
d.z, ,i

	

2

	

i

,.

	

dA~" )

-+-nw s ) +(a,.+nAi)(1-x;))}A (11) r

	

's 4.,2
Cix2

+a (a,
-~ ll ~l)

dX2

+
It,

(b
(
"

1 =0,
2 2

zi{-(w,.+rtw~)-I-(c>,+rrAi)(1-..t2)}A 2 ) -I

+ 2
° (1)

0,1
=0.

The quantities (hj" 1 , with j= 1,2,3, in Eqs. (12) are an ab-
breviation for the following expression:

<l>~")-~ila1{a,+(n-I

	

idl,,{13,+(n-1)X3}

ci

	

()1--1)-

	

isI il,-- A,,1

	

I

	

{cx,-+ -(n-1 +- l 7X 1 }
C'1.C2

+ i n
31

{ g,,. -I- (/' -I- 1 )
X3}

-I- a

	

A 'r.l,i. I t
~

-I-IiX A('-11+i1\ A("1)+A(11--1) d ] J
LL

	

1

	

., i

	

3

	

., 3

	

,2

	

d.x2

	

r
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-I- -ix A i>t A ( " 1 1 -+ -A("+1) d
11 `!"

1

	

.,1

	

.3

	

.,3

	

,2

	

d 42

	

j

functions

(12a)

(12b)

(13)

To bring out the differences between studies of the stability
of the flow with a wave excited wall and the classical prob-
lem more clearly, it is meaningful to rewrite the ordinary
differential equations for the complex amplitude functions in
a form in which the contribution of the Orr-Sommerfeld
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TABLE 1. The least stable / most unstable modes for the wavy channel flow

with e,,, as parameter R = 5772, K I =0.2, a,=1.02056,

(c)
0.016
0.014
0.012

0.01
„0.008
30.006

0.004
0.002

0
-0.002	 t)

	

0.04 -

	

0.06

	

0.08

	

0.1Ew

	 Mode 1
i 	 Mode 2~

Mode 1(TS)

	

Mode 2

	

Mode 3

part, and the additional terms can be more easily recognized.
We therefore subject Eqs. (12) to the following steps which
eliminate pressure.

Step 1: Multiply Eq. (12b) by (a,.+nX i ) and Eq. (12d) by
( 8, + n X 3 ) and add the expressions.

Step 2: Differentiate the outcome of step 1 with respect to
x 2 .

Step 3: Multiply Eq. (12c) by [-i{( as+oXl)2+(/3,.
+ 11X 3 ) 2}]

Step 4: Add step 3 to step 2.

Step 5: Multiply Eq. (12b) by ( 8,+nX 3 ) and Eq. (12d) by
(a,,+nX I ) and subtract the expressions.

The resulting equation after steps I to 4 is

d

	

dAl, )
1

dz2
{(m,.+ncos)(a5+1aXl}(1-x2)}

dx2

-(a s +nX 1 ) dx (2x 2 As )) +k;{-(w,+nwg)
2

+(a,.+nX1)(1-x2)}.032

1

	

, d 2

	

d 4+R 2ik,`,?-i -ik4
ctx2

	

dx 2

v
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where the abbreviation k stands for

k,'`, =(a,+nX1)2+ +nX3)2.

	

(15)

The quantity NIr (" ) in Eq. (14) is a sum of thirteen terms, i.e.,

13

( n) -
E

	

(»)

j=1 j

The NI1j" ) are listed in Appendix A.
Equation (17) given below is the outcome of step 5, i.e.,

As")+ a"
2Tr ( ")=0,

	

(14)

2
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FIG. 4. Variation of the growth rate ((o) and circular frequency, (r~,,.) with the wall amplitude s,,, for the basic flow R=5772, X 1 =0.2 and (a) a,
=0.95, imaginary part, (b) cr,.=0.95, real part, (c) a,= 1.10, imaginary part, and (d) a,=1.10, real part.
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=0.0, e,,.=0.05.
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The X(" ) are listed in Appendix B.
Equations (14) and (17) together with the continuity, Eq.

(I 2a), are the set of equations for the complex amplitude
functions of the velocity Asj), A("), and As" ) . The bound -
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ary conditions are
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FIG. 9. Neutral stability characteristics of the 2D wavy channel flow in the

wavenumber-Reynolds number (a,,-R) plane-contours of constant circu-

lar frequency, (U),.,.) for the basic flow parameters, X1=0.2,
m,=0.0,

e,,.

= 0.05.

t

c

U

1000

	

2000

	

3000 4000

	

5000 6000

Reynolds number, R

FIG. 10. Variation of the neutral stability characteristics for the 2D wavy

channel flow in the (a,- R) plane, X 0.2, c s=0.0 for s,,.=0.0,0.05, and
0.1.

This reduces to an eigenvalue problem requiring a solution
of the dispersion relation [i.e., Eq. (11)] for the complex
frequency, to,.

A cursory inspection of the governing equations (14) and
(17), shows that for the case of an unexcited wall (s,,.=0),
they reduce to the Orr-Sommerfeld equation for As' t and the
Squire equation for S2 ( " ) . For s,,.00, Eqs. (12a), (14), and
(17) form an infinite set of coupled equations. Following the
usual methodology,"' 9 we truncate them at rt=+1 and n
_ -1, setting A ( '! 3= 0 for all n > 1 and n < - 1. We then
have nine unknowns, viz.,

A ( -1) A ( -1) A(1) A(0) A (0) A (0) A ( +)) A(+1)
A

	

s2

	

, s3

	

s1

	

s2

	

s3

	

sl

	

s2

and

(+l)
A53

The nine equations for these are obtainable by writing
Eqs. (12a), (14), and (17) for n=-1,0, and +1. The differ-
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FIG. I I. Variation of critical Reynolds number for transition, Rc1 I r,.) with

amplitude of the converging-diverging symmetric wavy walled channel

flow for X 1 =0.2, X3=0.0, and w,=0.0.
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ential eigenvalue problem is solved after setting up the alge-
braic matrix equations. Following Selvarajan el al.17 and

Floryan, 1 ` using 41 collocation points, which are sufficient

for obtaining accurate solutions, the size of the matrix to he
solved for the eigenvalue problem is [369X369]. The gener-
alized eigenvalue problem is solved using the MATLAI3 rou-
tines.

III. RESULTS AND DISCUSSION
A. Validation

The limiting case for the flow through the wavy walled
channel is the calculation of the stability of plane Poiscuille
flow as the amplitude of the wall and the wavenumber are set

0.4
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C(1111,11 to zero. The results 01'111C present stability calculations
give the critical Reynolds nun)her of 5772.22 which is in
good agreement with C)rszag. j 1)

B. Stability of flow through wavy walled channels
The etl'ect of the wall amplitude parameter a,,, on the

stability characteristics is examined for the basic flow of the
wavy channel discussed in Sec. 11 A and also shown in Figs.
2 and 3(a)-3(h). The

computations
are carried out at R

=5772 and the disturbance wavenuniber, c,Y.,, = 1.02056, as

these values represent the critical parameters for the plane
channel flows, It may be noted that the wavenunlber of the
wall X 1 = (1.2 is widely separated from the shorter wave-
length Or,) of the disturbance. The results or the stability

I

0

	

0.2

	

0.4

	

0.6

	

0.8

	

1x2

J

Selvarajan, Tulapurkara, and Rants
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calculations are given in Table I. The first mode indicates a
slow growth of a mode resembling a Tollmien-Schlichting
wave with a slightly decreasing circular frequency, W sr . The
second and higher modes are damped for s,,.<0.07, as indi-
cated by negative values of respective oh,. The appearance
of a fast growing second mode, when s,,,=0.07 is indicative
of the coupling between the wall wavenumber and the dis-
turbance wavenumber while the circular frequency of the
second mode co,,. is seen to decrease with E,,,. Calculations
show that the circular frequency of the second mode approxi-
mately corresponds to the circular frequency of the of the
plane channel flow with the disturbance wavenumber equal
to ( as + X t ). Lessen and Gangwani 20 also reported the ap-
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FIG. 14. Variation of the Reynolds stress distribution
S(x,) of the disturbances in the wavy channel flow for
R=1838, 1. i =0.2, a_,=1.4, e,,.=0.1, and w s =0.0.

pearance of a fast growing mode for boundary layer flows.
As s, is increased, some more unstable modes appear (see
Table I). It may be mentioned that Guzman and Amon," in a
direct numerical simulation of flow in a wavy channel, ob-
serve the occurrence of multiple unstable modes which cor-
respond to self-sustained oscillatory flows. However, the cir-
cular frequencies of fast growing modes are lower than the
frequency of the T-S wave. The relative growth of the un-
stable modes for a,.=0.95 and as=1.1 are shown in Fig. 4.
The growth of the most unstable disturbances as the Rey-
nolds number is varied is shown in Fig. 5.

In order to obtain the neutral stability characteristics of
the chosen basic flow, a number of computations are carried

FIG. 15. Variation of the growth rate, (ca_„) with a fre-
quency of excitation (m s ) for R=2000, X,=0.2, s,,,
=0.1, and a_,=1.4.
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FIG. 16. Variation of the growth rate, (w,;) with Reynolds number R for the

2D wavy channel, X,=0.2, e,,.=0.1, a,.= 1.4 and subjected to frequency

of excitation, w x=0,2.

out in the (x,-R domain with X I =0.2, e,,,=0.1, and w,

= 0.0. Figures 6 and 7 show the contours of constant w,; and
constant co,r . The transition critical Reynolds number,

Rcr(Lran) below which all the disturbances are damped, is
1838 for E,,,=0.1. When calculations are repeated for e,,
=0.05, the critical Reynolds number, Rcr(tr,n,) is 4207,

whose results are presented in Figs. 8 and 9. As a summary
of results, the neutral stability characteristics and the limit of
stability, i.e., in the linear sense, the critical Reynolds num-

ber for transition RCr(, ran ) for the wavy channel flow with the

variation of the wall amplitude parameter E,,, are shown in

Figs. 10-11, respectively. Typical variations of the ampli-
tude functions and the disturbance velocities for the critical
parameters of the wavy channel are also shown in Figs. 12-
13, respectively. Following Drazin and Reid, 21 the variation
of the Reynolds stress distribution 21 is plotted in Fig. 14. It is
indicative of the transfer of energy from the mean flow to the
disturbance and the kinks indicate the existence of more than
one critical layer.

C. Effect of frequency of excitation

It is of interest to study the effect of imposed circular
frequency w t on the stability characteristics of the
converging-diverging wavy channel flow, For I R
= 2000, X 1 =0.2, and cr,= 1.4, the decay/growth rate of the
disturbance was computed by varying the excitation fre-
quency, w t . The results are shown in Fig. 15. It is interesting
to note that for this E,,,=0.1, for which the unexcited (rigid)
wavy channel now is unstable (for R> 1837), the flow now
becomes stable for co, = 0. 11. With (o n = 0.2 and a further
variation of the Reynolds number, the disturbance becomes
neutrally stable only at about R=4200, as shown in Fig. 16.
This demonstrates that the transition to turbulent process

may be delayed by a suitable excitation of the wall. It may be
added that Guzman and Amon 22 and Anion et (11.

23

have
shown that even unstable but controlled oscillatory regimes
with Lagrangian and Eulerian chaos improve fluid mixing
and can lead to a lower pumping power. However, in the
present case of forced excitation, the power required l'or wall
motion needs to be taken into account. Further investigation
may be needed to determine the effect of wall waviness on
the nonlinear growth of disturbances.
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I V. CONCLUDING REMARKS
The temporal stability characteristics of a periodic basic

flow due to a wavy channel have been studied using the
Floquct theory. The transition critical Reynolds number for
the rigid wavy walled channel flow is shown to decrease
with an increase of E,,, . It is also shown that the channel flow
can be modulated by a suitable excitation of the wavy walls,
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APPENDIX A , PARASITIC COEFFICIENTS Air
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APPENDIX B: THE PARASITIC COEFFICIENTS X
The quantities X~" ) are listed as given below:
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