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ransition
arable to Recent numerical-modelling and seismological results have raised
ill kad to new questions about the dynamics` - ' and magnetism of the
joint, the Earth's core. Knowledge of the elasticity and texture of iron s' ' at
v traffic- core pressures is crucial for understanding the seismological
limits or ; observations, such as the low attenuation of seismic waves,

I merican' 1 the low shear-wave velocity and the anisotropy of compres-
a be less sional-wave velocity -". The density and bulk modulus of

.ep in one hexagonal-close-packed iron have been previously measured to
1 vates car 1 core pressures by static" and dynamic" , " methods. Here we
capacity I

	

study, using radial X-ray diffraction 1 5 and ultrasonic techniques',
I the shear modulus, single-crystal elasticity tensor, aggregate

compressional- and shear-wave velocities, and orientation depen-

IWtratTx$o-.:

	

dente of these velocities in iron. The inner core shear-wave
velocity is lower than the aggregate shear-wave velocity of iron,
suggesting the presence of low-velocity components or anelastic

~ ggg}

	

effects in the core. Observation of a strong lattice strain aniso-
tropy in iron samples indicates a large (--24% compressional-
wave anisotropy under the isostress assumption, and therefore a
perfect alignment of crystals, would not be needed to explain the
seismic observations. Alternatively the strain anisotropy may

$' 19991

	

indicate stress variation due to preferred slip systems.
Two radial X-ray diffraction (RXD) experiments (runs 1 and 2;

see Fig. 1) were performed with diamond cells. Non-hydrostatic
stress, a condition essential to the technique, was deliberately
produced in the specimen by not adding a pressure medium. The
stress state of the specimen compressed between two anvils is a

superposition of the hydrostatic pressure
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co ponding h.c.p. Fe value_ If the softening of v 5 represents possible
1~) m-I)uraltd prernelting effects" or partial melting, the observed
,hear values would tightly constrain the inner-core temperature near

! melting, The near-melting softening would also attenuate seismic
Alternatively, the observations ma}} indicate the presence of

a dditional low-v5 phases in the inner core.
The RXD measurements also provide single-crystal elasticity

! information Figure 3 shows that the Q(hk!) reaches a maximum
at a (100, 110) and c (002) axes that is more than double the

nlirti mum of the Q(hkl) at the diagonals ( 112, 102, 103). This trend

persists over the entire pressure range studied. The strong (hkl )

dependence of lattice strain reflects a strong elasticity anisotropy or
an (hki) dependence of stress""', which has little effect on the

a
forementioned estimates of averaged aggregate proprieties [ '''', but

which gives information on single-crystal properties. Elasticity
tensors and the orientation dependence of vp , v sl and v,, 2 (subscripts

l and 2 denote two polarization directions) are calculated from
parameters in equation (6) (see Fig. 3 legend) at the isostress
limit'''". Examples for h.c.p. Fe at 39 and 211 GPa are shown in
Table I and Figs 2 and 4, and compared with values from first-
principles theoretical predictions'. At 211 GPa (Fig. 3b), theories
predicted a small vp anisotropy (4% faster in the c than in the a
direction) which requires a perfect alignment ofh.c.p. Fe crystals (or
a giant single crystal"") to account for the 4% inner-core v,
anisotropy. The present results obtained under the isostress
assumption show a large v p anisotropy (24 11/6 faster at 45' from c
than along either the a or the c axis), which relieves the `perfect
alignment' textural constraint- Partial alignment of h.c.p. Fe crystals
would be sufficient for the magnitude of inner-core anisotropy.

The isostress assumption for interpreting the data observed with
our method has been confirmed experimentally for cubic phases of
FeO and Fe (refs 15, 27). Its validity remains to be tested for
hexagonal crystals. A strong (hkl) dependence oft (that is, non-
isostress) in the polycrystalline specimen may partially or fully
account for the observed lattice strain anisotropy. Consequently the
elasticity tensor can no longer be uniquely determined, but is only
partially constrained by the lattice Strain anisotropy in equation (6)
with trade-offs among the values of the C,, and textural parameters.
For example, development of the basal-plane slip texture common
i n h.c.p. metals" could conceivably lower the t of grains with their c
axis at 45 0 orientation. In such a case, the present observations at
ultrahigh pressures, combined with elastic anisotropy information
from theoretical estimates or single-crystal ultrasonic measure-
ments at lower pressures, would yield theological information on
single-crystal strength anisotropy and polycrystalline flow textures.
Such information would affect our estimates of both elastic and
anelastic anisotropies in the core79 .

Much information on bulk properties at high temperatures and
pressures, and single-crystal elasticity and strength anisotropy, may
be obtained by integrating techniques complementary to the three-
dimensional RXD measurements reported here. These include
ultrasonic studies, which provide accurate and direct determination
of velocities below 20 GPa, hydrostatic X-ray diffraction, which
provides Lattice parameters and bulk moduli to lnultimegabar
pressures, shock-wave experiments, which determine bulk elasticity
along the high pressure-temperature Hugoniot, and ab initio
calculations, which provide independent determinations of elasti-
tity. The present integrated study reveals that the elasticity of the
Earth's inner core may represent the low shear modulus of h.c.p. Fe
dose to melting, or the existence of additional components with low
shear-wave velocities but similar density to Fe. As well as perfectly
aligned h.c.p. Fe, more complicated textures should be considered,
Including partial alignment of these phases.
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