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Abstract

The problem of maximizing te fundamental
frequency of a thin walled beam with coupled bending
and torsional modes has been studied in this paper. An
optimality criterion approach has been used to locate
stationary values of an appropriate objective function
subject to constraints. Optimal designs with and without
coupling have been discussed.

. Introduction
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problem of findirg the best taper that yields the highest
possible natural frequency. Following the initial work of
Niordson, many different investigators have considered
differeé\wroblems in the field of optimal vibrations of
beams”*“". References 2-8 are concerned with 9&]5
maximization of fundamental frequencies. Olhoff”"
has addressed the problem of magimizing higher order
frequencies and rotating beams . The problem of
minimizing weight for a specified frequency constraint
has beea addressed in References 12-18.  Multiple
frequency constraints have been addressed in References
19-23. An optimality «iteria approach has been
discussed in References 17and 1%.

An application to the helicopter blage design
problem has been presented by Peters et al. In their
work, the problem of optimum distribution of mass and
stiffness for a frequency constraint has been discussed,
In most cases this is jgual of the problem of
maximizing the frequencies'“™ " ,which B considered asa
primal problem. It B possible to solve several primal
problems to obtain a solution to a dual probkm. Either
of these approaches results in an optimum design and a
structural dynamic model corresponding to the optimal
design.

The resulting mathematical model can be used asa
model for tests and improvements of these modgls by
identification techniques. In anapplication of this®" and
in all other optimal vibration problems, only uncoupled
vibration rmed ve been considered. In the helioopter
design problem and many other practical situations,
elastic axes @ not coincide with the inertial axes,
resulting in a coupling between some of the bending
modes and torsional modes., This paper hasaddressed the
problem of maximizing the fundamental frequency of a
thin walled beam with coupled bendirg and torsional
modes. This is achieved through an optimality criterion
approach 1 locate stationary values of a proper
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objective function. The results show that the optimum
designs are very different from the design obtained for
beams with wncoupled vibration, showing that the
coupling must not be igmored in the optimization process,

2. Primal Optimization Problem for a Continuous System

A beam of channel cross #ction with one axis of
section symmetry experiancing vibration in simple
harmonic motion of trequency w is considered. The
maximum strain energy determined from the sum of Bgs,
(A 2)and (A)2) is

2y, = J:_ (ao),(%"-:’)' +2(r.|).~:1}.‘:‘§;.'f

. ) —
+ee), (L2)" + G (L2 ok

+(ed) (L8) @)

The maximum kinetic energy follows from Egs, (A 9 | and
(A13), with the addition of non-structural concentrated
masses,

27, =Wt (27, (2.2
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For the pptimization process; '@.(x), jal,2...
denotes ina JX design variabte, Lot i i paner

the flange s1d web thicknesses. ‘The primal problem is t
determiné the wall thicknesses ' which provide th
maximum value of the fundcmental fraquensy subjest to




the constraint that the beam mass be squal to some
soecified valle. The formulation of equations is as
follows.

maximize

w'=f| (a), F—'—*) s 2, T 7n 22 ,
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(2.5)
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subject to the constraints of satisfaction of equlibrium
equations
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with  appropriate  equilibrium  requirements  at
concentrated masses and appropriate -boundary
conditions. There is anormalization constraint
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The beam mass iS specified
J:mlx -M =0 (2.9

and thers are possible limits on magnitudes of design
variables

@
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This problem will be solved with the optimality
criterion approach, with the criterion developed by
applying the tschniques of calculus of variations and
Lagrangs multipliers, as follows.

A moditied frequency functional, F, is defined as
follows:

Flm,8v.;8]= o*- (27, ~2) ~A(f, mor - M) (2.10)
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That is, the normalization and constant mass constraints
are incorporated with Lageange multipliers £2 and A,

respectively, The prodblem mow is to determine those
functions w, é, v.,and ¢ which %IVE a stationary value
10 the functional Fr sbect to equilibrium constraints.

First, the variations of the displacements w
and v_ are considered. A typical first variation of l!wul
be

_ 4% 4%
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After integration by parts and inclusion of the
equilibrium equation constraints, it can shown that
= 0 for every dw, only ifQ=w". This same

reqifrement follows from & o 0and JF =0

Finally, variations of the design vanables . are
considered. It is to be noted that variations of a
particular design variable are taken only in those regions
of the beam domain in which that variable does not have

a limiting value sethy Eq. (2.9)
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After evaluating the variations, the requirement that
SF,. = 0 for every ? leads to the optimality criterion
for‘dach design variable.

40,86, v 0), 809]= A, j= 4254

(2.13)
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In words, the optimum design is supposedly achieved
when the quantlty H JS constant aleng the span of the

for all reg Xn which the associated @, does not
a\%na Pm?tlng va?n ¢

The formulation is summarized as follows. The
unknowns are three displacement functions (w_, &, V ),
Ng design \Qnable functions (#), the traqbency of
vibration , and the Lagrahge multiplier (i)
Available ecpatlons are three equilibrium equations with



associated baundary conditions and concentrated mass
conditions (Eq. (2.6)), Ng optimality criterion equations
(Eqs. (2.13) and (2.18)) a the limiting values (Eq. (2.9)),
the normality condition (Eq. (2.7)), and the constant mass
constraint equation (Eq. (2.8)). The problem sems to be
well-posed; and a sirmultaneous solution of all equations
will fead to possible optimum designs.

Equation (2.6) shows the decoupling between
displacement v_and the displacement pair w , . There
arc two parate ceigenvalue problems, "leading to
eigenvalue wZ with eigenvector ’3{, L 0, & = 0 and
eigenvalue wy with eigenvector Qr. 8 , ve: 0 If
wszw‘i' then the eigenvector will contain nonzero

~
components for all displacements, with Qr, 8,and Qr"

Now, if the physics of the problem is such that one
need optimize only for vibration in the plane of
symmetry, then it is permissible to set w_ =0, ¢ =0.
Such singledisplacement optimization pro‘olems have
been treated many times in the past, most often with
cross section area as the design variable. Equations
(2.13) and (2.04) will provide the proper optimality
criteria for other design variables such as wall thickness.

Likewise, if it is necessary to optimize only for the
coupled vibration, then one may setv =0 in Egs. (2.13)
and (2.14} to obtain the correct optimafity criterion. This
coupleddisplacement optimization has not been done
before, and the reported numerical results in this paper
are limited to this problem.

The decoupled optimization problems will lead to
valid optimum designs in the following two situations.

If the optimality criteria are satisfied with v, #0;
w, 0,8 =0, and if the optzimized uf is less than the
bending-torsion frequency «/_, then the design is truly
optimum. The lowest natural frequency has been raised
to the highest value possible.

If Egs. (2.13) and (2.14) are satisfied with W, £0,
640, v, = 0, and if the optimized wfr<"'3’ the design is
truly optiinum. The lowest frequency has been raised.

However, if Egs. (2.13) and (2.14) are satisfied with
v 40, w =0, 6 -0 and the optimized w2w2 or if
w 10,640, =0and the onti-nzed w 2>w, then the
designs are not valid. In eis: -aw, the design is such
that the optimized frequercy 1s not the fundamental

frequency, which means that the fundamental frequency
has not >een optimized.

if decoupled optimization does not provide the
optimum design, then the probiem must be reformulated.
This observation can be explained by beginning an
optimization problem with a cross section with specified
depth h, width b, mass M, and wiform wall thickness t
such that u£<w3. In this case, optimization will
attempt to raise wi by varying the wall thicknesses.

This search for the best wall thicknessas can be thought
of as a movement through a design space of thicknesses,

seeking that point which provides the largest “’5'

However, because decoupled optimization is presumably
inadequate, it follows that at some point in the motion

through design space, there witi be a design for which
@3, =w\‘2. That design, while better than the initial

uniform thickness design, is not optimum; and if an even
better design is desired, the movement in design space

must satisfy the now active constraint of uf, =w3. This

requires mother ogtimality condition developed as
follows. The new madifiad {requency function is

F =J‘:(~). (%:!{)Jr -4 (j; méx - M)
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f:.("’“’: t2mw, b 41;'0')4’
t5[M s+ 2Pm 0 1 9}) =1 @19

which is simply the expression for w:‘: supplemented by
the normality condition for v, the constant mass
constraint, the constraint drat wvzv =w3, and the
normality condition for W, and 4., The variation d’Fv

leads to ( +p)w3‘-_Q= 0.  The variations JFW and
2 r

JFo lead to fw_ + o . 0. Finally, variation JFPJ. leads

to the new optimality criterion for each design variable
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The first lire of 8q. (2.16) is associated with optimizing

alone. The remaining terms, with the Lagrange
multiplier 8, appear because of the additional constraint
that w: = fd‘: = W

For this coupled optimization problem, the
unknowns have been augmented by the additional
Lagrange multiplier, 4, and an additional frequency of

. vibration, @3 but the equations have been augmented by

an additional normality equation and the constraint
equation of equality of frequencies.  The problem
rermains conceptually solvable, but the solution will be
more difficult because of the second Lagrange
multiplier.

3 Development of a Finite Ekrnent Model

A channel cross sction with constant specified
web depth, h, and constant specified flange width, b is




considered. For numerical results to be presented, the
beam is modeled as a collection of finite elements; and it
is necessary 1 develop proper stiffness and mass
matrices for each element,

It the thicknesses t, and t, have some specified
variation within each ﬁnitg e%en'gﬂt, say, for example, a
linear variation, then displacement based finite element
stiffness and mass matrices can be daveloped from the
differential equations (£gs. (A3}, (A4), and (A 10)) Or the

virtual work expressions (Eq (A27)) or the
energy definitions (Eqs. (AB), (A4, (A12), and (A 13D,

However, in this paper the optimization is based on finite
elements with uniform  thicknesses. Therefore,
approBriate matrices have been formulated by taking
available matrices based an shear center displacements

and transforming to reference axis

w_,- &, v

di%placemensis W, &, ¥, asollows.
. e — ©

Matrices [f“ and [M ws] denote 8 x 8element

stiffness and mass matrices developed with nodal degrees

of freedom w, dws/dx,o. g—g At each node, the

transformation from reference point, r, to shear center,
sy IS

Wy I’! o =€ 0-’ w, |

da o

7';*‘ _ o ! o -¢{ldx
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0
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o= Jaw 344"
I, 6L.b 1L 4

3.2)

locates the shear center for each finite element cross
section (Fig. 1. In condensed notation, Eq. (3.) is
written as

{w}} = [T]{Wr} (3.3)

where fw.] and fw_} denote 4 x 1 displacement vectors
at a sirgls node and [T] is the 4x 4 transformation
array. The two nodaldisplacement vectors are combined
to give 8x | total element displacement Vectors, {w }
and {w_} ., which are related by a properly comstructid
8 X & transtormation, [T], as follows

fw]= 71w} 3.4

Finally, the transformed stiffness and mass matrices are

(2= (T1TRIT] 3.3)

[mE]=[TT[MNT] (3.6)

The transtormed elermenta] matrices of Egs. (3.5) and
(3.6) can now be merged inthe usual manner to form the
total strucure matrices, [K_] and [M_].

The uncoupled beam vibration in ttie ydirection
can be treated with the usual stiffness and mass

matrices, (K,] and [M_]. Note that there will be only
two degrees of 2reedom a each node, v, and dv /dx,

3. Finite Element Formulation of the Primary Problem

A channe| cross section beam IS considered to be
composed of a specified number of finite elements with

possibly differing values of web thickness, t:, flange

thickness, tg, and length, L% (The superscript & denotes
element values.) The peodblem is to determine the ses of
wall thicknesses a1d lengths which will provide a
maximum value for the fundamental frequency of
vibratiar subject to the constraint of constant total
volume (for uniferm density material) and the constraint
that the summation of element lengths is equal to the
total length. In addition, there may be the so-called
c plin, constraint if the optimum design occurs with
«l, =&, asdiscussed earlier,

For the problem of optimizing the coupled bending-

torsion frequency, @ %ho

wg = g, te modified®objective Tunttion; Which

of
nction, whic n|ts the

finite element form of Eq- (2.10), is given by

A8, 65 4= K65, 1Vg.q, ~ AT 40010 - 7]

AL 9g, g, )l ee-2]

(4.1)
where K;, M,, = element in the ith row and jth column
of the total beam stiffness and mass
matrices, respectively;, associated
with  coupled bending-torsion
vibration.
q = §th degree of freedom for the system
1 in coupled bending-torsion vibration
th . . .
& ¢’ design variable (t2 or ) in
e element e w f
L* o tength of element e
¥V, T o specified values of volume and

length, respectively.

Trare is the additional constraint that

(Kj —w'My;)g. =0 (4.2)

Note the use of the summation convention in Eos. (4.1)
and (4.2).

The first necessary condition for a differentiable
maximum of F Ls§q-t= =0, from which it folloss, after

substitution from Eq-{(4.2), that
=2
A= w (4.3)
The next requirements are;—%- =0and 2E . g, from
&

[ L
which follow the optimality criteria given below in Eos.
(4.6) and (48) respectively. In developing those equa-

tions, there will be terms of the form[&_l(_i./at:] 949

Note, however, that the design variables t®and L*® occur
only in element e,

Theratore, the derivatives involve




only the appropriate stiffness and mass matrices for
element e, and the only dJegrees of freedom which need
he cons;dered are those associated with element e. This
means that the derivative terms can be written as

@ K;!at:) qfq?, as shown in Eqgs. (4.6) and (4.8).

The formulation can be summarized as follows.

The mnknowns are Vq values of q;» Nt values of e N,

vaiies of Le. one value of wz. one value of 4, and one
value of 8. The equations are

Vq eqguhbrium (K‘I -“’.Mt;)% 20, Fe42- N (G4.4)
One normalization M, ¢, g - /=0 (4.5)
N, optuimality e
t ¢
‘K“" QM,
— (d —-—cw? ——-‘) e_\-
F LY (3‘r 13 tf’: A O’ (4.6)
o] r=4,2,N
One constraint 4:_- A%~V =0 “.n
opumahty JK' 3“
22 10%C ~14C A =
S @ SEef - At-am0, 4
e - / 2’ ...’ ~.
One constraint 2‘: L¢ -7=o0 (4.9)

4 siznultaneous solution of Egs. (4.4) - (4.9} will lead to
possible optimum Jdesigns.

When speaking of N equations of equlibrium, as in
Eq. (4.4) and subsequen:ly? there are of course only N
independent equations. The remaining needed equatn§1 |s
the characteristic equation established from vanishing of
the appropriate determinant.

Some of the design variables might take on
specified values, such as a thickness equal to a lower
limit value, or an element length might be fixed. If this
occurs, simply give those variables the specified values
wherever they occur and remove the optimality criteria
associated with differentiation, with respect to those
variables. 1n particular, if all L® are specifiad and fixed,
remove Egs. (4.8) and {4.9) from the formulation. This
rerdnzves N, +1 equations and the N, +1 unknowns, L®
and4.

The next case to investigate is when the optimum
design occurs with ui :wyz; and the moditied objective
function, which & the finite element form of Eq. (2151, is

F(t5,05 9, 8,.) = Ko 808y, ~A(3A*-7)

(M, 0,.0,-1) -8(22-7)

"J
—-f f ”-n'j (% f.j -

—ot (Mo 80i 9 = 1)

Kvl'j ’u.‘ ’vj )

4.10)

It is now necessary 10 distinguish between oupled
vending -torsion vibration, denoted by subscript w, and
the uncoupled bending, denoted by subscript v.  The

derivatives with respect to q,; lead to HP’H&—IF
and the derivatives With respect to Ui lead (O

ﬂgw +af=0. The derivatives With respect t design
variables tr and L® Jead to the optimality criteria shown
bejow in Egs, (415)and (8.18), respectively,

This coupled optimization prodlem is summarized
as follows, The unknowns are Nw values of i Ny
values of N s values of te, N vajues of L™, two

values of w onevalue of A, one value of #, and ane
value of A . The equations are

N, equilibrium ( Ko —w ..,,,), =0, (1)

Exfy 20, Ny,
One normalization ~ Mu; 8.4, =1 =0 (%.12)
N, equilibrium (Kyij—w*Moj)e,.z0 ,  (813)
a':l 2 N,
One normalization Myij Bvi Bvj -1=0 (4.1%)
N, optimality KV o My
(ae: 3t' "n v
3~wq 2
3" (31‘ w 3" )’Vu 'D:[ =0 {4.15)
A Jtc -p )
3"
(3”70; wz UU)’ ' 4
3{' atc ve $vf
- r"lzi...) ~¢
One constraint )‘_' At ~V=0 (4.16)

One constraint K. ¢, Bu; ™ Koij 2 8j = 0 (817

N_ optimality Jll':.-' M
e - P “"w Dot !:l
i an.w
, S Jesets;
—AAt -2-8 o aM =0,
v vq
-G - SEI)

e:l 2)0.-’ %

One constraint Z Lf-Z=0 (%.19)

The optimum de5|gn is contained somewhere within Eqs.
(4.1D-(#.19), but finding it is surely adifficult probkm.

5, Recursion Relationship for the Primal Robkm

For the orimal problem with wncoupled
optimization, the optimization process begins with some

.krown distribution of design variables which satisty the

geometric constraints of Egs. (4.7) and (#.9). FOr this
initial design, Eqs. (4.4) and (4.5) are solved for the
eigenvalue, w , and the associated normalized
eigenvector, q.. Then it is possible to substitute into the
optimality conbitions of Egs. (4,6) and (4.8), Only On rare
occasions  will equations provide immediate
solutions for the Lagrangs multipliers, and  so what is

required IS a procedure far moving through design
varijable space insuch a manner as to eventually locate a
design which permits satisfaction of the optimality




criteria.  This will be done with a iteration scheme
developed as follows.

First introduce the detinitions

e 9K e e e M o _aa®
Urrae vy TiEthd, s
u®= KT L o e 5, (

e~ a‘. "”’ y) .:—‘: z 2 ’-2)

Now the optimality criteria, Eqs, (4,6) and (4.8), can be
respectively written as

Uf -7t —AA% L% -0

{5.3)
ve __wzr: ~AA%*-4=0 (5.4)
Next define
ZIRUL-arTE | ZU-0tTE (54
so that the optimality criteria can be written as
€ _ ) 0,8
RV WALY, ) T=h23eq M (59
Zg - AA%-a:=0 ezl 2, N (57

At the optimum design there will be a single value for A
which satisfies all N equations of Eq, (5.6) and a single
value for A which satisfies all N, equations of Eq. (5.7).
However, for a ron=odbtimum de%ign, there B no single
value of A and single value ofa; and what will prove
useful is some type of "best” values for A and 4 ,say
A and 4, which approximately satisfy Egs, (5.6) and (5.7)
according to some criterion of goodness,

There are several ways 1o determine these best
values, including methods which treat E4s. (5.6) and (5.7)
simultaneously. However, the simplest, and perhaps the
best, method is to treat the equations soarately as
follows. From Eq. (5.¢), define

2.
A = P (5.8)

Evidsntly, #, ¢ estimate for Lagrange multiplier A
on ther™ squation, Then Eq. (5.6)°c2n be written
as

(A-A)Ati*=0 .- d.-A=0 (5.9)

The best value of A s determined by the method of
weighted residuals, as follows.
Define

R.=(A-2)c (5.10)

where C sa weighting mumber the N difference (A .
N). Then if the measure oF error is given by f

E=Z R (5.11)

it follows that the value of 4, say J, which minimizes E
is given by

- zac
A= 21 (5.12)
Tcr
Note that if <, is constant for all design variables t:,
then

/
=LA (5.13)

so that A is simply the arithmetic average cfshe A -
the weighting mumber is chosen as C - AS1®, then

I from Eq. 512) is the same as § derived from mean
square error considerations of £q. (5.6),

With A new known, the optimality condition of &q.
(5.7) can be written as

€ __Tat
By —A4%-p=0 (5.14)
Define
= Zf_TJa®
4, = ?e AA
Once again, the optimality criterion requires wniform

value for all A,; and if the d, are not constant, then the
best value can be determined $rom

(5.15)

o Ele O

= .203 (5.16)
with weighting sumbers, D,; or, for uniform O,
i e
=~ 2 4
d=5Z (s17)

The next step iS to assume that the (v} iteration
values <an be expressed in terms of the » iteration, as
fotllows .

¥ o]
v
u; [ eer 17 [ ue
e = «:)vn e
7 T (5.18)
24 )
Ve wer]t | U
T: - (“)’ 7e
¢ (5.19)
where « and 7 s positive exponents, No attempt is
made to derive these relationships. For some

optimization problems in which the optimality criteria
Gn = exprazsed in terms of potential and Kinetic
energies, it is possible tO make some plausibility
arguments relating (w+1)ad v energies. These

arguments are simply carried without change to this

probterm for which the optimality criteria can not be
exprassed in terms of energy, leading to Eqs. {5.18) and

(5.19).

The anly proof of validity is utilitarian -do the




assumed relationships jead to procedureswhich do indeed
artueve optimum design”

Substitution of Eqs. (5.18) and (5.19) into Eq. (5.5)
gives

()

o
PILASIIN BT ey (5.20)
{?') = [({:)"'] {zr)

* (L""' 7
(ze) -[-("—.,—» ] (28)”

Note that ‘wz)v is used in the definition of ( 'r') *1and
(:) * L substitute Eq. (5.20) into Eq. (5.8) and Eq.
(5.21) into Eq. (5.13) and get the following approximations

for Arrol and A:’*ﬂ‘

(s.21)

ver (27T (éf)’}""‘v
A E e Tl 622)

P add 1 » »
o tagy = [l Teaer-an

Nowy the new design variables are selected s that the
,\r' as defined above are equal to each other for all

values of r and the d:+| are equal for all value of e.
This movement toward equality of.{r and 4_ is expected
1 be a movement toward the optimum desigh. The equal
valucs are chosen to be A* and 4%, so that

yoi 1%, —
Ar = F._)rn Ap = 4

(5.23)

(5.24)

yer we)”” ? ¥ - -
4, = [‘;'ze_ly ] (?:) (24> = 8% (5.25)
Therefore, the (¥ + 1) values can be written in terms of
the # values, as follows.

Vel

E 4
(¢5) =afl(t2)Y, wh #:’:{-;—',)" (5.26)

»™
[(J'A“J'¢Z ] (5.27)

Je = [ Gar-a
where n: |/& and m =1/p are positive exponents.

Equations (5.26) a d (527) include scalar
multipliers a a d b which are used t force the (v +1)
design variables to satisfy the tlength a d volume
constraints. Because there might be active geometric
constraints of the type of Eq. (2.9} acting on some of the
design variables, the kngth and volume constraints can
be written as

(7" = bgl (£, with

Y (L8 =I-£ (5.28)
ew/
Ne - Ner . -
S ORI V- (5

e=n/
where N denotes tre rumber of elements with active
constrain! on L5y N__ denotes the rumber of elerents
with specified cross section area, L. denotes the total
length of elerments with cnrtstrairgd length, and V
denotes ths total volume of elements with constraine
area. Substitution of Eq. (5.27) into Eq. {5.28) gives

Z - Lc
b = R'%:'N‘—_¢ ¥ -—\,)
& 96 (Le)

and Egs. (5.26) and (5.29) give

(5.30)

V-V
a= =Ne !
“}, M CH T (5.3)

Note tha? when developing AS[(DY* 1, itis recognized
that the goss section area is a firear function of design
variabk t- for the channel section with constant h and b
(see Eq. (A35).

Equations {5.26) and {5.27) are usefu] only when the
quantities f, and g, are defined, which requires (l:/AW

and [GASY . ZYIL( 3RS + ?Jto be defined and
positive. If these requirements Sqe not satisfied, then
proceed as follows. Write Eqg. (5.3} in the forms

if A%o,M<o
(Ve AP o A%, L)
(Ut)v" = (Uer)z’* ﬁv—)‘:) (Ac.,. L‘)‘u (5.32)
if Weo, Ai" >0
@ (TE) " = ) * (XA £)Y

(@ (T: e V{T:)vﬂr- (x, '7‘"}(5:1..

Write Eq. (5.4) in the forms

v
)(5.33)

H(3 A+ B¥ >0 and (AAS)+ Au<o which

implies 3¥ > a] '
(U (T (A B
(et Us)° + (3°-a2) G

if (NASJ%-3V<0 and (RA®)+ 4,70 which

a} >av

T ([ 3]

@ (T" = WITEY (88 -2

implies

(5.35)




From_positive definiteness Of energies, it follows
T Uf,and .. are all positive definite. Also

: Clearly, Egs. (5.32) - (5.35) have been
wlitten INsuch aws asto guarantee positive quantities

r.?

oL P 0 always,

on each side of wrsh eqiation. In eich case, the
intention is for the {2+ 1) design to 5 such drat the left
hand side will be increased 10 the ¥ value of the right
hand side. Substitution from Egs. (518) and (5.19) and
mtrcrda.mim of the scalars a and b gives the following
JFesulis.

if X¥>0 , X\ <0

[ 4 W’- r (U’r-)v " e v
(tr) - a[(Uer,‘:' (X -A:)(A: L‘)J (.t), (5.36)

i A¥’<o , /\1:>0

% }1“,— a (wz}l’( ‘rep )v ' ‘ti v
(4l = @I(TE ) (R -2Y) (A% L (5.37)

if (RA)%E >0 (AN 87¢<0

a\U+/ Ueev (ZU‘A: "
(C )v =b[ ( )(J:)v )/7(L¢jb (5.38)

if (XA%)¥+23%0 ,(AAYSA >0

e b[ W (TS Hae-85
i (15)> [
(5.39)

The scalarsb and a are sgain found form Egs. (3.30) and
{5.31) with proper definitions for the quantities f;"and g:

In summary, the recursion relations are as follows.
Use Egs. (5.26) and (5.27) if valid, because the
equations account for simultaneous changes in both
and T°. Trese equations should certainly be valid when
the design becomes sufficiently close to an optimum
design. If, in the early stages of the iteration process,

(5.26) and (527) are not valid for some design
variables, then we Eqs. {5.36) - (5.39) as appropriate to
modify those particular variables.

Note that all propesed recursion relationships will
automatically stop at an optimum degign. This Aol!ows
because at an optimum design, ail »_ = and all * =43

. . " Vil _ e
a )”a}ll te?;?;gn relations give (t:) = (t:) or

(5

6. Numerical Results

A channel cross section of the following dimensions
has been considered (Figurs 1),

h =05 in.

b = 0.975 in.

ty = 0.025in

P=0243 x 1072 b-sec2fina
E =10 x 106 psi

G - 1.8% 105 psi

The beam tength is 40 inches, and that length has been
divided into 10 equal length finite ejaments, Therefcre,
L® is fixed; and Eqs. (4.8) and (4.9) are removed from the
formulation. There is only ene design variabk for eacJ1
finite element, and that is the flange thickness i3,
Equation {A35) shows that the cross section arsa is a
lirear function of the design variabk t,; and inthis case,
the volsme constraint of Bq. (4.7) redudes to

Ny -m,

2 (c+qtf) =(V-V.)/¢1*
e=/ (6.1)

where ¢, = 00125 and C, = 195. The number M _ denotes
the mumber Of slemefits with the active geometric
constraint of t, equal to the specified minimum value;
and VY, denotesf the totai volume of elements with that
active constraint. Both simply supported and cantilever
boundary conditions have been studiad; and for simple
support, the minimum thickness is t¢ = @33 in, while for
the cantilever beam, minimum e 6.0004.

For the results to be greseated, the optimization
process started with a uwniform wall thickness, which
means t; =t =0.025 in.  The recursion relations are
Eqgs. (5.26), (5.36), or (5.37) as appropriate, with z: : t?
and A::‘:Z' The scaling factor is given by Eq. (5.31),

with @V *! equal to the specified constant LS,

There are two citeria which might be used to
identify the optimum design, The first criterion is
satisfaction of the optimality criterion in the form of Eq.
(5.9), which requires a constant value for all = Wit
one design variabk per finite element, it follows that
there will be one A per slement; and the uniformity of
those A . can beevaluated by the requirement

A
Ar {min
where € is a measure of acceptable error.

(6.2)

Another convergence criterion would appear to be
of the form

(w)vw _
‘ — ] ‘<e
(6.3)

Equation {6.3) is very simple to implement and will often
indicate an optimum design. However, it ispossible that
gq. (6.3) will be satisfied but Eg. (6.2) will not be
satisfied. Therefore, 9, (6.2) provides a more rigorous
measure of satisfaction of the optimality criterion; and
that equation has been used in the present analyses, with
€= 000L

Convergence to the optimum frequency was smooth
and monotonic. The rate of convergence was a function
of the initial choice of the exponent n which appears in




renitir s and agso o fand tion of how n was
tus wors, nowas anitwally set to a value?;
i.%. Nuring the iteration process, if at any stage w)¥
s jess than fg!”, then the vatue of n is reduced by 75%.

e e e

Cwt el

The optirnal  flange thicknesses are shown in
F.g sres 2.9 and sunmarized in Table 1-4, Patterns I and
7

I o Tables 2 and % are explained N Figure 5. For the
s npiv supported beam, a 47.71% increase in the first

frequency, (o, is realized when compared to the
wresponding value fr a beam with uniform flange
When geometric constraints are imposed the
increase in o the value of optimum W, did not change
<ign S antly, The increase was 40,6 5% compared to the
heam with uniform flange thickness. In the case of the
rantilever beam, the increase in in comparison to a
antilever heam of unitorm flange thickness is 210.22%
when no  geometric constraints are imposed.  The
corresponding value with geometric constraint 1s 178.9%.

thickness.,

1t is rnteresting to note that the percentage
increase in with respect to the uniform beam differs
very little bétween the unconstrained and constrained
optimyzation processes for a simply supported beam,
whereas this difference is significant in the case of the
cantilever, The reason s attributed to the fact that in
the case of a simply supported beam the irequality
constr aint imposed on the design variable becomes active
ontvy over verv few elements, whereas for the cantilever,
the design variables become very small over a large
number Of elements near the free end and fall below the
posed constraint. 4s a result their values are raised and
made equal to t, in the constrained problem. So, this
minimum constraint become: critical over a large
number of elements; hence, one is left with only a few
elernents for which the design variables may change
during the optimization process.

Some important observations regarding the
optimum design variable distributions are made at this
point. In case of the solid, simply supported beam
undergoing flexural vibration, the optimum area
distribution corresponding to the maximum fundamental
frequency appeared to follow the pattern of the
corresponding mode shape. In other words, the optimum
distribution assumed a maximum at the center with
minimum at the two ends (Fig. 6). The flange thickness
distribution corresponding to the optimum fundamental
frequency of the simply supported channel Section,
however, assumes a minimum at the center with
maximum at the two ends (Fig- 2 and 3). The difference
is attributed to the following reason. A beam with a
thin-walled open section like a channel is very weak in
resistance towards torsion. So, the fundamental mode of
coupled vibration is a predominantly torsion dominated
mode.  Since the twisting moment distribution of a
simply supported channel beam has its maximum at the
two ends and a minimum at the center, the optimum
distribution tends to follow this pattern. Alse, for solid
sections, beams with second area moments of inertia
proportional to the square of the cross-sectional area
have been considered; whereas, in the case of the beam
with channel cross-section, the design variable yields a
linear relation of the type,

I('l) = 40 +‘, A(’)

which may also contribute towards changing the nature
of the optimum distribution. This is not true for the
cantilever channel beam though. The optimum flange
thickness distribution in this case is similar in nature to
that of the solid cantilever undergoing only flexural
motian. The reason for this is that although the first
coupled mode of vibration is still a torsion dominated

(C-4)

mode, the twisting moment drrtribution in the case of a
cantilever beam has its maximum at the root and

minimum at the free end.  Although the optimum
distribution tends to follow the torsion dominated first
natural mode, it is similar in pattern to the optimum
distribution of a solid cantilever under bending only
(Figs. 8 and 7).

7. Conclusions

In this paper an optimality criterion approach has
been developed to maximize the fundamental frequency
of a thin walled beam with coupled bending and torsional
modes. The results show that the optimum designs, in
some cases, are very different from the designs obtained
for beams with uncoupled vibrations.  This suggests
further studies in this field, including the dual problem of
minimizing the weight for frequency restraints, beams
with closed «ross sections and multiple frequency
constraints. 1In practical applications where the coupling
of bending and torsional modes can not be avoided, such
as in rotorcraft technology, any analysis that ignores the
effect of coupling may lead to erroneous results.
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Appendix: Force Vibration of Channel Sections
with Nonuniform Wall Thickness—

A beam of channe] cross section with dimensions
and coordinate system as shown in Figure | has been
considered. The web depth, h, and the flange width, b,
are constant along the length; but the thicknesses t_ and
t, are nonuniform along the length of the beant and
possibly nonuniform in the cross section subject to a
requirement of symmetry about the y-axis. First, the
case of uniform thicknesses in the cross section is
considered. Ateach cross section, the shear center sand
centroid c are located by their y—<oordinate

2 ht,, -
e-3b (Eb+ T) (AD

o hiy, |~
C: b(2b+-J) (A2)
s

If the thicknesses t and t, are varied in such a way that
the ratio t, /t, is constant, then the loci ofshear centers
and centroids” will be straight lines; and shear center
displacements will provide elastic decoupling of rotation
and displacement just as for the uniform channel section.
However, for more general axial variations of thickness,
the shear centers will be along a curved line which is not
so suitable for the beam reference axis. Therefore, the
reference axis should be chosen so as to be straight for
any variation of thickness; and for the problems
considered in this paper, an appropriate reference axis
passes through the web center at each cross section.
Because there is no taper along the length, the web
centers will indeed lie along a straight lire; and this
choice for reference axis exploits the given cross section
symmetry about the y-axis.

Free vibration in the x-y plane occurs without
twisting. The usual - Bernoulli-Buler equations for
nonuniform beams describe this motion. However, free
vibration in the x-z plane is coupled with cross section
twisting.  The double coupling equations of motion are
well-known for a uniform beam with straight elastic axis
through the shear =enter, The purpose of this Appendix
is to derive the appropriate equations for reference axis
at the middle of the web.

The fundamental assumptions are the uwsual two
assumptions for thin walled beams. First, each cross
section is assumed to twist without distortion. Second,
there is no shear deformation in the middle surface of
the beam.

The equations of dynamic equifibrium are derived
:‘r?lm a differential bsam element and can be written as

ollows.

2 w, 2
My L w2 +A2E g

?x? ¢ Pt (A3)
DM  WMisy T 22 W
- 20 oy
e DX’ % Ter 2¢2 T2 70 (as)

‘7] b
m(z).—fhef,\,dz +2f ptedy (a5
-n - -]
2

b
W (x) = ?_foftfgdy (Ae)




NN b 2
2
1,00 [pt, 74z +2 jo PL5)+y* Jdyan
and £ s the mass density of the material.
The strain energy in the beam is given by

=3 f[E2,Ce) +2(e8) P 3e

20 ut 2

+(Ecl, (2¢) ;:7(55}’]“

{A8)

and the Kinetic energy is

2 _
T=%ff"‘(;3’ +2m 3:/';?49 I ( ff]"mq)

The equation of dynamic equilibrium for uncoupled
vibration in the v-direction is

'3 [(EJ)Z_J] m‘bv'ea
‘31 ? (AiD)
where {E )_ is the modulus weighted moment of inertia

about a liné parallel to the z-axis passing through the
rmodulus weighted centroid. The virtual work equation B

f[(EJ)z 35V.- +M?Vy5V]dx D
L

1 F]
ox A

the strain energy is

<14 (£4), (24T ax

(A1)
and the kinetic energy is
2
T:-L_{M(l-v') dx (A1)
2. ot

This Appendix closes with consideration of the
simplified, but most cormmmon, case in which the elastic
moduli, E and G, and the mass density, ,have constant
values in each cross section, Furthermore the channel
wall thicknesses, ty and t,, do not vary in a cross
section. FOr this case, it ist possible to calculate cross
section geometric properties. Then the beam stiffness

and mass per unit length quantities can be written as’

products of E, G, a A2 multiplied by appropriate
geometric properties. Results are as follons.

trbh | tuh?

Iy = + ,(E,Q)yzEI, v

- t}b4¢2tftwb’h
2 3(2tb +tyh)

’ (E J),‘-‘ EIz (A15)

2,3
- - tf: b (E J}wz El,,, (A-3)
2,3
R (E C}w: £ Cowr (AN
¢
3 N
iv_l_w 24b ,(GT)=67 wm
3 3
2t,betyh , mo:pA (A7)
t(b2 ,m=pPSy (A20)

_t R A .
~__W..+2tfb( 2 1 =PI, (A

1 Numerical Resuits for the Simply Supported
Channel Beam Shown In Fig. 3

£lement No. (Y,
(inch)

1 0.1011
n 0.0113
3 0.0066
4 0.0030
S 0.0030
6 0.0030
7 0.0030
8
9
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(&), : Potten 1, (@), : Pottern 2
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(e, (w)y | s Increase ¥ [ Incresse
rad/sec | rad/sec n (@), in (@),
Unconstrained 213.6 931.0 40.71 14.44
Constrained 213.5 934.4 4G.65 14.86

("‘)aw = 151.8 rod/sec

(a,)bw = 813.5 rad/sec
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Figure 1 Section Geometry and Shear Flow

Table 3 Numericol Results for the Cantilever '
In Fig. 4 - (@)ppr = 213.8 red/sec
Channal Beam Shown |
£ {64y = 151.8 rea/sec
Elevent No. | (¢ ), s
Qneh)_ 2 el —_
1 LY3ED ‘3 [
2 0.0638 =
3 0.0499 e
4 0.0352 N
5 0.0218 o
6 0.0004
7 0.0004 !
8 0.0004 I SN —
9 0.0004 eoi_ . ., L T y—r—ger—g—— T,
0. o 19. 89 28, 80 28. 09 am. 2
0 0.000¢ Length (inch)
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Figure 5 Vibration Patterns for a Channel Section,
(a) Pattern 1
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OPTIMAL DESIGN OF A VIBRATING BEAM
WITH COUPLED BENDING AND TORSION

S. Hanagud and C. V. Smith, 3r."
Ceorgia Institute oF Technology
Atlanta, Georgia 30332

A Chattopadhyay"
National Aeronautical Laboratories
Bangalore, India

Abstract

The problem of maximizing te fundamental
frequency of a thin walled beam with coupled bending
and torsional modes has been studied in this paper. An
optimality criterion approach has been used to locate
stationary values of an appropriate objective function
subject to constraints. Optimal designs with and without
coupling have been discussed.

. Introduction

proble’rAn figsgt'tr}\l/gatt'eq(?tlcgn lﬁfom?oﬁ?f'ml% %%ad\é'r%r t{Rg
problem of findirg the best taper that yields the highest
possible natural frequency. Following the initial work of
Niordson, many different investigators have considered
differeé\wroblems in the field of optimal vibrations of
beams”*“". References 2-8 are concerned with 9&]5
maximization of fundamental frequencies. Olhoff”"
has addressed the problem of magimizing higher order
frequencies and rotating beams . The problem of
minimizing weight for a specified frequency constraint
has beea addressed in References 12-18.  Multiple
frequency constraints have been addressed in References
19-23. An optimality «iteria approach has been
discussed in References 17and 1%.

An application to the helicopter blage design
problem has been presented by Peters et al. In their
work, the problem of optimum distribution of mass and
stiffness for a frequency constraint has been discussed,
In most cases this is jgual of the problem of
maximizing the frequencies'“™ " ,which B considered asa
primal problem. It B possible to solve several primal
problems to obtain a solution to a dual probkm. Either
of these approaches results in an optimum design and a
structural dynamic model corresponding to the optimal
design.

The resulting mathematical model can be used asa
model for tests and improvements of these modgls by
identification techniques. In anapplication of this®" and
in all other optimal vibration problems, only uncoupled
vibration rmed ve been considered. In the helioopter
design problem and many other practical situations,
elastic axes @ not coincide with the inertial axes,
resulting in a coupling between some of the bending
modes and torsional modes., This paper hasaddressed the
problem of maximizing the fundamental frequency of a
thin walled beam with coupled bendirg and torsional
modes. This is achieved through an optimality criterion
approach 1 locate stationary values of a proper

®  Professor and Associate Professor, respectively,
Members AJAA.
#&  Scientific Officer
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objective function. The results show that the optimum
designs are very different from the design obtained for
beams with wncoupled vibration, showing that the
coupling must not be igmored in the optimization process,

2. Primal Optimization Problem for a Continuous System

A beam of channel cross #ction with one axis of
section symmetry experiancing vibration in simple
harmonic motion of trequency w is considered. The
maximum strain energy determined from the sum of Bgs,
(A 2)and (A)2) is

2y, = J:_ (ao),(%"-:’)' +2(r.|).~:1}.‘:‘§;.'f

. ) —
+ee), (L2)" + G (L2 ok

+(ed) (L8) @)

The maximum kinetic energy follows from Egs, (A 9 | and
(A13), with the addition of non-structural concentrated
masses,

27, =Wt (27, (2.2

»

with Zi"z_j:(mw'h; 2R w,o)dx

- 2 2
+I”ﬂ + my,

- (2.3)
+‘.Z ”‘w’z‘ *2;5;""'.“:
3
+J,n' 9:_ + mc Vr“:
From the requirerrent that 2U = 2T with the
constraint that 2T __ = |, it folldAthat M3
wlz va (_2.0)

For the pptimization process; '@.(x), jal,2...
denotes ina JX design variabte, Lot i i paner

the flange s1d web thicknesses. ‘The primal problem is t
determiné the wall thicknesses ' which provide th
maximum value of the fundcmental fraquensy subjest to




